纳米氢氧化镁的抗菌性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为控制有害微生物的生长繁殖,避免细菌的传播和感染,研发高效无毒且效力持久的抗菌剂是一项与人类健康生活息息相关的重要课题。目前无机抗菌剂的研究多以重金属和半导体化合物为主,部分材料的抗菌机理不明,并且氢氧化物固体材料的抗菌性研究还是空白。针对以上问题,本论文研究了纳米Mg(OH)2的抗菌性能及抗菌机理,并加以应用。
     首先考察了悬浊液中纳米Mg(OH)2对大肠杆菌、金黄色葡萄球菌、吩嗪伯克氏菌的抗菌性能,结果表明在纳米Mg(OH)2的作用下,细菌存活率随着时间的增长而降低,且细菌死亡不可修复;与其它纳米材料包括CuO、NiO以及粘土的抗菌效率相比,对革兰氏阳性菌,纳米Mg(OH)2的抗菌效率低于CuO,而对革兰氏阴性菌,与CuO类似,高于NiO,展示了纳米Mg(OH)2作为抗菌剂的良好应用前景。另外,实验建立了多次顶空抽提气相色谱技术(MHE-GC)对微生物生长情况进行检测,绘制了大肠杆菌生长曲线,避免了原顶空法实验工作量和误差较大的问题。与比浊法相比,MHE-GC法可以早1.2 h检测出大肠杆菌的生长速率,具有更高的灵敏度;其对大肠杆菌数目的检测结果与平板菌落计数法结果一致,表明MHE-GC法具有较高的精确度。
     其次,以大肠杆菌为测试对象,对纳米Mg(OH)2的抗菌机理进行了讨论。实验结果表明Mg(OH)2纳米颗粒悬浊液中的OH和Mg2+对大肠杆菌的生长并无杀灭作用,但pH---10的碱性溶液对大肠杆菌的繁殖有一定的抑制作用;其杀菌过程在黑暗中也可进行,表明纳米Mg(OH)2杀菌并不依赖于光源。提出胞吞一离解机理,即Mg(OH)2纳米颗粒由胞吞作用进入细胞内部,在细胞体内的水性环境中释放大量OH-,破坏了细胞体内正常的中性环境,引起核酸和蛋白质的化学变性,从而导致细菌死亡。实验结果证实阻碍或促进细胞对Mg(OH)2的胞吞作用,比如选用微米级Mg(OH)2颗粒、加入能量抑制剂、引入长时间的紫外光照等,都严重影响了杀菌过程的进行。
     最后,将纳米Mg(OH)2的抗菌性加以应用,制备了抗菌纸和PVDF/Mg(OH)2共混膜。采用湿部添加法制备了纳米Mg(OH)2抗菌纸,对纸张样品中Mg(OH)2的留着率和纸张抗菌性能进行考察,结果表明纳米Mg(OH)2的留着率高于75%,可以满足实际应用的要求;在实验操作条件下,添加3 wt%Mg(OH)2纳米颗粒的纸张样品对大肠杆菌在18 h内可以达到100%的杀菌率,具有良好的应用前景。采用相转化法制备了PVDF/Mg(OH)2共混膜,实验测定了共混膜的组成结构、机械稳定性、牛血清白蛋白(BSA)吸附量等,并考察了Mg(OH)2纳米颗粒对膜孔结构和渗透性能的影响。结果表明Mg(OH)2纳米颗粒的添加,改变了PVDF/Mg(OH)2共混膜的孔结构和亲水性,当PEG浓度为5wt%时,共混膜处理含菌溶液的滤饼阻力与PVDF原膜相比下降为原来的1/5,显著提高了膜的抗生物污染性。
The study on the antibacterial agents with high efficiency and no toxicity is of great importance for the healthy development of society to control the growth of microorganism and the spread and infection of bacteria. The existing researches on the inorganic antibacterial agents are mainly focused on the metals and metal oxides, as well as novel engineered nanomaterials. The major antibacterial mechanisms reported in the literature fall into three general views, including the release of metal ions, generation of reactive oxygen species of semiconductor materials, and contact of nanoparticles with microorganisms. In this thesis, the antibacterial activity of Mg(OH)2 has been explored, and a novel antibacterial mechanism has been proposed. The Mg(OH)2 nanoparticles have been mixed into the fibers and Poly(vinylidene fluoride) (PVDF) to prepare antibacterial paper and hybrid membrane respectively, which extends the applications of the Mg(OH)2 nanoparticles. In addition, the multiple headspace extraction (MHE) technique for monitoring the growth of bacteria has been established in order to improve the existing headspace gas chromatography (HS-GC) method which gives a larger data scattering and causes larger errors.
     Firstly, the antibacterial activity of Mg(OH)2 nanoparticles was investigated and the Escherichia coli(E.coli), Staphyloccocus aureus, Burkholderia phenazinium were used as testing bacteria. The antibacterial efficiencies of different nanomaterials were also compared. Results indicate that Mg(OH)2 nanoparticles have a broad antibacterial spectrum, and the antibacterial efficiency of Mg(OH)2 against G- bacteria is almost the same as CuO, while a little lower for G+ bacteria, suggesting that Mg(OH)2 nanoparticles have an excellent potential application as antibacterial agents. Meanwhile, the MHE-GC technique for monitoring the growth of bacteria was established, and the growth curve of E.coli was obtained. The comparisons among the results from MHE-GC, turbidity measurement and viable cell counts indicate that the present method is very simple, sensitive and safe, which can easily perform an automatic measurement for bacteria growth at various desired incubation conditions.
     Secondly, the factors affecting antibacterial efficiency of Mg(OH)2 nanoparticles were investigated, including the ions in the suspension, UV and visible irradiation, the contact mode of nanoparticles and cells, the size and shape of Mg(OH)2. Results indicate that OH-and Mg2+ in Mg(OH)2 suspension can not kill E.coli; the antibacterial activity of Mg(OH)2 depends on its size rather than the shape; Mg(OH)2 nanoparticles can kill E.coli in the dark, suggesting its potential wide application. A novel antibacterial mechanism has been proposed that Mg(OH)2 nanoparticles can penetrate into the cells by endocytosis and release large amount of OH-, which will increase the pH value of the inter cells and cause the protein denaturation, leading to the cell death of bacterial.
     Finally, the Mg(OH)2 antibacterial paper and hybrid membrane were prepared, which extends the applications of the Mg(OH)2 nanoparticles. The retention rate of Mg(OH)2 and the antibacterial activity of the paper sheet were investigated. Results indicate that the retention rate of Mg(OH)2 in the paper sheet is above 75%, which reaches the standard of the industrial production. In our experiment, the paper sheet with 3% Mg(OH)2 nanoparticles performed a 100% antibacterial ratio in 18 h, suggesting an excellent potential application for Mg(OH)2 nanoparticles. In addition, the PVDF/Mg(OH)2 hybrid membrane was prepared by phase inversion method. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) measurements were performed, and the ultrasonic stability, porosity, hydrophilicity, permeation and bovine serum albumin (BSA) and E. coli adsorption of the membrane were investigated. Results indicate that the addition of Mg(OH)2 alters the pore structures and hydrophilicity of the modified membrane, and the relative flux of membrane to pure water has been improved by more than 1.5 times with 10 wt% Mg(OH)2 added, suggesting it will be very effective in preventing flux losses caused by biofilm formation.
引文
[1]沈萍,陈向东.微生物学(第二版)[M].北京:高等教育出版社,2006.
    [2]Morozkina E V, et al. Extremophilic microorganisms:Biochemical adaptation and biotechnological application (review)[J]. Applied Biochemistry and Microbiology,2010,46(1):1-14.
    [3]程殿林.微生物工程技术原理[M].北京:化学工业出版社,2007.
    [4]Burrows S M, et al. Bacteria in the global atmosphere-Part 1:Review and synthesis of literature data for different ecosystems [J]. Atmospheric Chemistry and Physics,2009,9(23):9263-9280.
    [5]Hayat R, et al. Soil beneficial bacteria and their role in plant growth promotion:a review[J]. Annals of Microbiology,2010,60(4):579-598.
    [6]Korzeniewska E. Emission of bacteria and fungi in the air from wastewater treatment plants-a review[J]. Frontiers in Bioscience (Scholar edition),2011,3:393-407.
    [7]刘志恒.现代微生物学[M].北京:科学出版社,2002.
    [8]Gomez J M G. Aging in bacteria, immortality or not-a critical review[J]. Current Aging Science, 2010,3(3):198-218.
    [9]http://micro.digitalproteus.com/morphology2.php.
    [10]Papadopoulos N G, et al. Viruses and bacteria in acute asthma exacerbations-A GA2LEN-DARE* systematic review[J]. Allergy,2011,66(4):458-468.
    [11]http://en.wikipedia.org/wiki/Bacteria.
    [12]Keyel P A, Heid M E, and Salter R D. Macrophage responses to bacterial toxins:a balance between activation and suppression[J]. Immunologic Research,2011,50(2-3):118-23.
    [13]杨文博.微生物生物学[M].北京:科学出版社,2001.
    [14]Fey P D. Modality of bacterial growth presents unique targets:how do we treat biofilm-mediated infections [J]. Current Opinion in Microbiology,2010,13(5):610-615.
    [15]Zwietering M H, et al. Modeling of the bacterial-growth curve[J]. Applied and Environmental Microbiology,1990,56(6):1875-1881.
    [16]Kirchman D, et al. Statistical-analysis of the direct count method for enumerating bacteria[J]. Applied and Environmental Microbiology,1982,44(2):376-382.
    [17]Canning D A. Redefining urinary tract infections by bacterial colony counts editorial comment[J]. Journal of Urology,2010,184(4):1489-1490.
    [18]Pienaar A C E, Coetzee L and Bragg R R. A rapid method to determine bacterial-contamination on hatching eggs.2. correlation of the optical-density measurements after incubation to bacterial counts on hatching eggs[J]. Onderstepoort Journal of Veterinary Research,1995,62(1):25-33.
    [19]Patriquin D and Knowles R. Nitrogen fixation in the rhizosphere of marine angiosperms[J]. Marine Biology,1972,16(1):49-58.
    [20]Guerzoni M E, Piva M, and Gardini F. Proposal of a rapid hs-glc method for microbiological control of foods[J]. Lebensmittel-Wissenschaft & Technologie,1985,18(2):128-132.
    [21]Sterckx F L, Saison D and Delvaux F R. Determination of volatile monophenols in beer using acetylation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry[J]. Analytica Chimica Acta,2010,676(1-2):53-59.
    [22]Rodrigues F M, et al. Development of a headspace solid-phase microextraction/gas chromatography-mass spectrometry method for determination of organophosphorus pesticide residues in cow milk[J]. Microchemical Journal,2011,98(1):56-61.
    [23]Riu M, et al. Quantification of chloroanisoles in cork using headspace solid-phase microextraction and gas chromatography with electron capture detection[J]. Journal of Chromatography A,2006, 1107(1-2):240-247.
    [24]Prat C, et al. Multivariate analysis of volatile compounds detected by headspace solid-phase microextraction/gas chromatography:A tool for sensory classification of cork stoppers[J]. Food Chemistry,2011,126(4):1978-1984.
    [25]Larsson L, et al. Diagnosis of bacteraemia by automated head-space capillary gas chromatography[J]. Journal of Clinical Pathology,1982,35(7):715-718.
    [26]Larsson E. Dummy-and finger-sucking habits with special attention to their significance for facial growth and occlusion.7. The effect of earlier dummy-and finger-sucking habit in 16-year-old children compared with children without earlier sucking habit[J]. Swedish Dental Journal,1978, 2(1):23-33.
    [27]Gardini F, et al. A head space gas chromatographic approach for the monitoring of the microbial cell activity and the cell viability evaluation[J]. Journal of Microbiological Methods,1997,29(2): 103-114.
    [28]Panagakos F S, et al. Advanced oral antibacterial/anti-inflammatory technology:A comprehensive review of the clinical benefits of a triclosan/copolymer/fluoride dentifrice[J]. The Journal of Clinical Dentistry,2005,16:1-19.
    [29]Eley B M. Antibacterial agents in the control of supragingival plaque-a review[J]. British Dental Journal,1999.186(6):286-296.
    [30]丁帅.天然抗菌剂及其应用[J].山东纺织科技,2010,5:50-53.
    [31]黄现青,等.生物抑菌剂抑制大肠埃希菌效果研究[J].微生物学杂志,2010,30(3):40-42.
    [32]Gorr S U and Abdolhosseini M. Antimicrobial peptides and periodontal disease[J]. Journal of Clinical Periodontology,2011,38:126-141.
    [33]Schallenberger M A, et al. The psychotrimine natural products have antibacterial activity against Gram-positive bacteria and act via membrane disruption[J]. Journal of Antibiotics,2010,63(11): 685-687.
    [34]Rahman S, et al. Antibacterial activity of natural spices on multiple drug resistant Escherichia coli isolated from drinking water, Bangladesh[J]. Annals of Clinical Microbiology and Antimicrobials, 2011,10:10.
    [35]Li L, et al. Preparation, characterization and antimicrobial activities of chitosan/Ag/ZnO blend films [J]. Chemical Engineering Journal,2010,160(1):378-382.
    [36]Niu M, et al. The Structure of Wool Fibers Grafted with Chitosan Coated Ag-loading Nano-SiO? Antibacterial Composites [J]. Fibers and Polymers,2010,11(8):1201-1203.
    [37]Yue L, et al. Preparation and Characterization of Core/Shell-type Ag/Chitosan Nanoparticles with Antibacterial Activity[J]. Bulletin of the Korean Chemical Society,2011,32(4):1277-1281.
    [38]焦泽鹏,等.有机蒙脱土抗菌剂的制备及表征[J].中国组织工程研究与临床康复,2009,13(16):3129-3132.
    [39]Timofeeva L and Kleshcheva N. Antimicrobial polymers:mechanism of action, factors of activity, and applications[J]. Applied Microbiology and Biotechnology,2010,89(3):475-492.
    [40]Cherrington C A, et al. Organic-acids-chemistry, antibacterial activity and practical applications [J]. Advances in Microbial Physiology,1991,32:87-108.
    [41]Jeong Y M. et al. Fabrication of cobalt-organic composite thin film via plasma-enhanced chemical vapor deposition for antibacterial applications[J]. Thin Solid Films,2009,517(9):2855-2858.
    [42]Bandow J E and Metzler-Nolte N. New ways of killing the beast:prospects for inorganic-organic hybrid nanomaterials as antibacterial agents[J]. Chembiochem,2009,10(18):2847-2850.
    [43]Zhang B, et al. Synthesis, characterization, and antimicrobial properties of Cu-inorganic antibacterial material containing lanthanum[J]. Journal of Rare Earths,2010,28:451-455.
    [44]Xia H, Sun B and Feng X. Classification, application and development of the inorganic antibacterial materials[J]. China Textile Leader,2010,6:115-117.
    [45]Sultana N, et al. Effect of metal ions on the in vitro availability of enoxacin, its in vivo implications, kinetic and antibacterial studies[J]. Quimica Nova,2011,34(2):186-189.
    [46]Sun C, et al. The Self-assembling and application of inorganic antibacterial material made of natural nanoporous carrier[J]. Journal of Wuhan University of Technology-Materials Science Edition,2008, 23(6):771-774.
    [47]Stoimenov P K, et al. Metal oxide nanoparticles as bactericidal agents[J]. Langmuir,2002,18(17): 6679-6686.
    [48]Sawai J. Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay[J]. Journal of Microbiological Methods,2003,54(2):177-182.
    [49]薄丽丽.银系纳米抗菌材料的制备与抗菌性能的研究[D].兰州:西北师范大学,2008.
    [50]Li Q, et al. Antimicrobial nanomaterials for water disinfection and microbial control:Potential applications and implications[J]. Water Research,2008,42(18):4591-4602.
    [51]Bloom W L and Blake F G. Studies on an antibacterial polypeptide extracted from normal tissues[J]. Journal of Infectious Diseases,1948,83(2):116-123.
    [52]Cherkasov A and Jankovic B. Application of inductive QSAR descriptors for quantification of antibacterial activity of cationic polypeptides[J]. Molecules,2004,9(12):1034-1052.
    [53]Wu G, et al. Determination of a new antibacterial peptide S-thanatin in rat plasma by an indirected-elisa[J]. Peptides,2011,32(7):1484-7.
    [54]Gazit E. Self-assembled peptide nanostructures:the design of molecular building blocks and their technological utilization[J]. Chemical Society Reviews,2007,36(8):1263-1269.
    [55]Ghadiri M R, Granja J R and Buehler L K. Artificial transmembrane ion channels from self-assembling peptide nanotubes[J]. Nature,1994,369(6478):301-304.
    [56]Kulikov S N, et al. Antibacterial and antimycotic activity of chitosan:mechanisms of action and role of the structure[J]. Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii,2009,5:91-97.
    [57]Fu X, et al. Chitosan derivatives with dual-antibacterial functional groups for antimicrobial finishing of cotton fabrics[J]. Carbohydrate Polymers,2011,85(1):221-227.
    [58]Potara M, et al. Synergistic antibacterial activity of chitosan-silver nanocomposites on Staphylococcus aureus[J]. Nanotechnology,2011,22(13) 135101.1-135101.9.
    [59]Don T M, et al. Preparation and antibacterial test of chitosan/PAA/PEGDA bi-layer composite membranes[J]. Journal of Biomaterials Science-Polymer Edition,2005,16(12):1503-1519.
    [60]Qi L F, et al. Preparation and antibacterial activity of chitosan nanoparticles[J]. Carbohydrate Research,2004,339(16):2693-2700.
    [61]Rabea E I, et al. Chitosan as antimicrobial agent:Applications and mode of action[J]. Biomacromolecules,2003,4(6):1457-1465.
    [62]Hoffmann S. Silver sulfadiazine-an antibacterial agent for topical use in burns-a review of the literature[J]. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery,1984, 18(1):119-126.
    [63]Marambio J C and Hoek E M V.A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010,12(5):1531-1551.
    [64]Matsunaga T, et al. Photoelectrochemical sterilization of microbial-cells by semiconductor powders[J]. Ferns Microbiology Letters,1985,29(1-2):211-214.
    [65]Feng Q L, et al. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus[J]. Journal of Biomedical Materials Research,2000,52(4):662-668.
    [66]Kim J Y, et al. Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation[J]. Water Research,2008,42(1-2):356-362.
    [67]Kim J S, et al. Antimicrobial effects of silver nanoparticles[J]. Nanomedicine:Nanotechnology, Biology and Medicine,2007,3(1):95-101.
    [68]吴卫华,王黔平.钨酸盐抗菌剂的实验研究[J].陶瓷,2010,7:17-20.
    [69]Morones J R, et al. The bactericidal effect of silver nanoparticles[J]. Nanotechnology,2005,16(10): 2346-2353.
    [70]Pal S, Tak Y K and Song J M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the gram-negative bacterium escherichia coli[J]. Applied and Environmental Microbiology,2007,73(6):1712-1720.
    [71]Wei C, et al. Bactericidal activity of TiO2 photocatalyst in aqueous-media-toward a solar-assisted water disinfection system[J]. Environmental Science & Technology,1994,28(5):934-938.
    [72]Armelao L, et al. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems[J]. Nanotechnology,2007,18:375709.
    [73]Sun D, Yang J and Wang X. Bacterial cellulose/TiO2 hybrid nanofibers prepared by the surface hydrolysis method with molecular precision[J]. Nanoscale,2010,2(2):287-292.
    [74]马宁.多功能TiO_2光催化复合分离膜制备和I水处理应用性能研究[D].大连:大连理工大学.2009.
    [75]Maness P C, et al. Bactericidal activity of photocatalytic TiO2 reaction:Toward an understanding of its killing mechanism[J]. Applied and Environmental Microbiology,1999,65(9):4094-4098.
    [76]Cho M, et al. Different inactivation Behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection [J]. Applied and Environmental Microbiology,2005,71(1):270-275.
    [77]Zan L, et al. Photocatalysis effect of nanometer TiO2 and TiO2-coated ceramic plate on Hepatitis B virus [J]. Journal of Photochemistry and Photobiology B-Biology,2007,86(2):165-169.
    [78]Hajkova P, et al. Photocatalytic Effect of TiO2 Films on Viruses and Bacteria[J]. Plasma Processes and Polymers,2007,4:397-401.
    [79]Flores C Y, et al. Spontaneous adsorption of silver nanoparticles on Ti/TiO2 surfaces. Antibacterial effect on Pseudomonas aeruginosa[J]. Journal of Colloid and Interface Science,2010,350(2): 402-408.
    [80]Pant H R, et al. Photocatalytic and antibacterial properties of a TiO2/nylon-6 electrospun nanocomposite mat containing silver nanoparticles[J]. Journal of Hazardous Materials,2011, 189(1-2):465-471.
    [81]Yuan Y, et al. TiO2 nanoparticles co-doped with silver and nitrogen for antibacterial application[J]. Journal of Nanoscience and Nanotechnology,2010,10(8):4868-4874.
    [82]Ozgur U, Hofstetter D and Morkoc H. ZnO Devices and applications:a review of current status and future prospects[J]. Proceedings of the Ieee,2010,98(7):1255-1268.
    [83]Bai H, Liu Z and Sun D D. Hierarchical ZnO/Cu corn-like materials with high photodegradation and antibacterial capability under visible light[J]. Physical Chemistry Chemical Physics,2011,13(13): 6205-6210.
    [84]Nair M G, et al. Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles[J]. Materials Letters,2011,65(12):1797-1800.
    [85]Wu C, et al. Synthesis of Na-doped ZnO nanowires and their antibacterial properties [J]. Powder Technology,2011,205(1-3):137-142.
    [86]Zhang L, et al. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids) [J]. Journal of Nanoparticle Research,2007,9(3):479-489.
    [87]Atmaca S, Gul K and Clcek R. The effect of zinc on microbial growth[J]. Turkish Journal of Medical Sciences,1998,28:595-597.
    [88]Soderberg T A, et al. Inhibitory effect of zinc-oxide on contact allergy due to colophony[J]. Contact Dermatitis,1990,23(5):346-351.
    [89]Jones N, et al. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms [J]. Fems Microbiology Letters,2008,279(1):71-76.
    [90]Franklin N M, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata):The importance of particle solubility [J]. Environmental Science & Technology,2007,41(24):8484-8490.
    [91]Guldi D M, et al. Fullerene for organic electronics[J]. Chemical Society Reviews,2009,38(6): 1587-1597.
    [92]Isaacson C W, Kleber M and Field J A. Quantitative Analysis of Fullerene Nanomaterials in Environmental Systems:A Critical Review[J]. Environmental Science & Technology,2009,43(17): 6463-6474.
    [93]He Y and Li Y. Fullerene derivative acceptors for high performance polymer solar cells[J]. Physical Chemistry Chemical Physics,2011,13(6):1970-1983.
    [94]Brunet L, et al. Comparative Photoactivity and Antibacterial Properties of C60 Fullerenes and Titanium Dioxide Nanoparticles [J]. Environmental Science & Technology,2009,43(12): 4355-4360.
    [95]Lyon D Y, et al. Antibacterial activity of fullerene water suspensions:Effects of preparation method and particle size[J]. Environmental Science & Technology,2006,40(14):4360-4366.
    [96]Aschberger K, et al. Review of fullerene toxicity and exposure-Appraisal of a human health risk assessment, based on open literature[J]. Regulatory Toxicology and Pharmacology,2010,58(3): 455-473.
    [97]Markovic Z, et al. The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes[J]. Biomaterials,2007,28(36):5437-5448.
    [98]Lyon D Y, et al. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage[J]. Nano Letters,2008,8(5):1539-1543.
    [99]Zhang B, et al. ENVR 101-Catalytic degradation of indigo dye by aqueous stable C60 aggregates[C]. New Orleans, LA:The 235th ACS National Meeting,2008.
    [100]Kang, S., et al., Antibacterial effects of carbon nanotubes:Size does matter[J]. Langmuir,2008, 24(13):6409-6413.
    [101]Liu S, et al. Sharper and Faster "Nano Darts" Kill More Bacteria:A Study of Antibacterial Activity of Individually Dispersed Pristine Single-Walled Carbon Nanotube[J]. Acs Nano,2009,3(12): 3891-3902.
    [102]Bai Y, et al. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent[J]. Carbon,2011,49(11):3663-3671.
    [103]Wu C S. Polyester and multiwalled carbon nanotube composites:characterization, electrical conductivity and antibacterial activity[J]. Polymer International,2011,60(5):807-815.
    [104]Kosaka T, et al. The Preparation of Ag Nanoparticle-Modified Single-Walled Carbon Nanotubes and Their Antibacterial Activity[J]. Biocontrol Science,2009,14(3):133-138.
    [105]Ramesha G.K, et al. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes[J]. Journal of Colloid and Interface Science,2011,361(1):270-277.
    [106]Singh V, et al. Graphene based materials:Past, present and future[J]. Progress in Materials Science, 2011,56(8):1178-1271.
    [107]Yen M Y, et al. Preparation of graphene/multi-walled carbon nanotube hybrid and its use as photoanodes of dye-sensitized solar cells[J]. Carbon,2011,49(11):3597-3606.
    [108]Hu W, et al. Graphene-Based Antibacterial Paper[J]. Acs Nano,2010,4(7):4317-4323.
    [109]Imani R, et al. Production of antibacterial filter paper from wood cellulose[J]. Bioresources,2011, 6(1):891-900.
    [110]Tang F, et al. Cellulose Filter Paper with Antibacterial Activity from Surface-Initiated atrp[J]. Journal of Macromolecular Science Part a-Pure and Applied Chemistry,2009,46(10):989-996.
    [111]Koga H, Kitaoka T and Wariishi H. In situ synthesis of silver nanoparticles on zinc oxide whiskers incorporated in a paper matrix for antibacterial applications[J]. Journal of Materials Chemistry,2009, 19(15):2135-2140.
    [112]Geng X, Filipe C and Pelton R. Antibacterial paper from photocatalytic TiO2 [J]. Appita Journal, 2008,61(6):456-460.
    [113]Ying M, et al. Chitosan Nanoparticles:Preparation and Application in Antibacterial Paper[J]. Journal of Macromolecular Science-Physics,2010,49(5):p.994-1001.
    [114]王小平,陈港.杀菌纸的加工方法[J].纸和造纸,2004,9:13-16.
    [115]Ko C H. and Chen S S. Enhanced removal of three phenols by laccase polymerization with MF/UF membranes[J]. Bioresource Technology,2008,99(7):2293-2298.
    [116]Choi Y, et al. Large-pore membrane filtration with coagulation as an MF/UF pretreatment process[J]. Desalination and Water Treatment,2010,15(1-3):149-159.
    [117]Shirazi S, Lin C J and Chen D. Inorganic fouling of pressure-driven membrane processes-A critical review[J]. Desalination,2010,250(1):236-248.
    [118]Tang C Y, Chong T H and Fane A G. Colloidal interactions and fouling of NF and RO membranes: A review[J]. Advances in Colloid and Interface Science,2011,164(1-2):126-143.
    [119]Lee D Y, et al. Behavior of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor[J]. Journal of Membrane Science,2008,322(1):13-18.
    [120]Chae S R, et al. Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control [J]. Journal of Membrane Science,2009,329(1-2):68-74.
    [121]Fabrega J, Renshaw J C and Lead J R. Interactions of Silver Nanoparticles with Pseudomonas putida Biofilms[J]. Environmental Science & Technology,2009,43(23):9004-9009.
    [122]Drews A. Membrane fouling in membrane bioreactors-Characterisation, contradictions, cause and cures [J]. Journal of Membrane Science,2010,363(1-2):1-28.
    [123]Yan L, et al. Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research[J]. Separation and Purification Technology, 2009,66(2):347-352.
    [124]Yu L Y, et al. Preparation and characterization of PVDF-SiO2 composite hollow fiber UF membrane by sol-gel method[J]. Journal of Membrane Science,2009,337(1-2):257-265.
    [125]Damodar R A, You S J and Chou H H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes[J]. Journal of Hazardous Materials,2009,172(2-3): 1321-1328.
    [126]Jochym P T, et al. Structure and elastic properties of Mg(OH)2 from density functional theory [J]. Journal of Physics:Condensed Matter,2010,22(44):445403.
    [127]Pang H, et al. Direct synthesis of hexagonal Mg(OH)2 nanoplates from natural brucite without dissolution procedure[J]. Chemical Communications,2011,47(22):6317-6319.
    [128]Song G L, et al. Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide[J]. Energy,2010,35(5): 2179-2183.
    [129]张文博,王宝和,张伟.纳米氢氧化镁材料的制备与应用[J].无机盐工业,2004,36(6):10-13.
    [130]Jyh-Ping H and Nacu A. Preparation of submicron-sized Mg(OH)2 particles through precipitation [J]. Colloids and Surfaces A (Physicochemical and Engineering Aspects),2005,262(1-3):220-231231.
    [131]Li X, et al. Preparation of magnesium hydroxide nanoplates using a bubbling setup[J]. Powder Technology,2010,198(2):292-297.
    [132]Chen X G, et al. Preparation of magnesium hydroxide chloride hydrate nanowires using calcined dolomite[J]. Journal of Inorganic Materials,2011,26(2):214-218.
    [133]邹光龙.氢氧化镁、氧化锌微/纳米结构的软化学合成与表征[D].杭州:浙江大学.2007.
    [134]Gasc J, et al. Electrical conductivity of polycrystalline Mg(OH)2 at 2 GPa:effect of grain boundary hydration-dehydration[J]. Physics and Chemistry of Minerals,2011,38(7):543-556.
    [135]Liang J Z, Yang J and Tang C Y. Melt shear viscosity of PP/Al(OH)3/Mg(OH)2 flame retardant composites at high extrusion rates[J]. Journal of Applied Polymer Science,2011,119(3):1835-1841.
    [136]Jiao C M and Chen X L. Preparation and flame retardant properties of EVA/Mg(OH)2/La2O3 composites [J]. Plastics Rubber and Composites,2010,39(10):445-448.
    [137]Mao Q, et al. Preparation and characterization of flame-retardant lamellar Mg(OH)2 thin films on citric acid-treated cotton fabrics[J]. Surface and Interface Analysis,2011,43(5):903-912.
    [138]Cao H, et al. Mg(OH)2 Complex Nanostruetures with Superhydrophobicity and Flame Retardant Effects[J]. Journal of Physical Chemistry C,2010,114(41):17362-17368.
    [139]马颖颖,衣守志.氢氧化镁在水处理中应用研究新进展[J].盐业与化工,2006,36(2):39-42.
    [140]Strnadovka N and Matejkova D. Adsorption of copper and zinc from aqueous solution on Mg(OH)2 [J]. Chemicke Listy,2006,100(9):803-808.
    [141]Freslon N, et al. Determination of rare earth elements and other trace elements (Y, Mn, Co, Cr) in seawater using Tm addition and Mg(OH)2 co-precipitation[J]. Talanta,2011,85(1):582-7.
    [142]Zhao Y J, et al. Formation of Mg(OH)2 dynamic membranes for oily water separation:effects of operating conditions[J]. Desalination,2006,191(1-3):344-350.
    [143]Gorski D, et al. Mg(OH)2-based hydrogen peroxide refiner bleaching:influence of extractives content in dilution water on pulp properties and energy efficiency[J]. Appita Journal,2010,63(3): 218-225.
    [144]Bouchard J, Wang J and Berry R. MgSO4 vs. Mg(OH)2 as a cellulose protector in oxygen delignification[J]. Holzforschung,2011,65(3):295-301.
    [145]Thakore A, et al. The use of magnesium hydroxide as a cost effective cellulose protector in the pressurized alkaline peroxide (Eop) bleaching stage[J]. Pulp & Paper-Canada,2005,106(5):46-49.
    [146]He Z, Qian X and Ni Y. The tensile strength of bleached mechanical pulps from the Mg(OH)2-based and NaOH-based peroxide bleaching processes[J]. Journal of Pulp and Paper Science,2006,32(1): 47-52.
    [147]Giorgi R, et al. Nanoparticles of Mg(OH)2:Synthesis and application to paper conservation[J]. Langmuir,2005,21(18):8495-8501.
    [148]Tan J, et al. In situ formed Mg(OH)2 nanoparticles as pH-switchable stabilizers for emulsions[J]. Journal of Colloid and Interface Science,2011,359(1):155-162.
    [149]Kysilka V, et al. Compsn. protecting potatoes during storage based on magnesium hydroxide aq. suspension contg. desired chemical additives. Czech, CZ9101890-A3; CZ282527-B6 [P/OL]. 1993-02-28 [1993-01-13].
    [150]Haase R A. Preservation of edible animals or animal parts containing fats and/or proteins e.g. meat and meat products, by applying magnesium oxide and/or magnesium hydroxide. US6066349-A[P/OL].2000-05-23 [1997-10-08].
    [151]Kato Y, et al. Thermal analysis of a magnesium oxide/water chemical heat pump for cogeneration[J]. Applied Thermal Engineering,2001,21(10):1067-1081.
    [152]Sawai J, et al. Antibacterial characteristics of magnesium oxide powder[J]. World Journal of Microbiology & Biotechnology,2000,16(2):187-194.
    [153]Forsten L and Soderling E. The alkaline and antibacterial effect of 7 Ca(OH)2 liners invitro[J]. Acta Odontologica Scandinavica,1984,42(2):93-98.
    [154]孙蕾,等.一种快速测定厌氧污泥活性的顶空气相色谱技术[J].色谱,2007,25(3):443-444.
    [155]Carroll J J and Mather A E. The system carbon dioxide-water and the krichevsky-kasarnovsky equation[J]. Journal of Solution Chemistry,1992,21(7):607-621.
    [156]Drimal P, Hrncirik J andHoffmann J. Assessing aerobic biodegradability of plastics in aqueous environment by GC-analyzing composition of equilibrium gaseous phase[J]. Journal of Polymers and the Environment,2006,14(3):309-316.
    [157]Mendonca A F, Amoroso T L and Knabel S J. Destruction of gram-negative food-borne pathogens by high ph involves disruption of the cytoplasmic membrane[J]. Applied and Environmental Microbiology,1994,60(11):4009-4014.
    [158]Fulinski A. Active transport in biological membranes and stochastic resonances[J]. Physical Review Letters,1997,79(24):4926-4929.
    [159]Fiaty K, et al. ATP-dependent active transport simulations based on a phosphatase-channel-kinase membrane structure[J]. Journal of Computational Chemistry,2004,25(10):1264-1276.
    [160]Nurminsky V N, et al. The effect of dihydroquercetin on active and passive ion transport systems in plant vacuolar membrane[J]. Biology Bulletin,2009,36(1):1-5.
    [161]Kumari L, et al. Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO[J]. Ceramics International,2009,35(8):3355-3364.
    [162]Mather P G, Read J C and Buhrman R A. Disorder, defects, and band gaps in ultrathin (001) MgO tunnel barrier layers[J]. Physical Review B,2006,73(20):205412.
    [163]Cleaver J E. Photoreactivation[J]. DNA Repair,2003,2(5):629-638.
    [164]Cho E C, et al. The Effects of size, shape, and surface functional group of gold nanostructures on their adsorption and internalization by cells [J]. Small,2010,6(4):517-522.
    [165]胡玲,张裕英,高长有.聚合物纳米粒子的结构和性能对胞吞和细胞功能的影响[J].化学进展,2009,21(6):1254-1267.
    [166]Iversen T G, Skotland T and Sandvig K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies[J]. Nano Today,2011,6(2):176-185.
    [167]Chithrani B D and Chan W C W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Letters,2007,7(6):1542-1550.
    [168]王兴林,等.短波紫外线照射对巨噬细胞吞噬功能及产生白细胞介素1的影响[J].上海免疫学杂志,1990,10(3):140-142.
    [169]肖卫东,等.光化学作用对肿瘤细胞胞吞大分子的释放[J].中国激光医学杂志,2006,15:1-6.
    [170]薛向应,王兴林.短波紫外线照射对小儿肺炎及中性粒细胞吞噬功能和IL-2的影响[J].军医进修学院学报,1995,16(2):97-99.
    [171]Marton A, et al. Apoptotic cell death induced by inhibitors of energy conservation Bcl-2 inhibits apoptosis downstream of a fall of ATP level[J]. European Journal of Biochemistry,1997,250(2): 467-475.
    [172]Skowronski T, Energy-dependent transport of cadmium by Stichococcus bacillaris[J]. Chemosphere, 1984,13(12):1379-1384.
    [173]Benzinger W D, Parekh B S and Eichelberger J L. High-temperature ultrafiltration with kynar poly(vinylidene fluoride) membranes[J]. Separation Science and Technology,1980,15(4): 1193-1204.
    [174]Chang Y, et al. Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility [J]. Journal of Membrane Science,2008,309(1-2):165-174.
    [175]Ademovic Z, et al. Minimization of protein adsorption on poly(vinylidene fluoride) [J]. Biomolecular Engineering,2002,19(2-6):177-182.
    [176]Shi L, et al. Effect of additives on the fabrication of poly(vinylidene fluoride-co-hexafluropropylene) (PVDF-HFP) asymmetric microporous hollow fiber membranes [J]. Journal of Membrane Science, 2008,315(1-2):195-204.
    [177]Arthanareeswaran G, Sriyamuna Devi T K and Mohan D. Development, characterization and separation performance of organic-inorganic membranes:Part Ⅱ. Effect of additives [J]. Separation and Purification Technology,2009,67(3):271-281.
    [178]Yao C, et al. Surface modification and antibacterial activity of electrospun polyurethane fibrous membranes with quaternary ammonium moieties[J]. Journal of Membrane Science,2008,320(1-2): 259-267.
    [179]Li J F, Xu Z L and Yang H. Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives[J]. Polymers for Advanced Technologies,2008, 19(4):251-257.
    [180]Boributh S, Chanachai A and Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling[J]. Journal of Membrane Science,2009,342(1-2):97-104.
    [181]Hughes J F. Variation in wood structure in relation to wood quality[J]. Proceedings of the Linnean Society of London,1968,179(2):275-278.
    [182]Turhan K N, Sahbaz F and Guner A. A spectrophotometric study of hydrogen bonding in methylcellulose-based edible films plasticized by polyethylene glycol[J]. Journal of Food Science, 2001,66(1):59-62.
    [183]Yang Y, et al. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane[J]. Journal of Membrane Science,2007,288(1-2):231-238.
    [184]Lee, Y. and M.M. Clark, Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions [J]. Journal of Membrane Science,1998,149(2):181-202.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700