柱状和板状金刚石的可控生长与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石是集最大硬度、最大热导率、最小压缩率、最宽透光波段、耐腐蚀等诸多优异性能于一体的极限功能材料,它广泛的应用于工业、科技、国防、钻石行业等领域。金刚石的合成研究有助于我国金刚石生产技术水平的整体提高。金刚石合成分为两大基本的方法,一个是高温高压合成法;另一个是低压气相合成法;其中,高温高压合成方法又分为直接转化法和溶剂法,直接转化法合成条件苛刻,不易控制;溶剂法分为膜生长法和温度梯度法,溶剂法可以大幅度的降低合成的压力和温度,在金刚石合成方面具有明显的优越性。本文分别使用膜生长法和温度梯度法在国产六面顶压机上进行柱状金刚石和多晶种法板状金刚石单晶的合成与研究,实现了柱状和板状金刚石晶体的可控生长,探讨了晶体生长的机理。
Diamond is the miraculous materials that exhibit a range of excellent properties,such as the hardest, the highest room temperature thermal conductivity, a broadtransmission spectral range, and inert to all acid and base reagents. Diamond hasbeen used in many fields as industry, scientific research, national defence, medicaltreatment etc. For example, it has been used as an abrasive and cutting tools, heatspreaders for semiconductor laser, high power laser weapon, windows for infrared,anvils of DAC and etc. Among many methods of man made diamond synthesis,solvent method invented by G. E. is also one of effective methods. Catalyst, synthetictechnics, and crystal morphology are always researching topics of diamond industry.How to synthesize crystal with special morphology and expand applications ofdiamond is one of focus.
     Various transition metals and alloys have been used as catalysts for diamondsynthesis. In the diamond synthesis process under high temperature and highpressure, as the synthesized temperature increases at the constant pressure, themorphologies of the diamond changes from cubic with dominated {100} crystalfaces, cubo octahedral with dominated {100} and {111} crystal faces, to octahedralshapes with dominated {111} crystal faces. When diamond tools made by diamondcrystal with ordinary morphology were used, the phenomenon of “threshing”widespread existed, because the rounded degree of diamond crystals is about1.Chemical bonds are formed between diamond particles and binder, the ratio value ofthe contact area of diamond and binder to exposed area of diamond is small, whichresults that the holding force is small when diamond is walloped and the diamond crystals is easy shed from tools, so the life time of diamond tools become shorter.Changing the diamond crystal morphology by exploiting the novel diamondsynthesis catalyst and updating the synthesis process can increase the holding forceof diamond crystals in the tool matrix, and then the life time of diamond tools isextended. Doctor Liu has synthesized the strip shape diamond using our groupdesigned Fe based and Ni based catalysts, but, the quality and ratio of length toradio can not meet the practical requirements, and we have not a completeunderstanding of the growth mechanism of strip shape diamonds, which need afurther study.
     A range of excellent properties of diamond can be most vividly shown by thegem diamond crystal (the size is larger than1mm). Sheet shape diamond crystals canbe used as heat spreaders for semiconductor laser and high power laser weapon, thesubstrate of the chemical vapor deposition process for diamond synthesis also needsheet shape diamond; especially, in the high hardness and high precision processingtools, sheet shape diamond crystal is the first choice because of the specialmorphology and minimum amount of cutting. On gem quality diamond synthesistechnology, the cell for diamond growth by temperature gradient method under highpressure and high temperature is usually embedded one diamond seed, and small sizegrowth cell is fit for single seed method for gem diamond synthesis. With thecontinuous development of high pressure technology, the growth cell has beenexpanding, and the only one seed embedded is not meet the actual situation, so, wemust adjust assembly structure to meet the growth of more seeds at the same time.Multiseed method is an effective way to make more crystals grow at the same timeand improve the efficiency of growth cell. But, for the synthesis conditions, it isharsh for the multiseed method for high quality sheet cubic diamonds synthesis.Meanwhile, as the development of industry, people need more and more diamonds.Now, how to improve production efficiency and reduce production costs is one ofthe urgent problems of diamond industry. So, to solve the problems of diamond toolsand increase the synthetic efficiency, it is urgent to expand the types of diamond,synthesize the high quality strip and sheet cubic diamonds, and study the growth mechanism for the controlled growth of diamond crystals.
     Synthesis and studies on strip shape industrial diamond and multiseed methodgrowth of sheet cubic diamond crystals were performed by optimizing the catalystfor diamond synthesis; improving the synthetic technology and assembly structure ofgem diamond growth.
引文
[1] KANDA H, OHSAWA T. Effect of solvent metals upon the morphology ofsynthetic diamonds [J]. J. Crystal Growth,1989,94:115124.
    [2] SUNAGAWA I. Growth and morphology of diamond crystals under stable andmetastable conditions [J]. J. Crystal Growth,1990,99:11561161.
    [3] GILING L J, VAN ENCKWVORT W J P. On the influence of surfacereconstruction on crystal growth processes [J]. Surface Science,1985,161:567583.
    [4] STRONG H M, CHRENKO R M. Further studies on diamond growth rates andphysical properties of laboratory made diamond [J]. J. Phys. Chem.,1971,75:18381843.
    [5] SUNAGAWA I. Materials science of the earth’s interior,303,1984[C]. Tokyo,1984.
    [6] MOORE M. The properties of diamond, Ed. J.E. Field,1979[C]. London:Academic Press,1979.
    [7] HARTMAN P, Crystal growth: An Introduction, Ed. P. Hartman,1973[C].Amsterdam: North Holland,1973.
    [8] WOODS G S, LANG A R. Cathodoluminescence, optical absorption and x raytopographic studies of synthetic diamonds [J] J. Crystal Growth,1975,28:215209.
    [9] TOLANSKY S, SUNAGAWA I. Spiral and other growth forms of syntheticdiamonds: A distinction between natural and synthetic diamond [J] Nature(London),1959,184:15261527.
    [10] KANDA H, OHSAWA T, O. FUKUNAGA O, SUNAGAWA I. Morphology andgrowth unit of crystals, Ed. I. Sunagawa,1984[C]. Tokyo: Terra,1984.
    [11] MOORE M, LANG A R. On the origin of the rounded dodecahedral habit ofnatural diamond [J]. J. Crystal Growth,1974,26:133139.
    [12] LANG A R. Glimpses into the growth history of natural diamonds [J]. J. CrystalGrowth,1974,24/25:108115.
    [13] TOLANSKY S, SUNAGAWA I. Interferometric studies on synthetic diamonds[J]. Nature(London),1960,185:203204.
    [14] YAMAOKA S, KOMATSU H, KANDA H, SETAKA N. Growth of diamondwith rhombic dodecahedral faces [J]. J. Crystal Growth,1977,37:349352.
    [15] Dyer H B, du Preez L. Irradiation damage in type I diamond [J] J. Chem. Phys.,1965,42:18981906.
    [16] APPENDIX B. Properties of natural and synthetic Diamond, Ed. J.E. Field,[C].London: Academic Press,1992:669684.
    [17] VAGARALI S, M. LEE M, DEVRIES R C. Progress of large diamond growthtechnology and future prospects, The Fourth International Conference on theScience of Hard Materials, November10151991[C]. Portugal: Madeira,1991:233245.
    [18] DAVIES. G. The optical properties of diamond [J]. Phys. Chem. Carbon,1977,13:1143.
    [19] KAISER W, BOND W L, Nitrogen. A Major Impurity in common type Idiamond [J]. Phys. Rev.,1959,115:857863.
    [20] SUMIYA H, TODA N, SATOH S. High qualtiy large diamond crystals [J]. NewDiamond and Frontier Carbon Technology,2000,10:233251.
    [21] MAINWOOD A, NITROGEN. Ntrogen vacancy complexes and their formationin diamond [J]. Physical Review B,1994,49(12):79347940.
    [22] FALLON P J, BROWN L M, BARRY J C, BRULEY J. Nitrogen determinationand characterization in natural diamond platelets [J]. Phil. Mag. A,1995,72:2137.
    [23] DAVIES G. The A nitrogen aggregate in diamond its symmetry and possiblestructure [J]. J. Phys. C: Solid Phys.,1976,9:537542.
    [24] EVANS T. Aggregation of Nitrogen in Diamond, Properties of Natural andSynthetic Diamond, Ed. J.E. Field,1992[C]. London: Academic Press,1992:259.
    [25] SMITH W V, SOROKIN P P, GELLES O L, LASHER G J. Electron spinresonance of nitrogen donors in diamond [J]. Phys. Rev.,1959,115:15461552.
    [26] COLLINS A T, KANDA H, KITAWAKI H. Colour changes produced in naturalbrown diamonds by high pressure, high temperature treatment [J]. DiamondRelat. Mater.,2000,9:113122.
    [27] KANDA H, OHSAWA T, YAMAOKA S. Proceedings of the First InternationalConference on New Diamond Science and Technology, S. Saito, O. Fukunagaand M. Yoshikawa, eds,1990[C], Japan: Tokyo,1990:339344.
    [28] COLLINS A T. Things we still don’t know about optical centers in diamond [J].Diamond Relat. Mater.,1999,8:14551462.
    [29] COLLINS A T. Spectroscopy of defects and transition metal in diamond [J].Diamond Relat. Mater.,2000,9:417423.
    [30] COLLINS A T. Optical centers in synthetic diamond–a review [J]. NewDiamond Science and Technology, MRS Int. Conf. Proc.,1991:659669.
    [31] DAVIES G. The A nitrogen aggregate in diamond its symmetry and possiblestructure [J] J. Phys. C,1976,9: L537L542.
    [32] FALLON P J, BROWN L M, BARRY J C, BRULEY J Nitrogen determinationand characterization in natural diamond platelets [J]. Phil. Mag. A,1995,72:2137.
    [33] YODER M N. Diamond and diamond like films and coatings,Edited byR.E.Clausing, L.L.Horton, J.C.Angus, and P.Koidl,1991[C], New York:Plenum Press,1991:116.
    [34] TILLMANN W. Trends and market perspectives for diamond tools in theconstruction industry [J]. Int. Journal of Refractory Metals and Hard Materials,2000,18(6):301306.
    [35] MELLOR J W. A comprehensive treatise on inorganic and theoretical chemistry[J]. Longmans, Green, London,1924,5:724729.
    [36] DESCH C H. The problem of artificial production of diamond [J] Nature,1928,121:799800.
    [37] REYLEIGH LORD, J B Hannay and the artificial production of diamond [J].Nature,1943,152:597.
    [38] ROSSINI F D, JESSUP R S. Heat and free energy of formation of CO2and thetransition between graphite and diamond [J]. J. Res. Nat. Bur. Stand. Sect. C,1938,21:491501.
    [39] BRIDGMAN P W. An experimental contribution to the problem of diamondsynthesis [J]. J. Chem. Phys.,1947,15:9298.
    [40] SUMIYA H, IRIFUNE T. Synthesis of high purity nano polycrystallinediamond and its characterization [J]. Sei Technical Review,2005,59:5259.
    [41] WEDLAKE R J. The Properties of Diamond, ed. J.E. Field [C], London:Academic Press,1979:501535.
    [42] SUMIYA H, IRIFUNE T, KURIO A, SAKAMOTO S, INOUE T.Microstructure features of polycrystalline diamond synthesized directly fromgraphite under static high pressure [J] J. Materials Science,2004,39:445450.
    [43] LIANDER H. Artificial diamonds [J]. ASEA Journal,1955,28:9798.
    [44] SUMIYA H, HARANO K. Distinctive mechanical properties ofnano polycrystalline diamond synthesized by direct conversion sintering underHPHT [J] Diamond Relat. Mater.,2012,24:4448.
    [45] GUR SUITS C. Man Made Diamonds a Progress Report [J]. Proc. Am. Philos.Soc.,1964,108:443449.
    [46] MOISSAN H. Nouvelles experiences sur la reproduction du diamant ComptesRendus (Paris)[J].1894,118:320326.
    [47] BOCQUILLON G, BOGICEVIC C, FABRE C, RASSAT A. C60fullerene ascarbon source for diamond synthesis [J]. J. Phys. Chem.,1993,97:1292412927.
    [48] BUNDY F P. Diamond synthesis with non conventional catalyst solvents [J].Nature,1973,241:116118.
    [49] STRONG H M. Early diamond making at General Electric [J]. Am. J. Phys.,1989,57:794802.
    [50] BUNDY F P, HALL H T, H. M. STRONG H M, WENTORF R H, Jr.Man made diamonds [J]. Nature,1955,176:5155.
    [51] BOVENKERK H P, BUNDY F P, HALL H T, STRONG H M, R. WENTORFR H, Jr. Preparation of diamond [J]. Nature,1959,184:10941098.
    [52] STRONG H M. Diamind synthesis with ferrous metal alloys [P]. U.S. Patent2,1960,947:609.
    [53] HALL H T, STRONG H M, WENTORF R H, Jr. Method of making diamonds
    [P]. U.S. Patent2,1960,47:610.
    [54] STRONG H M. Catalytic effects in the transformation graphite to diamond [J].J. Phys. Chem.,1963,39:20572061.
    [55] STRONG H M, WENTORF R H, Jr. The growth of large diamond crystals [J].Naturwissenschaften,1972,59:17.
    [56] WENTORF R H, Jr. Some studies of diamond growth rates [J]. J. Phys. Chem.,1971,75:18331837.
    [57] YARNELL A. The many facets of man made diamonds. Chemical&engineering news [J].2004,82(5):2631.
    [58] Angus J C, Hayman C C. Low pressure, metastable growth of diamond and"diamondlike" phases [J]. Science,1988,241(4868):913921.
    [59] BURNS R C, KESSLER S, SIBAMDA M, C.M. WELBOURN C M, WELCHD L. Large synthetic diamonds [J]. Proc.3rd NIRIM Int. Symp. AdvancedMaterials,1996:105111.
    [60] YAN C S, CHEN Y C, HO S S, MAO H Kao, HEMLEY R J. Large singlecrystal CVD diamonds at rapid growth rates [D]. The10th InternationalConference on New Diamond Science and Technology, May1114AIST,Tsukuba, Japan,2005.
    [61] YAN C S, CHEN Y C, HO S S, MAO H K, HEMLEY R J. Large single crystalCVD diamonds at rapid growth rates.8th Applied Diamond Conference,NanoCarbon. May1519,2005[D]. Argonne National Laboratory, Argonne,Illinois,2005.
    [62] YAN C, YOGESH VOHRA K, MAO H K, HEMLEY R J. Very high growthrate chemical vapor deposition of single crystal diamond [J]. PNAS,2002,99(20):1252312525.
    [63] MENG Y F, YAN C, LAI J, KRASNICKI S, SHU H, YU T, LIANG Q, MAO HK, HEMLEY R J. Enhanced optical properties of chemical vapor depositedsingle crystal diamond by low pressure/high temperature annealing [J]. PNAS,2008,105:1762017625.
    [64] LIANG Q, YAN C S, MENG Y F, LAI J, KRASNICKI S, MAO H K,HEMLEY RUSSELL J. Recent advances in high growth rate single crystalCVD diamond [J]. Diamond Relat. Mater.,2009,18:698703.
    [65] LIANG Q, CHENG Y C, LAI J, YAN C S, MENG Y F, MAO H K, HEMLEYRUSSELL J. Enhanced growth of high quality single crystal diamond bymicrowave plasma assisted chemical vapor deposition at high gas pressures [J].Appl. Phys. Lett.,2009,94:0241039(13).
    [66]郝兆印,邹广田等.人工合成金刚石[M].长春:吉林大学出版社,1996.
    [67] XIAO H Y, JIA X P, MA H A, LI S S, LI Y, ZHAO M. Synthesis of high qualitytype Ib diamond crystals in carats grade [J]. Chinese Science Bulletin,2010,55(03):14.
    [68] XIAO H Y, MA H A, TIAN Y, LI R, LI S S, MA L Q, LI Y, JIA X P. Effects ofcarbon diffusing field in alloy solvent on the growth of tower shape diamondsingle crystal [J]. Chinese Science Bulletin,2010,55(01):710.
    [69] LI S S, JIA X P, ZANG C Y, TIAN Y, ZHANG Y F, XIAO H Y, HUANG G F,MA L Q, LI Y, LI X L, MA H A. Effects of Al and Ti/Cu on the synthesis oftypeⅡa diamond crystals in Ni70Mn25Co5C system at HPHT [J]. ChinesePhysic Letters,2008,25(10):38013804.
    [70]李尚升,臧传义,马红安,田宇,张亚飞,肖宏宇,黄国锋,马利秋,李勇,陈孝洲,李小雷,贾晓鹏.优质Ⅱb型宝石级金刚石大单晶的高温高压合成[J].超硬材料工程,2008,20(4):13.
    [71]芶清泉.人造金刚石合成机理研究[M].成都:成都科技大学出版社,1986.
    [72]贾晓鹏.金刚石合成的溶剂理论及当今行业热点问题的探讨[J].中国超硬材料(特刊)2001,3:111.
    [73] BUNDY F P. Pressure temperature phase diagram of elemental carbon [J].Physica A,1989,156:169178.
    [74] STRONG H M, HANNEMAN R E. Crystallization of diamond and graphite [J].J. Chem. Phys.,1967,46:36683676.
    [75] BUNDY F P, BOVENKERK H P, STRONG H M, WENTORF R H, Jr.Diamond graphite equilibrium line from growth and graphitization of diamond[J]. J. Chem. Phys.,1961,35:383391.
    [76] SUMIYA H, N. Toda, S. Satoh. Growth rate of high quality large diamondcrystals [J]. J. Crystal Growth,2002,237239:12811285.
    [77]陈立学.高温高压合成条件稳定性的研究以及宝石级金刚石单晶的合成[D].长春:吉林大学超硬材料国家重点实验室,2003.
    [78]周东晨,赵国权.《金刚石合成工艺》[M].机械工业出版社,1998
    [79]付星球.纯Fe触媒合成Ⅱa型宝石级金刚石[M].长春:吉林大学超硬材料国家重点实验室,2004.
    [80]望贤成.优质Ia型宝石级金刚石单晶的高温高压合成[D].吉林:吉林大学超硬材料国家重点实验室,2005.
    [81]臧传义.优质Ⅰb型宝石级金刚石单晶的合成及机理研究[D].长春:吉林大学超硬材料国家重点实验室,2006.
    [82] SUNG C M. A century of progress in the development of very high pressureapparatus for scientific research and diamond synthesis [J]. HighTemperature High Pressure,1997,29:253293.
    [83]王光祖,翟小青,罗明,姚华啸铰链式六面砧高温高压装置金刚石磨料与磨具工程[J].2000,6:3437.
    [84](苏)齐克利斯,Ⅱ,著;王殿儒,罗明晖译,高压和超高压物理化学研究技术[M].科学出版社,1983.11.
    [85]姚裕成等,从两面顶、六面顶、凹模的特点论我国合成金刚石装备大型化的方向[J].人工晶体学报,1999,28:103107.
    [86]郭永存,李植华,张广云,金刚石的人工合成与应用[M].科学出版社,1984.
    [87] HAYGARTH J C, GEFFING I C, KENNEDY G C. Determination of thepressure of the Barium I‐II transition with single‐stage piston‐cylinderapparatus [J]. J. Appl. Phys.,1967,38:45574564.
    [88] KANDA H, AKAISHI M, YAMAOKA S. New catalysts for diamond growthunder high pressure and high temperature [J]. Appl. Phys. Lett.,1994,65:784786.
    [89] LIU X B, JIA X P, GUO X K, ZHANG Z F, MA H A. Experimental Evidencefor Nucleation and Growth Mechanism of Diamond by Seed Assisted Methodat High Pressure and High Temperature [J]. Cryst Growth Des,2010,10:28952900.
    [90] LIANG Z Z, KANDA H, JIA X, MA H A, ZHU P W, GUAN Q F, ZANG C Y.Synthesis of diamond with high nitrogen concentration from powdercatalyst C additive NaN3by HPHT [J]. Carbon,2006,44:913917.
    [91] BURNS R C, HANSEN J O, SPITS R A, SIBANDA M, MELBOURN C M,WELCH D L. Growth of high purity large synthetic diamond crystals [J].Diamond Relat. Mater.,1999,8:14331437.
    [92] LIN I C, LIN C J, TUAN W H. Growth of diamond crystals in Fe–Ni metalliccatalysis [J]. Diamond Relat. Mater.,2011,20:4247.
    [93] ZHANG M G, PENG F, CHEN C, HE D W. Epitaxial growth on nickel plateddiamond seeds at high pressure and high temperature [J]. Diamond Relat.Mater.,2007,16:16651669.
    [94]刘万强.柱状工业金刚石的高温高压合成[D].吉林:吉林大学超硬材料国家重点实验室,2008.
    [95] SUNG C M, Tai M F et al. Kinetics of the graphite to diamond transition underhigh pressure [J]. High Temperature High Pressure,1995/1996,27/28:499521.
    [96] KANDA H, YAMAOKA S. Inhomogeneous distribution of nitrogen impuritiesin {111} growth sectors of Diamond and Related high pressure syntheticdiamond [J]. Materials,1993,2:14201423.
    [97] KIFLAWI I, MAYER A E, SPEAR P M, VAN WYK J A, WOODS G S.Infrared absorption by the single nitrogen and a defect centers in diamond [J].Phil. Mag. B,1994,69:11411147.
    [98]赵明.高氮宝石级金刚石合成的新型触媒研究[D].吉林:吉林大学超硬材料国家重点实验室,2011.
    [99]黄国峰.高氮和“类天然”金刚石单晶的高温高压合成[D].吉林:吉林大学超硬材料国家重点实验室,2011.
    [100] KIFLAWI I, KANDA H, LAWSON S C. The effect of the growth rate on theconcentration of nitrogen and transition metal impurities in HPHT syntheticdiamonds [J]. Diamond Relat. Mater.,2002,11:204211.
    [101]秦杰明. Fe100xNix粉末触媒合成工业金刚石的研究[D].吉林:吉林大学超硬材料国家重点实验室,2006.
    [102] SUROVTSEV N V, KUPRIYANOV I N, MALINOVSKY V K, GUSEV V A,PALYANOV Y N. Effect of nitrogen impurities on the Raman line width indiamonds [J]. J Phys: Condens Matter,1999,11:47674774.
    [103] SUMIYA H, TODA N, NISHIBAYASHI Y, SATOH S. Crystalline perfectionof high purity synthetic diamond crystal [J]. J Cryst. Growth,1997,178:485494.
    [104]贾晓鹏高温高压下用溶剂法合成金刚石单晶及对金刚石晶体内所含杂质的分析[D].日本筑波大学,1996.(In Japanese)
    [105] SUMIYA H, SATOH S. High pressure synthesis of high purity diamondcrystal [J]. Diamond Relat. Mater.,1996,5:13591365.
    [106] BUNDY F P. Direct conversion of graphite to diamond in static pressureapparatus [J]. J. Chem. Phys.,1963,38:631643.
    [107] NAKA S, HORII K, TAKEDA Y, HANAWA T. Direct conversion of graphiteto diamond under static pressure [J]. Nature,1976,259:3839.
    [108] SUMIYA H, TODA N, SATOH S. Development of high purity large sizesynthetic diamond crystals [J]. Sumitomo Electric Technical Review,2005,60:1016.
    [109] BUNDY F P, STRONG H M, WENTORF R H, Jr. Methods and mechanismsof synthetic diamond growth [J]. Phys. Chem. Carbon,1973,10:213263.
    [110] KANDA H. Temperature effect on impurities in high pressure syntheticdiamonds, Proc:3rd NIRIM International Symposium on Advanced Materials,Japan [R].1996.
    [111] XIAOPENG JIA, WAKATSUKI M. Growth of diamond single crystal atstabilized condition for the growth, Proc:3rd NIRIM International Symposiumon Advanced Materials, Japan [R].1996.
    [112] ANTHONY T R. Stresses generated by impurities in diamond [J]. DiamondRelat. Mater.,1995,4:13461352.
    [113] SAEED MOAVENI. Finite element analysis theory and application with ansys
    [M]. Pub House of Electronics Industry,2003(4).
    [114]曾攀有限元分析及应用[M].清华大学出版社2004(1).
    [115]肖宏宇优质克拉级金刚石单晶的高温高压合成[D].吉林:吉林大学超硬材料国家重点实验室,2010.
    [116]田宇高温高压生长宝石级金刚石单晶的实验与理论研究[D].吉林:吉林大学超硬材料国家重点实验室,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700