飞轮电池用五自由度单绕组磁悬浮开关磁阻电机参数设计及运行控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着新能源发电、分布式电源系统、混合动力车辆、航空航天等领域的发展,储能技术己成为世界性的研究课题。众多储能技术中,飞轮电池以功率大、效率高、寿命长、储能密度大、清洁无污染等优点受到国内外的高度重视。作为一种集机械、控制、电子等技术于一体的新型储能装备,飞轮电池目前还存在诸多制约其工程化应用的技术难题,主要表现于悬浮支承系统、集成式高速/超高速电机的性能与控制等。为减小支承损耗,飞轮电池通常采用多个磁悬浮轴承支承,增加了飞轮轴向长度,降低了临界转速,同时也导致飞轮电池结构复杂、体积庞大。为此,论文提出一种以单绕组磁悬浮开关磁阻电机为核心部件的飞轮电池用五自由度磁悬浮支承与传动系统,实现了悬浮支承系统与驱动电机的统一,大大缩短了飞轮转子轴向长度,提高了临界转速、功率密度与系统集成度,进一步减小了支承损耗,在高速低损飞轮电池领域具有重大的研究与应用价值。
     在国家自然科学基金(61074019,60774044)与江苏省高校“青蓝工程”科技创新团队等项目的资助下,论文以实现飞轮电池用五自由度磁悬浮电机的高速、低损耗运行为目标,围绕五自由度单绕组磁悬浮开关磁阻电机支承与传动的飞轮电池结构、低损耗永磁偏置轴向—径向混合磁悬浮轴承优化设计、单绕组磁悬浮开关磁阻电机优化设计与高速运行控制策略、五自由度磁悬浮电机的数字控制系统等关键技术开展研究。主要研究内容与成果概略如下:
     (1)研究提出一种飞轮电池用五自由度磁悬浮电机支承与传动系统结构。在分析飞轮电池动、静载荷的基础上,以降低支承损耗、提高支承力可控性为目标,研究确定了飞轮电池五自由度磁悬浮支承与传动系统结构方案;分析了相同功率下单绕组磁悬浮开关磁阻电机与双绕组磁悬浮开关磁阻电机的悬浮力、转矩、效率与功率密度特性,给出了磁悬浮开关磁阻电机的选型方法。
     (2)提出低损耗永磁偏置轴向—径向混合磁悬浮轴承的优化设计方法。基于旋转磁场理论,通过减小转子铁心磁场波动频率以降低转子铁心损耗,设计了低损耗的永磁偏置轴向—径向混合磁悬浮轴承结构;分析了轴向与径向气隙处的磁力线分布特性,构建了轴向与径向承载力的数学模型,获得轴向、径向位移刚度与电流刚度;利用等效磁路法,研究了磁极面积、控制线圈匝数、定转子结构等参数的设计方法;建立了转子铁心损耗计算模型,验证了混合磁轴承高速运行时的低损特性。
     (3)提出基于相关向量机与粒子群优化的单绕组磁悬浮开关磁阻电机关键参数优化设计方法。建立了电机主体尺寸计算模型,以提高电机出力、减小相间耦合为目标,研究了绕组结构优化设计方法;分析飞轮电池对电机悬浮力、转矩、效率与功率密度等性能参数的要求,研究了结构参数对性能参数的敏感度,获取影响电机性能的主要结构参数;建立电机性能的多目标优化函数,研究基于基值与权重因子的统一目标函数构建方法;构建了主要参数与统一目标函数的相关向量机非参数模型,研究了基于粒子群的电机参数优化设计算法;开展了相关的仿真与试验研究,验证了设计方法的正确性。
     (4)提出单绕组磁悬浮开关磁阻电机的双相导通高速解耦控制策略。分析了悬浮力与转矩的有效产生区间,研究了悬浮相与旋转相的绕组电流分配方法,提出了悬浮力与转矩分相产生的双相导通高速解耦策略;优化计算了悬浮相电流转矩分量与旋转相关断角,有效减小了转矩脉动,提高了瞬时悬浮力的响应速度;开展了相关的仿真试验研究,验证了控制策略的正确性。
     (5)提出了基于自适应相关向量机的单绕组磁悬浮开关磁阻电机转子径向位移自检测策略与方法。针对电机高速运行状态下饱和程度高、数据样本频带宽的特点,以磁链、电流与转角为输入,以径向位移为输出,研究提出高斯核函数宽度自适应调节的相关向量机算法,建立了位移参量的自适应相关向量机预测模型:仿真结果表明,该策略的实时性与预测精度均较好地满足电机高速悬浮运行的需要。
     (6)构建了DSP与FPGA复合结构的飞轮电池用五自由度单绕组磁悬浮开关磁阻电机高速数字控制系统。分析了五自由度磁悬浮电机对数字控制系统的性能要求,研究检测与控制算法的分配、规划以及在DSP与FPGA的实现策略与方法;设计了相关的功率变换、转子位置与位移信号检测、电流滞环控制、PWM控制等硬件模块。最后,在总结全文的基础上,提出需要进一步研究的内容和今后工作的重点。
With the rapid development in the fields of new energy generation, distributed generation, hybrid electric vehicle and aerospace, the energy storage technology has becoming a world-wide research topic. In frequently-encountered energy storage technologies, the flywheel battery has been paid high attention all over the world since it has some remarkable advantages such as high-power, high-efficiency, long-life, non-pollution, high energy density, etc. As a novel energy storage device combing the electronic technology, mechanical technology and control technology, many vital issues, such as the performance and control of bearing systems and integrated high-speed motors or ultra-high-speed motors, still exist in the flywheel battery, which limit its engineering application. In order to reduce bearing losses, the flywheel battery is usually supported by some magnetic bearings, which increases flywheel axial length, reduces critical speed and makes the system bigger and more complicated in the meantime. To resolve this problem, a novel five-degree-of-freedom (5-DOF) compound supporting system is presented based on the single-winding bearingless switched reluctance motor. In this supporting system, the radial bearing and motor in the flywheel battery are integrated, which reduces flywheel axial length and bearing losses, increases critical speed, power density and system integration. Thus, it has vital application and research value in high-speed, low-loss flywheel batteries.
     Supported by the National Natural Science Foundation of China under grant61074019and60774044, and the Innovation Project of Jiangsu Province, some key theoretical and technological problems are studied to realize the high-speed, low-loss operation of5-DOF bearingless motors, such as the main structure of the proposed compound supporting system, the optimal design of the low-loss permanent magnet-biased axial radial magnetic bearing, the optimal design method and the high-speed operation control strategy of the single-winding beaingless switched reluctance motor, the digital control system design and so on. The main contents and the corresponding results are as follows:
     (1) A novel5-DOF supporting and driving system in flywheel battery was presented based on a bearingless motor, which is supported by an axial permanent magnet bearing a permanent magnet-biased axial radial magnetic bearing and a single-winding bearingless switched reluctance motor. Based on the analysis of dynamic toad and static load, the structure of5-DOF bearing system was determined aiming to reduce loss and improve controllability of suspension forces. The suspension force, torque, efficiency and power density of the single-winding bearingless switched reluctance motor and the dual-winding bearingless switched reluctance motor with the same power were analyzed, and then the selection of the motor in the flywheel battery was present.
     (2) The optimal design of the permanent magnet-biased axial radial magnetic bearing was put forward. Based on the rotating electro-magnetic field theory, the iron loss can be reduced by lessening flux fluctuation frequency in rotor core, and then the structure of low-loss permanent magnet biased axial radial magnetic bearing was designed. The distribution characteristics of magnetic flux lines at the axial and radial air gap were analyzed. The mathematical models of the axial and radial suspension forces were constructed, and then the position stiffness and current stiffness were obtained. The parameters, such as pole area, coil number, structural size, were design by using magnetic circuit method. The calculation model of the rotor iron loss was built and the results verify the low-loss characteristic of this proposed magnetic bearing at high speed.
     (3) The optimal design of the single-winding bearingless switched reluctance motor was put forward based on the relevance vector machine and particle swarm optimization algorithm. The calculation model of main dimension was built and then the winding structure was optimized with the objective of maximum motor output and minimal coupling between different phases. According to the flywheel battery's requirements to motor performance parameters, such as suspension force, torque, efficiency and power density, the sensitivity of the structure parameters to performance parameters was simulated, and then the key parameters were obtained. The multi-objective optimization function with the motor's performance was constructed. The unified-objective function with weight factors and base values was built and then the non-parametric model for key parameters and the unified-objective function was built by relevance vector machine. The key parameters were optimized by particle swarm optimization algorithm. Finally, the simulation results verify the correctness of this proposed method.
     (4) The two-phase-excitation high-speed decoupling control strategy of the single-winding bearingless switched reluctance motor was put forward, by which the suspension force and torque are produced by different phases. The effective producing areas of the suspension force and torque were analyzed. An excitation method of the suspension phase and the torque phase was presented. An optimal control method of chopped current amplitude and turn-off angle were proposed to reduce torque ripple and increase response speed of the suspension force subsystem. The proposed control strategy was verified to be effective by simulation and experiment on the test motor.
     (5) The radial displacement self-sensing method of the single-winding bearingless switched reluctance motor was put forward. The relevance vector machine algorithm with adaptive Gaussian kernel function was presented by considering the high saturation and wide frequency band of the motor data at high speed. The prediction models of radial displacement were built with flux linkage, current and rotor angle as the input and with radial displacement as the output. This proposed control strategy was verified to be real-time and precise by the simulation results, which well meet the requirements of suspension operation at high speed.
     (6) The high-speed digital control system of5-DOF single-winding bearingless switched reluctance motor for flywheel batteries with DSP and FPGA was designed. The flywheel battery's requirements to digital control system were analyzed. The allocation and implementation methods of control algorithms were presented. The hardware modules, such as power converters, detection circuits of rotor angle and radial displacement, control circuits of current lagging loop and PWM drive circuits and so on, were also designed. As a conclusion, the summarization of the whole contents is given. The content and emphasis of the further research is also given.
引文
[1]中华人民共和国科学技术部.“十二五”科学技术发展规划[DB/OL]. http://www.most.gov.cn/kjgh/,2011,7.
    [2]廖怀庆,刘东,黄玉辉等.考虑新能源发电与储能装置接入的智能电网转供能力分析[J].中国电机工程学报,2012,32(16):9-16.
    [3]唐西胜,邓卫,齐智平.基于储能的微网并网/离网无缝切换技术[J].电工技术学报,2011,26(26):279-284.
    [4]张文亮,武斌,李武峰等.我国电动汽车的发展方向及能源供给模式的探讨[J].电网技术,2009,33(4):1-5.
    [5]蒋志军.锂离了电池正极材料磷酸铁锂:进展与挑战[J].功能材料,2010,41(3):365-368.
    [6]丁明,张颖媛,茆美琴等.包含钠硫电池储能的微网系统经济运行优化[J].中国电机工程学报,2011,31(4):7-15.
    [7]A. R. Kim, G. H. Kim, and J. H. Kim. Operational characteristic of the high quality power conditioner with SMES[J]. IEEE Transactions on Applied Super-conductivity,2008,18(2): 705-708.
    [8]P. Poonpun, W. T. Jewell. Analysis of the cost per kilowatt hour to store electricity[J]. IEEE Transactions on Energy Conversion,2008,23(2):529-534.
    [9]刘拥军,上亮,上强等.华东电网抽水蓄能电站电能计划安排方式优化算法[J].电力系统自动化,2009,33(3):104-107.
    [10]D. J. Swider. Compressed air energy storage in an electricity system with significant wind power generation[J]. IEEE Transactions on Energy Conversion,2007,22(1):95-102.
    [11]J. G. Bitterly. Flywheel technology: past, present, and 21st century projections[J]. IEEE Aerospace and Electronics Systems Magzine,1998,13(8):13-16.
    [12]R. S. Weissbach, G. G. Karady, R. G. Farmer. Dynamic voltage compensation on distribution feeders using flywheel energy storage[J]. IEEE Transactions on Power Delivery,1999,14(2): 465-471.
    [13]B. Szabodos, U. Schaible. Peak power bi-directional transfer from high speed flywheel to eletrical regulated bus voltage system:a practical proposal for vehicular technology [J]. IEEE Transactions on Energy Conversion,1998,13(1):34-41.
    [14]M. Ahrens, L. Kucera, R. Larsonneur. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Transactions on Control Systems Technology,1996,4(5):494-502.
    [15]C. D. Hall. High speed flywheels for integrated energy storage and attitude control[C]. American Control Conference,1997:1894-1898.
    [16]B. Vit, M. B. Scott, J. Brett, et al. A review of technology developments in flywheel attitude control and energy transmission systems[C]. IEEE International Conference on Aerospace,2004: 2784-2800.
    [17]W. S. Wang. Design of high speed flywheel motor/generator for aerospace appli- cations[D].PhD Thesis at the Pennsylvania State University,2004.
    [18]A C. Ferreira, G.G. Sotelo, J. L. S. Neto. Voltage sags compensation using a super- conducting flywheel energy storage system[J]. IEEE Transactions on Applied Super- conductivity,2005,15(2): 2265-2268.
    [19]M. Subkhan, M. Komori. New concept for flywheel energy storage system using SMB and PMB[J]. IEEE Transcations on Applied Superconductivity,2011,21(3):1485-1488.
    [20]S. Nagaya, N. Kashimai, M. Minami. Study on high temperature superconducting magnetic bearing for lOkWh flywheel energy storage system[J]. IEEE Transcations on Applied Superconductivity, 2001,11(1):1649-1652.
    [21]J. Lee, S. Jeong, Y. Han. Concept of cold energy storage for superconducting flywheel energy storage system[J]. IEEE Transcations on Applied Superconductivity,2011,21(3):2221-2224.
    [22]H. Lee, J. Park. Energy loss by drag force of superconductor flywheel energy storage system with permanent magnet rotor [J]. IEEE Transactions on Magnetcis,2008,44(11):4397-4400.
    [23]T. Siostrzonek, A. Penczek, S. Pirog. The control and structure of the power electronic system supplying the flywheel energy storage[C]. European Conference on Power Electronics and Applications,2007:1-8.
    [24]戴兴建,邓占峰,刘刚等.大容量先进飞轮储能电源技术发展概况[J].电工技术学报,2011,26(7):133-140.
    [25]戴兴建,于涵,李奕良.飞轮储能系统充放电效率实验研究[J].电工技术学报,2009,24(3):20-24.
    [26]黄宇淇,姜新建,邱阿瑞.飞轮储能能量回馈控制方法[J].清华大学学报,2008,48(7):1085-1088.
    [27]陈峻岭,姜新建,朱东起等.基于飞轮储能技术的新型UPS的研究[J].清华大学学报,2004,44(10):1321-1324.
    [28]卫海岗,戴兴建,张龙等.飞轮储能研究新动态[J].太阳能学报,2002,23(6):748-752.
    [29]汤双清.飞轮电池磁悬浮支承系统理论及应用研究[D].华中科技大学博士学位论文,2003.
    [30]詹三一,唐跃进,李敬东等.超导磁悬浮飞轮储能的基本原理和发展现状[J].电力系统自动化,2001,25(16):67-72.
    [31]刘治华,白越,黎海文等.单轴飞轮储能与姿态控制系统误差分析[J].光学精密工程,2006,14(1):127-132.
    [32]白越,黎海文,吴一辉等.复合材料飞轮转子设计[J].光学精密工程,2007,15(6):852-857.
    [33]赵丽滨,房建成,高晨光等.基于结构可靠性的姿控/储能飞轮转子设计方法[J].宇航学报,2006,27(5):942-946.
    [34]房建成,王志强,刘刚.磁悬浮姿控储能两用飞轮能量转换系统PI协同控制[J].宇航学报,2009,30(5):1907-1912.
    [35]杨橙,马力,王仲范.汽车飞轮电池中高速复合材料飞轮的有限元分析[J].武汉理工大学学报,2002,24(2):112-115.
    [36]姬联涛,张建成.基于飞轮储能技术的可再生能源发电系统广义动量补偿控制研究[J].中国电机工程学报,2010,30(24):101-106.
    [37]张建成,黄力培,陈志业.飞轮储能系统及其运行控制研究[J].中国电机工程学报,2003,23(3):108-111.
    [38]H. Akagi, R Sato. Control and performance of doubly-fed induction machine intended for a flywheel energy storage system[J]. IEEE Transactions on Power Electronics,2002,17(1):109-116.
    [39]R. Cardenas, R. Pena, G. Asher, et al. Control strategies for enhanced power smoothing in wind energy systems using a flywheel driven by a vector controlled induction machine[J]. IEEE Transactions on Industrial Electronics,2001,48(3):625-635.
    [40]I. Alan, A. Lipo. Induction machine based flywheel energy storage system[J]. IEEE Transactions on Aerospace and Electronic Systems,2003,39(1):162-163.
    [41]X. D. Sun, M. Matsui, Y. Nakamura. V/f fuzzy control of an induction motor for a DC grid power leveling system using a flywheel energy storage equioment[C]. IEEE International Conference on Industrial Electronics Society,2007:2092-2097.
    [42]L. Gang, Z. Jing, C. Shijie, et al. State space formulation and stability analysis of a doubly-fed induction machine with a flywheel energy storage system[C]. International Conference on Power System Technology,2006:1-6.
    [43]S. Kato, M. Cheng, H. Sumitani, et al. Semiconductor power converterless voltage sag compensator and UPS using a flywheel induction motor and an engine generator[C]. Power Conversion Conference,2007:1680-1685.
    [44]T. Perry, M. Senesky, S. R. Sanders. An integrated flywheel energy storage system with homopolar inductor motor/generator and high-frequency drive[J]. IEEE Transactions on Industry Applications, 2003,39(6):1710-1725.
    [45]W. L. Niemyer, P. Studer, J. A Kipk. A high efficiency motor/generator for magnetically suspended flywheel energy storage system[C]. Proceedings of the 24th Energy Con- version Engineering Conference,1989:1511-1516.
    [46]D. Johnson, P. Pillay, M. Malengret. High speed PM motor with hybrid magnetic bearing for kinetic energy storage[C]. The 36th IAS Annual Meeting,2001:51-63.
    [47]Y. Jiang, S. Tang, Z. X. Li, et al. One flywheel battery power conversion control based on BP neural network[J]. Control Engineering of China,2010,17(2):169-174.
    [48]B. Vafakhahd, M. Masiala, J. Salmon. Emulation of flywheel energy storage systems with a PMDC machine[C]. International Conference on Electrical Machines,2008:1-6.
    [49]A. S. Nagorny, N. V.Dravid, R.H. Jansen, et al. Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications[C]. IEEE International Conference on Electric Machines and Devices,2005:635-641.
    [50]J. R. Hull, L. R. Turner. Magnetomechanics of internal-dipole, halbach-array motor/ge- nerators[J]. IEEE Transactions on Magnetics,2000,36(4):2004-2011.
    [51]J. E. Yi, W. L. Kang, K. Bongsu, et al. Micro flywheel energy storage system with axial flux machine[C]. IEEE International Conference on Advanced Intelligent Mechatronics,2007:1-6.
    [52]S. M. Jang, D. J. You, K. J. J. Ko. Design and experimental evaluation of synchronous machine without iron loss using double-sided halbach magnetized PM motor in high power FESS[J]. IEEE Transactions on Magnetics,2008,44(1):4337-4340.
    [53]徐衍亮,赵建辉,房建成.高速储能飞轮用无铁芯永磁无刷直流电动机的分析与设计[J].电工技术学报,2004,19(12):24-28.
    [54]刘平,刘刚,张庆荣.磁悬浮飞轮用BLDC系统的仿真方法与实验分析[J].航天控制,2007,25(1):56-61.
    [55]N. J. L. Silva, J. R. D. Andrade, L.G.B. Rolim, et al. Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system[C]. IEEE International Symposium on Industrial Electronics,2006:2492-2497.
    [56]R. Cardenas, R. Pefia, M. Perez, et al. Power smoothing using a switched reluctance machine driving a flywheel[J]. IEEE Transactions on Energy Conversion,2006,21(1):294-295.
    [57]C. Vazquez, M. Lafoz, D. Ugena, et al. Control system for the switched reluctance drive of a flywheel energy-storage module[J]. European Transactions on Electrical Power,2007,27(6): 537-553.
    [58]M. Mokadem, C. Nichit, P. Reghem, et al. Short Term Energy Storage Based on Reluctance Machine Control for Wind Diesel System[C]. Power Electronics and Motion Control Conference, 2006:1585-1590.
    [59]M. Lafoz, D. Ugena, C. Vazquez, et al. A 200 kVA prototype of kinetic energy storage system based on switched reluctance machine technology[C]. European Conference on Power Electronics and Applications,2005:1-8.
    [60]J. L. Da, L. G. B. Rolim, G. G. Sotelo. Control of power circuit interface of a flywheel based energy storage system[C]. IEEE International Symposium on Industrial Elec-tronics,2003:962-967.
    [61]P. K. Hermann. A radial active magnetic bearing have a rotating drive[P]. England,1500809,1974.
    [62]P. Meinke, G. Flaeheneeker. Electromagnetie drive assembly for rotary bodies using a magnetically mounted rotor[P]. United States,3988658,1974.
    [63]T. Higuchi. Magnetically floating actuator having angular positioning function[P]. United States, 4683391,1985.
    [64]R. Bosch. Development of a bearingless motor[C]. International Conference on Electric Machines, 1988:373-375.
    [65]M. Ooshima, S. Kitazawa, A. Chiba, et al. Design and analyses of a coreless-stator-type bearingless motor/generator for clean energy generation and storage systems[J]. IEEE Transactions on Magnetics,2006,42(10):3461-3463.
    [66]A Kazuyoshii, A. Chiba, M. A Rahman, et al. Stiffness analysis of a magnetically suspended bearingless motor with permanent magnet passive positioning[J]. IEEE Transactions on Magnetics, 2005,41(10):3820-3822.
    [67]M. Ooshima, S. Kobayashi, H. Tanaka. Magnetic suspension performance of a bearingless motor/generator for flywheel energy storage systems[C]. International Con- ference on Power and Energy,2010:1-4.
    [68]M. Takemoto, A. Chiba, H. Akagi, et aL Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation[J]. IEEE Transactions on Industry Applic ations,2004,40(1):103-112.
    [69]邓智泉,杨钢,张媛等.一种新型的无轴承开关磁阻电机数学模型[J].中国电机工程学报,2005,25(9):139-146.
    [70]孙玉坤,吴建兵,项倩雯.基于有限元法的磁悬浮开关磁阻电机数学模型[J].中国电机工程学报,2007,27(12):33-40.
    [71]J. B. Sun, Q. H. Zhan, L. M. Liu. Modeling and control of bearingless switched reluctance motor based on artifical neural network[C]. Industrial Electronics Society,2005:1638-1643.
    [72]Q. W. Xiang, Y. K. Sun, X. F. Ji. Modeling inductance for bearingless switched reluctance motor based on PSO-LSSVM[C]. Chinese Control and Decision Conference,2011:800-803.
    [73]孙玉坤,朱志莹.三自由度混合磁轴承最小二乘向量机逆模辨识与解耦控制[J].中国电机工程学报,2010,20(15):112-117.
    [74]孙玉坤,周云红,嵇小辅.磁悬浮开关磁阻电机的神经网络逆解耦控制[J].中国电机工程学报,2011,31(30):117-123.
    [75]项倩雯,孙玉坤,张新华.磁悬浮开关磁阻电机建模与参数优化设计[J].电机与控制学报,2011,15(4):74-79.
    [76]范冬,杨艳,邓智泉等.无轴承高速开关磁阻电机设计中的关键问题[J].电机与控制学报,2006,10(6):547-552.
    [77]朱志莹,孙玉坤,嵇小辅等.磁悬浮开关磁阻电机转子位移/位置观测器设计[J].中国电机工程学报,2012,32(12):83-89.
    [78]周云红,孙玉坤,嵇小辅等.磁悬浮开关磁阻发电机径向位移自检测[J].中国电机工程学报,2012,32(6):150-155.
    [79]杨钢,邓智泉,曹鑫等.无轴承开关磁阻电机平均悬浮力控制策略[J].航空学报,2009,30(3):505-511.
    [80]杨钢.无轴承开关磁阻电动机的基础研究[D].南京航空航天大学博士学位论文,2008.
    [81]C. Xin, Z. Q. Deng, G. Yang, et al. Independent control of average torque and radial force bearingless switched-reluctance motors with hybrid eccitations[J]. IEEE Tran- sactions on Power Electronics,2009,24(5):1376-1385.
    [82]Y. K. Sun, G. H. Xu, Q. W. Xiang. A new decoupling control strategy for bearingless switched reluctance motors based on improved mathematical model[C]. Electrical Machines and Systems, 2011:1-5.
    [83]X. Cao, Z. Q. Deng. A full-period generating mode for bearingless switched reluctance generators [J]. IEEE Transactions on Applied Superconductivity,2010,20(3):1072-1076.
    [84]刘泽远,邓智泉,曹鑫等.全周期开关磁阻发电机的设计[J].中国电机工程学报,2011,31(12):77-83.
    [85]B. B. Choi, M. Siebert. A bearingless switched reluctance motor for high specific power applications[C]. AIAA/ASME/SAE/ASEE Joint Propulsion Conference,2006:4804-4814.
    [86]L. Chen, W. Hofman. Speed regulation technique of one bearingless 8/6 switched reluctance motor with simple single winding structure[J]. IEEE Transaction on Industrial Electronics,2012,59(6): 2592-2600.
    [87]L. Chen, W. Hofman. Analytically computing winding currents to generate torque and levitation force of a new bearingless switched reluctance motor[C]. International Conference on Power Electronics and Motion Control,2006:1058-1063.
    [88]L. Chen, W. Hofman. Performance characteristics of one novel switched reluctance motor drive[C]. Power Conversion Conference,2007:608-613.
    [89]F. C. Lin, S. M. Yang. Instantaneous shaft radial force control with sinusoidal excitations for switched reluctance motors[J]. IEEE Transactions on Energy Conversion,2004,22(3):629-636.
    [90]W. T. Liu, S. M. Yang. Modeling and control of a self-bearing switched reluctance motor[C]. Industry Application Conference,2005:2720-2725.
    [91]F. C. Lin, S. M. Yang. Self-bearing control of a switched reluctance motor using sinusoidal currents[J]. IEEE Transactions on Power Electronics,2007,22(6):2518-2526.
    [92]杨志轶.飞轮电池储能关键技术研究[D].合肥工业大学博士学位论文,2002.
    [93]G.施韦策,H.布鲁勒,A特拉克斯勒.主动磁轴承基础、性能及应用[M].北京新时代出版社,1997.
    [94]S. Earnshaw. On the nature of the molecular forces which regulate the constitution of the lumiferous ether[J]. Transactions of the Cambridge Philosophical Society,1842,6(7):97-112.
    [95]方家光.Meissner效应与磁悬浮[J].物理与工程,2000,10(6):27-29.
    [96]I. Simon. Forces acting on superconduction in magnetic fields[J]. Journal of Applied Physics,1953, 2(24):19-24.
    [97]李奕良,戴兴建,张小章.储能飞轮永磁卸载设计及试验[J].清华大学学报,2008,48(8):1268-1271.
    [98]Z. Kohari, Z. Nadudvari, L. Szlama, et al. Test results of a compact disk-type motor/generator unit with superconducting bearing for flywheel energy storage systems with ultra-low idling losses [J]. IEEE Transactions on Applied Superconductivity,2011,21(3):1497-1501.
    [99]L. A Hawkins, T. Brian, J. Kajs. Application of permanent magnet bias magnetic bearing to an energy storage flywheel[C]. Symposium on Magnetic Suspension Technology,1999:1-15.
    [100]李冰,邓智泉,严仰光.一种新颖的永磁偏置三自由度电磁轴承[J].南京航空航天大学学报,2003,35(9):81-85.
    [101]朱熀秋,张仲,诸德宏等.交直流三自由度混合磁轴承结构与有限元分析[J].中国电机工程学报,2007,27(12):77-81.
    [102]朱熀秋,吴熙,陆静.一种三相交流混合磁轴承数学模型与性能分析[J].电机与控制学报,2009,13(2):245-249.
    [103]M. Kimman, H. Langen, R. Munning, et al. Design and realization of a miniature milling spindle with active magnetic bearings[C]. International Symposium on Magnetic Bearings,2008:255-260.
    [104]赵旭升,邓智泉,汪波.一种磁悬浮开关磁阻电机用轴向径向磁轴承[J].北京航空航天大学学报,2011,37(8):973-978.
    [105]J. C. Fang, X. Wang, T. Wei, et al. Homopolar 2-pole radial permanent-magnet biased magnetic bearing with low rotating loss[J]. IEEE Transactions on Magnetics,2012,48(8):2293-2303.
    [106]X. Wang, J. C. Fang, E. Q. Tang, et al. Low rotating loss 2-pole radial magnetic bearing biased with permanent magnet[C]. IEEE International Conference on Computer Science and Automation Engineering,2011:35-39.
    [107]G. Bertotti. Space-time correlation properties of the magnetization process and eddy current losses: Theory[J]. Journal of Applied Physics,1983,54(9):5293-5305.
    [108]G. Bertotti. A general statistical approach to the problem of eddy current losses[J]. Journal of Magnetism and Magnetic Materials,1984,46(1):68-80.
    [109]G. Bertotti, F. Fiorillo, P. Mazzetti, et al. Statistical models of losses on soft magnetic materials[J]. Journal of Magnetism and Magnetic Materials,1984,46(1):68-80.
    [110]江善林,皱继斌,徐永向等.考虑旋转磁通和趋肤效应的变系数铁耗计算模型[J].中国电机工程学报,2011,31(3):104-110.
    [111]K. Vijayakumar, R. A Karthikeyan, S. Paramasivam, et al. Switched reluctance motor modeling, design, simulaiton and analysis:a comprehensive review[J]. IEEE Transactions on Magnetics,2008, 44(12):4605-4617.
    [112]詹琼华.开关磁阻电动机[M].华中理工大学出版社,1992.
    [113]吴建华.开关磁阻电机设计与应用[M].机械工业出版社,2000.
    [114]林友仰,叶云岳.电机优化技术[M].浙汀大学出版社,1989.
    [115]陈世坤.电机设计(第二版)[M].机械工业出版社,2000.
    [116]S. Haykin. Neural Networks:A Comprehensive Foundations (2nd Edition)[M]. Prentice Hall/Pearson,2004.
    [117]王群京,鲍晓华,倪有源等.基于支持向量机和遗传算法的爪极发电机建模及参数优化[J].电工技术学报,2006,21(4):57-61.
    [118]N. Cristianini, J. S. Tayor.支持向量机导论[M].李国正,王猛,曾华军等译,电子工业出版社,2005.
    [119]J. Suykens. Nonlinear modeling and support vector machines[C]. IEEE International Confrence on Instrumentation and Measurement Technology,2001:287-294.
    [120]M. E. Tipping. The relevance vector machine[C]. Advances in Neural Information Processing Systems,2000:652-658.
    [121]M. E. Tipping. Sparse Bayesian learning and relevance vector machine[J]. Journal of Machine Learning Research,2001,1(3):211-244.
    [122]刘慧,刘国海,沈跃.采用提升小波包和相关向量机的电能质量扰动分类[J].高电压技术,2010,36(3):782-788.
    [123]Z. G. Shen, Q. Wang. Failure detection, isolation, and recovery of multifunctional self-validating sensor[J]. IEEE Transactions an Instrumentation and Measurement,2012,61(12):3351-3362.
    [124]刘国栋,吴慧兰,胡涛等.惯性约束聚变实验靶姿态的检测技术[J].中国激光,2010,37(3):800-803.
    [125]康立山.非数值并行算法[M].科学出版社,2000.
    [126]纪震,廖惠连,吴青华.粒子群算法及应用[M].科学出版社,2009.
    [127]赵选民.试验设计方法[M].科学出版社,2009.
    [128]孙玉坤,刘羡飞,王德明等.基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度拓展[J].电工技术学报,2007,22(9):34-3.
    [129]D. G. Tzikas, A C. Likas, N. P. Galatsanos. Sparse bayesian modeling with adaptive kernel learning[J]. IEEE Transactions on Neural Networks,2009,20(6):926-937.
    [130]夏长亮,贺子鸣,周亚娜等.基于支持向量机的开关磁阻电机转子位置估计[J].电工技术学报,2007,22(10):12-17.
    [131]张旭隆,谭国俊,蒯松岩等.磁链模型的双开关磁阻电机无位置传感器控制[J].电机与控制学报,2011,15(11):55-60.
    [132]刘泽远.无轴承开关磁阻电机的电磁基础研究[D].南京航空航天大学博士学位论文,2010.
    [133]徐高红.磁悬浮开关磁阻电机麦克斯韦应力数学模型及其解耦控制研究[D].江苏大学硕士学位论文,2012.
    [134]瞿哲奕.磁悬浮电主轴混合磁轴承及其驱动控制系统研究[D].江苏大学硕十学位论文,2011.
    [135]张卫宁编译TMS320C28x系列DSP的CPU与外设[M].清华大学出版社,2005.
    [136]彭启琮,张诗雅,常冉等编译.TI DSP集成开发环境(CCS)使用手册[M].清华大学出版社,2005.
    [137]EDA先锋工作室,王诚,蔡海宁等.Altera FPGA/CPLD设计(基础篇).人民邮电出版社,2011.
    [138]霍红义,李雷军.几种新型的SRM功率变换器[J].实用技术,2002,1(1):38-39.
    [139]王占扩,樊生文.基于光耦HCPL316J的大功率IGBT驱动电路[J].高压变频器,2010,7(2)80-84.
    [140]Texas Instruments Incorporated. TL494 Pulse Width Modulation Control Circuits.2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700