无轴承开关磁阻电动机的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无轴承开关磁阻电机是利用磁轴承结构与电机定子结构的相似性,将悬浮绕组集成到电机定子中,以同时实现转子的旋转和自悬浮控制。将无轴承技术应用于开关磁阻电机不仅可充分发挥其高速适应性,而且由于对转子径向位置的控制,有望为解决其因不对称磁拉力造成的振动和噪声问题提供一种新的途径。本文以无轴承开关磁阻电机的数学模型、控制策略、功率变换器和电机绕组结构作为研究重点,设计了无轴承开关磁阻电机系统实验平台,实现了电机在多种控制策略下的稳定悬浮。
     本文在对前人成果深入研究的基础上,改进了无轴承开关磁阻电机的数学模型。新模型不仅考虑了径向悬浮力间的耦合,而且解决了以往模型中电感曲线的顶部凹陷问题。
     基于无轴承开关磁阻电机的数学模型,本文设计了三种电机控制策略。针对现有文献中超前角计算方法的不足,对主绕组方波电流控制策略进行了改进;根据主绕组磁势和悬浮绕组磁势不同组合对电机转矩和悬浮力的影响,研究了最小磁势控制策略,此控制策略可一定程度地降低电机损耗和转矩脉动;此外针对转速增加时瞬时悬浮力难以控制的问题,设计了平均悬浮力和平均转矩控制策略。
     给出了绕组功率变换器的设计原则。本文根据无轴承开关磁阻电机的数学模型和运行原理,分析了其对功率变换器的基本要求,提出了变换器的设计原则。依据此原则,在主绕组中采用不对称半桥变换器,在悬浮绕组中采用三相半桥变换器,并分析了变换器的各种工作模态和数学模型。针对悬浮绕组三相半桥变换器实际运行中电流纹波较大和中点电压飘移的问题,提出了改用三相四桥臂变换器的改进措施。
     本文还优化了无轴承开关磁阻电机的绕组结构。本文将电机本体、功率变换器和控制系统作为一个整体,分析了不同绕组结构对三相半桥变换器中点电压的影响,给出了一组优化结构。此优化结构使变换器两个分裂电容的负载达到均衡。此外根据绕组结构对三相四桥臂变换器公共桥臂的影响,给出了四桥臂变换器下的绕组优化结构。
     最后本文设计了以DSP和CPLD为核心的无轴承开关磁阻电机控制系统,并在实验样机上进行了实验,实现了无轴承开关磁阻电机的稳定悬浮。
Because of similarity between the construction of a magnetic bearing and that of a switched reluctance motor (SRM) stator, a bearingless switched reluctance motor (BSRM) integrates the magnetic suspension winding into the same stator so that the rotor may suspend and rotate at one time. The bearingless technology has been applied to the switched reluctance motor, which could fully enhance its high-speed performance. Moreover, it also provides a new approach to solve the problem of switched reluctance motor’s noises and vibration because it actively controls the radial displacement of a rotor. The dissertation focuses on mathematic models, control strategies of the torque and radial force, power converters and optimal winding arrangements and designs the experimental platform of a bearingless switched reluctance motor. Successful levitation operations are realized based on diverse control strategies.
     On the basis of research of the former achievements, the mathematic models are revised concerning the couple between radial forces. The new model solves the problems of subsidence at the crown of the inductance’s curve.
     Based on the principle and mathematic models, three kinds of control strategies are designed. Firstly, aimed at the shortage of the existing method of calculating the current advanced angle, the control strategy of main winding square-wave current is improved. And the influences of different combinations of winding currents on radial force and torque are analyzed. Then a least magnetomotive force strategy is designed. The novel control strategy can decrease torque ripple and motor losses. Aimed at the problem of controlling instantaneous radial force difficultly after the motor speed increases, the control strategy of controlling average radial force and average torque is designed.
     The designed principle of winding converters is presented. Based on the principle and mathematic models, this dissertation analyzes the requirement of converters and offers the design principle of converters. In order to increase reliability and reduce cost, the asymmetry converter is applied to main winding and the three-phase half-bridge converter is applied to levitated winding. Then all kinds of work states and mathematical models of converters are expounded. Aimed at disadvantages of a levitated winding converter, the improved measure is taken that a three-phase four-leg converter substitutes the three-phase half-bridge converter.
     Winding arrangement of BSRM is researched. The influence of winding arrangement on the midpoint voltage is analyzed when regarding a motor, power converters and a control system as a whole. As a result, four kinds of optimized winding arrangements are given, which can balance two split capacitors’load of converters. Moreover, according to the influence of winding arrangements on the netrual leg of the three-phase four-leg converter, optimized winding arrangements which are fit for the four-leg converter are offered.
     According to control strategies, a digital control system for real-time control is designed based on DSP and CPLD and a lot of experiments are completed. The experimental results verify that the rotor shaft may be successfully suspended.
引文
[1] Bosch R, Development of a Bearingless Electric Motor, Proc. Int. Conf. Electric Machines (ICEM’88), Pisa, Italy, 1988:373-375.
    [2] J.Bichsel, The Bearingless Electrical Machine, Proc. Int. Symp. Magn. Suspension. Technol. NASA Langley Res. Center, Hampton, 1991:561-573.
    [3] T. Fukao, The Evolution of Motor Drive Technologies. Development of Bearingless Motors, Proceedings of the Third Power Electronics and Motion Control Conference(IPEMC 2000), Beijing, China, 2000:33-38.
    [4] A. O.Salazar, A. Chiba, T. Fukao, A Review of Developments in Bearingless Motors, 7th Int. Symp. Magnetic Bearings, ETH Zurich, Switzerland, 2000:335-340.
    [5] W. Amrhein, S. Silber, K. Nenninger, Developments on Bearingless Drive Technology, 8th Int. Symp. Magnetic Bearings, Japan, 2002:229-234.
    [6] M. A. Rahaman, T. Fukao, T. Ohishi, Principles and Developments of Bearingless AC Motors, IPEC, Yokohama, Japan, 1995:1334-1339.
    [7] A.Chiba, T.Deido, T.Fukao, et al., An Analysis of Bearingless AC Motors, IEEE Trans. Energy Conversion, 1994, 9(1):61-68.
    [8]邓智泉,严仰光,无轴承交流电机的基本理论和研究现状,电工技术学报,2000,15(2):29-35.
    [9] A.Chiba, D.T.Power, M.A.Rahman, Characteristics of a Bearingless Induction Motor, IEEE Trans. Magnetics, 1991, 27(6):5199-5201.
    [10] M. Ohsawa, S. Mori, T. Satoh, Study of the Induction Type Bearingless Motor, 7th Int. Symp. Magnetic Bearings, ETH Zurich, Switzerland, 2000:389-394.
    [11]王宝国,王凤翔,磁悬浮无轴承电机悬浮力绕组励磁及控制方式分析,中国电机工程学报,2002,22(5):105-108.
    [12] A.Chiba, D.T.Power, M.A.Rahman, Analysis of No-load Characteristics of a Bearingless Induction Motor, IEEE Trans. Industry Application, 1995, 31(1):77-83.
    [13] Wang Baoguo, Wang Fengxiang, Modeling and Analysis of Levitation Force Considering Air-gap Eccentricity in a Bearingless Induction Motor, Proceedings of the Fifth InternationalConference on Electrical Machines and Systems(ICEMS 2001), Shengyang China, Aug. 2001:934-937.
    [14] Bu Wenshao, Huang Shenghua, Wan Shanming, et al., A Kind of Generalized Analytical Model on Magnetic Suspension Force of Bearingless Motor and its Application, 2nd IEEE Conference on Industrial Electronics and Applications 2007 (ICIEA 2007), Harbin, China, May 2007:1663-1668.
    [15] Deng Zhiquan, Yan Yangguang, The Nonlinear Decoupling Control of the Bearingless Induction Motors Based on the Airgap Motor Flux Orientation, Acta Aeronautica Et Astronautica Sinica, 2002, 15(1):38-43.
    [16] R. Sch?b, J. Bichsel, Vector Control of the Bearingless Motor, Proc.4th Int. Symp. Magnetic Bearings, Zürich, Switzerland, 1994:327-332.
    [17] A.Chiba, R.Furuichi, Y.Aikawa, et al., Stable Operation of Induction-type Bearingless Motors under Loaded Conditions, IEEE Trans. Industry Application, 1997, 33(4):919-924.
    [18]贺益康,年珩,阮秉涛,感应型无轴承电机的优化气隙磁场定向控制,中国电机工程学报,2004,26(6):116-121.
    [19]邓智泉,王晓琳,张宏荃等,无轴承异步电机的转子磁场定向控制,中国电机工程学报,2003,23(3):89-92.
    [20] Deng Zhiquan, Wang Xiaolin, Yan Yangguang. An Independent Controller of Radial Force Subsystem for Super-high-speed Bearingless Induction Motors, Proceedings of the ninth international symposium on magnetic bearings (ISMB-9), Lexington, Kentucky, USA, August 3-6, 2004.
    [21]邓智泉,王晓琳,李冰等,无轴承异步电机悬浮子系统独立控制的研究,中国电机工程学报,2003,23(9):107-111.
    [22] A.Chiba, T.Fukao, Optimal Design of Rotor Circuits in Induction Type Bearingless Motors, IEEE Trans. Magnetics, 1998, 34(4):2108-2110.
    [23] D. Akamatsu, A. Chiba, T. Fukao, et al., An Improved Rotor Resistance Identification for Bearingless Induction Motors, IEEE International Conference on Electric Machines and Drives 2005 (IEMDC05), San Antonio, USA, May 2005:1981-1987.
    [24] T. Tera, Y. Yamauchi, A. Chiba, et al., Performances of Bearingless and Sensorless Induction Motor Drive Based on Mutual Inductances and Rotor Displacements Estimation, IEEE T. Ind. Electron, 2006, 53(1):187-194.
    [25] Wang Xiaolin, Deng Zhiquan, Lin Yingjie, et al., Magnetic Flux Detecting of Bearingless Induction Motors with Search Coils, Proceedings of the ninth international symposium on magnetic bearings (ISMB-9), Lexington, Kentucky, USA, Aug. 3-6, 2004.
    [26]王晓琳,林盈杰,邓智泉等,基于探测线圈的无轴承异步电机气隙磁场测量方法研究,中国电机工程学报,2004,24(10):109-114.
    [27]王晓琳,无轴承异步电机基本控制策略研究与实现,[博士学位论文],南京,南京航空航天大学,2003.
    [28]张宏荃,无轴承异步电机非线性解耦控制的研究,[博士学位论文],南京,南京航空航天大学,2004.
    [29]王晓琳,邓智泉,张宏荃等,无轴承异步电机研究与实现,航空学报,2003,24(3):259-262.
    [30]王晓琳,邓智泉,严仰光,一种新型的五自由度磁悬浮电机,南京航空航天大学学报,2004,36(2):210-214.
    [31]张宏荃,邓智泉,王晓琳等,无轴承异步电动机的系统实现,哈尔滨工业大学学报,2004,36(11):1490-1493.
    [32]张宏荃,由文博,邓智泉等,无轴承异步电机的单DSP控制,中小型电机,2005,32(4):26-30.
    [33]仇志坚,邓智泉,王晓琳,无轴承永磁同步电动机的独立控制研究,中国电机工程学报,2006,26(1):115-119.
    [34]仇志坚,邓智泉,严仰光,无轴承永磁同步电动机的原理与实现,电工技术学报,2004, 19(11):8-13.
    [35]邓智泉,仇志坚,王晓琳等,无轴承永磁同步电机的转子磁场定向控制研究,中国电机工程学报,2005,25(1):104-108.
    [36]孟令孔,邓智泉,王晓琳等,无轴承永磁同步电机悬浮子系统LQG/LTR控制器设计,航空学报,2007,28(2):385-390.
    [37]仇志坚,邓智泉,王晓琳等,计及偏心及洛仑兹力的永磁型无轴承电机建模与控制研究,中国电机工程学报,2007,27(9):64-70.
    [38] M.Oshima, S.Miyazawa, T.Deido, et al., Characteristics of a Permanent Magnet Type Bearingles Motor, IEEE Trans. Industry Application, 1996, 32(2):363-370.
    [39] M.Ooshima, K. Shimada, A. Chiba, et al., An Improved Control Method of Buried-type IPM Bearingless Motors Considering Magnetic Saturation and Magnetic Pull Variation, IEEETrans. Energy Conversion, 2004, 19(3):569-575.
    [40] Noriaki Fujie, Rintarou Yoshimatsu, Akira Chiba, et al., A Decoupling Control Method of Buried Permanent Magnet Bearingless Motors Considering Magnetic Saturation, IPEC-Tokyo, Tokyo, Japan, 2000:395-400.
    [41] M.Oshima, S.Miyazawa, T.Deido, et al., Design and Analysis of Permanent Magnet-Type Bearingless Motor, IEEE Trans. On Industry Electronics, 1996, 43(2):290-299.
    [42] W. Amrhein, S. Silber, K. Nenninger, Levitation Forces in Bearingless Permanent Magnet Motors, IEEE Transactions on magnetics, 1999, 35(5):4052-4054.
    [43] M. Ooshima, S. Miyazawa,Y. Shima, et al., Increase in Radial Force of A Bearingless Motor with Buried Permanent Magnet-Type Rotor, Proc. of the Fourth International Conference on MOVIC, 1998:1077-1082.
    [44] M.Ooshima, S. Miyazawa, A. Chiba, et al., A Rotor Design of a Permanent Magnet-type Bearingless Motor Considering Demagnetization. IEEE Proc. Power Conversion Conf. Nagaoka, 1997:655-660.
    [45]王凤翔,郑柒拾,王宝国.不同转子结构无轴承电动机的磁悬浮力分析与计算.电工技术学报,2002,17(5):6-10.
    [46] S. Silber, W. Amrhein, P. Bosch, et al., Design Aspects of Bearingless Slice Motors, Mechatronics IEEE/ASME Transactions, Dec. 2005, 10(6):611-617.
    [47] Zhu HQ, Fang L, Suspension Principle and Digital Control for Bearingless Permanent Magnet Slice Motors, Proceedings of IEEE 5th International Power Electronics and Motion Control Conference (IPEMC 2006), Shanghai, China, Aug. 2006:818-821.
    [48]廖启新,李立,邓智泉,无轴承永磁薄片电机磁悬浮机理研究,微特电机,2006,34(12):1-3.
    [49]廖启新,邓智泉,王晓琳,无轴承薄片电机磁体形状优化设计及系统实现,中国电机工程学报,2007,27(12):28-32.
    [50]陈姝,邓智泉,王晓琳等,无轴承薄片电机系统被动悬浮特性的研究,电子机械工程,2007,23(5):1-5.
    [51]詹琼华,开关磁阻电动机,武汉,华中理工大学出版社,1992.
    [52]刘迪吉,张焕春,傅丰礼等,开关磁阻调速电动机,北京,机械工业出版社,1994.
    [53]王宏华,开关磁阻电动机调速控制技术,北京,机械工业出版社,1995.
    [54]吴建华,开关磁阻电机设计与应用,北京,机械工业出版社,2000.
    [55]童怀,磁阻电机动态特性的非线性分析与计算机仿真,北京,科学出版社,2000.
    [56] Miller T J E, Switched Reluctance Motors and Their Control, UK, Magna Physics Publishing and Clarendon Press. Oxford, 1993.
    [57] Miller T J E, Electronic Control of Switched Reluctance Machines, UK, Reed educational and professional publishing Ltd, 2001.
    [58] S. R. MacMinn, W. D. Jones, A Very High Speed Switched Reluctance Starter/Generator for Aircraft Engine Application, Proceedings of the IEEE 1989 National Aerospace and Electronics Conference, 1989:1758-1764.
    [59] S. R. MacMinn, J. W. Somber, Control of a Switched Reluctance Aircraft Engine Starter- generator Over a Very Wide Speed Range, Proceedings of IECEC'89, 1989:631-638.
    [60] C.A.Ferreira, S.R.Jones, William S. Heglund et al., Detailed Design of A 30-kW Switched Reluctance Starter Generator System for A Gas Turbine Engine Application, IEEE Trans. on Ind. Applicat., 1995, 31(3):553-561.
    [61] A.Radum, Richter, E., A Detail Power Inverter Design for a 250KW Switched Reluctance Aircraft Engine Starter/Generator, SAE, Aerospace Atlantic Conference and Exposition, Apr. 1993:20-23.
    [62] D.E.Cameron, J. H. Lang, The Control of High-Speed Variable Reluctance Generator in Electric Power Systems, IEEE Trans. on Ind. Applicat., 1993, 29(6):1106-1109.
    [63] Arthue V. Radum, Caio A. Ferreira, Eike Richter, Two Channel Switched Reluctance Starter/generator Results, IEEE Trans. on Ind. Applicat., 1998, 34(5):1026-1034.
    [64]刘闯,朱学忠,曹志亮等,6kW开关磁阻起动/发电系统设计及实现,南京航空航天大学学报, 2000,32(3):245-250.
    [65]李声晋,卢刚,马瑞卿等,开关磁阻组合起动机/发电机设计及试验,中国电机工程学报,2000,20(2):10-14.
    [66] A. Chiba, K. Chida, T. Fukao, Principles and Characteristics of a Reluctance Motor with Windings of Magnetic Bearing, Proc. PECTokyo, 1990:919-926.
    [67] M.Takemoto, A.Chiba, T.Fukao, A Feed-forward Compensator for Vibration Reduction Considering Magnetic Attraction Force in Bearingless Switched Reluctance Motors, Seventh International Symposium on Magnetic Bearings, ETH Zurich, 2000:395-400.
    [68] M.Takemoto, K.Shimada, A. Chiba, et al., A Design and Characteristics of Switched Reluctance Type Bearingless Motors, 4th International Symposium on Magnetic SuspensionTechnology, NASA/CP-1998-207654, May 1998:49-63.
    [69] M.Takemoto, A.Chiba, T.Fukao, A New Control Method of Bearingless Switched Reluctance Motors Using Square-wave Currents, Proceedings of the 2000 IEEE Power Engineering Society Winter Meeting, Singapore, CD-ROM, Jan. 2000:375-380.
    [70] M.Takemoto, A.Chiba, T.Fukao, A Method of Determining Advanced Angle of Square-wave Currents in a Bearingless Switched Motor, IEEE Trans. Ind. Applicat., Nov./Dec. 2001, 37(6):1702-1709.
    [71] M.Takemoto, H. Suzuki, A.Chiba, et al., Improved Analysis of a Bearingless Switched Reluctance Motor, IEEE Trans. Ind. Applicat., Jan./Feb. 2001, 37(1):26-34.
    [72] M.Takemoto, A.Chiba, H.Suzuki, et al., Radial Force and Torque of a Bearingless Switched Reluctance Motor Operating in a Region of Magnetic Saturation. IEEE Trans. on Industry Application, Jan./Feb. 2004, 40(1):103-112.
    [73] Akria Chiba, Tadashi Fukao, Chikara Michioka, Switched Reluctance Rotator, Patent USA, US005880549A, Mar.9, 1999.
    [74] Ye Shuang, Deng Zhiquan, Yan Yangguang, New Formulae Based on Fourier Extension for Bearingless Switched Reluctance Motors, Proceedings of the eighth international symposium on magnetic bearings (ISMB-8), Mito, Japan, Aug. 26-28, 2002:53-58.
    [75]何炜,一种磁悬浮开关磁阻电机的自适应控制器,大电机技术,2004,34(5):57-60.
    [76]吴建兵,孙玉坤,吉敬华,磁悬浮开关磁阻电动机研究,微电机,2007,40(7):79-85.
    [77]项倩雯,孙玉坤,磁悬浮开关磁阻电动机转子径向偏心时的仿真,微特电机,2007,35(8):18-20.
    [78]范冬,杨艳,邓智泉等,无轴承高速开关磁阻电机设计中的关键问题,电机与控制学报,2006,10(6):547-552.
    [79]张媛,邓智泉,无轴承开关磁阻电机控制系统的设计与实现,航空学报,2006,27(1):77-81.
    [80]范冬,邓智泉,杨钢等,无轴承开关磁阻电机的功率变换器研究,微特电机,2007,35(5):10-12.
    [81] Jinghua Ji, Yukun Sun, Huangqiu Zhu, et al., Magnetic Field Analysis of Bearingless Switched Reluctance Motor Using Finite Element Method, Proceedings of the Eighth International Conference on Electric Machines and Systems (ICEMS 2005), Nanjing, China, Sep. 2005:2121-2123.
    [82]杨钢,无轴承开关磁阻电机实验平台的开发与研制,[硕士学位论文],南京,南京航空航天大学,2003.
    [83]叶霜,无轴承开关磁阻电机的基础研究,[硕士学位论文],南京,南京航空航天大学,2003.
    [84]王秋蓉,葛宝明,无轴承开关磁阻电机磁场及力特性分析,电机与控制学报,2007,11(3):217-226.
    [85]王秋蓉,葛宝明,无轴承开关磁阻电机的转矩与径向力特性分析,北京交通大学学报,2007,31(2):107-110.
    [86]邓智泉,杨钢,张媛等,一种新型的无轴承开关磁阻电机数学模型,中国电机工程学报,2005,25(9):139-146.
    [87]王秋蓉,葛宝明,无轴承开关磁阻电机磁饱和特性的电磁场分析,防爆电机,2007,42(1):19-25.
    [88]孙玉坤,吴建兵,项倩雯,基于有限元法的磁悬浮开关磁阻电机数学模型,中国电机工程学报,2007,27(12):33-40.
    [89] Neil R. Garrigan, Wen L. Soong, Charles M. Stephens, et al., Radial Force Characteristics of a Switched Reluctance Machine, IEEE Industry Applications Society Annual Meeting, Phoenix, Oct. 1999:2250-2258.
    [90]曹鑫,邓智泉,杨钢等,新型无轴承开关磁阻电机双相导通数学模型,电工技术学报,2006,21(4):50-56.
    [91]孙玉坤,刘羡飞,王德明等,基于有限元分析的磁悬浮开关磁阻电机数学模型的全角度扩展,电工技术学报,2007,22(9):34-39.
    [92] Xiangzhen Zhu, C. Pollock, New Design of Radial Displacement Sensor for Control of a Switched Reluctance Motor without Bearings, Conference Record of 2005 IEEE Industrial Applications Conference, 40th IAS Annual Meeting, Hong Kong, 2005:2160-2167.
    [93]曹鑫,无轴承开关磁阻发电系统的基础研究,[硕士学位论文],南京,南京航空航天大学,2006.
    [94] W. Liu, S. Yang, Modeling and Control of a Self-bearing Switched Reluctance Motor, Fourtieth IAS Annual Meeting, Hong Kong, 2005:2720-2725.
    [95] L. Chen, W. Hofman, Analytically Computing Winding Currents to Generate Torque and Levitation Force of a New Bearingless Switched Reluctance Motor, 12th International Power Electronics and Motion Control Conference, Portoroz Slovenia, 2006:1058-1063.
    [96] L. Chen, W. Hofman, Performance Characteristics of One Novel Switched Reluctance Bearingless Motor Drive, Power Conversion Conference 2007 (PCC '07), Nagoya, 2007:608-613.
    [97] F. Lin, S. Yang, Self-bearing Control of a Switched Reluctance Motor Using Sinusoidal Currents, IEEE Power Electronics, Nov. 2007:2518-2526.
    [98] A. Mark, P. James, E. Richter, et al., Integrated Magnetic Bearing/Switched Reluctance Machine, U.S. Patent 5 424 595, Jun. 13, 1995.
    [99] J. Sun, Q. Zhan, L. Liu, Modelling and Control of Bearingless Switched Reluctance Motor Based on Artificial Neural Network, Proceedings of 31th Annual Conference on Industrial Electronics Society (IECON’05), Sheraton Capital Center Raleigh, North Carolina, USA, 2005:1638-1643.
    [100]刘羡飞,孙玉坤,王德明等,磁悬浮开关磁阻电动机径向位移解耦及变结构控制,农业机械学报,2007,38(9):147-150.
    [101]刘羡飞,孙玉坤,王德明等,磁悬浮开关磁阻电动机径向位置解耦及仿真研究,系统仿真学报,2007,19(7):1527-1530.
    [102]刘羡飞,孙玉坤,王德明等,磁悬浮开关磁阻电机悬浮系统变结构鲁棒控制,系统工程与电子技术,2007,29(10):1704-1708.
    [103]刘国海,孙玉坤,张浩等,基于神经网络逆系统的磁悬浮开关磁阻电动机的解耦控制,电动技术学报,2005,20(9):39-43.
    [104]张亮,孙玉坤,基于微分几何的磁悬浮开关磁阻电机径向力的变结构控制,中国电机工程学报,2005,26(19):121-126.
    [105] Jianbing Wu, Yukun Sun, Guohai Liu, et al., Nonlinear Decoupling Control of Suspending Force and Torque of Bearingless Switched Reluctance Motors, World Journal of Modelling and Simulation, 2007, 3(1):66-72.
    [106] Liu Guohai, Sun Yukun, Shen Yue, et al., Dynamic Decoupling Control of Bearingless Switched Reluctance Motors Based on Neural Network Inverse System, Proceedings of the Eighth International Conference on Electric Machines and Systems (ICEMS 2005), Nanjing, China, Sep. 2005:1811-1815.
    [107] Virginie Raulin, Art Radun, Iqbal Husain, Modeling of Losses in Switched Reluctance Machines, IEEE Trans. Ind. Applicat., Nov./Dec. 2004, 40(6):1560-1569.
    [108] Barnes M, Pollock C, Power Electronic Converters for Switched Reluctance Drives, IEEE Trans. on Power Electronics, 1998, 13(6):1100-1111.
    [109]陈昊,谢桂林,开关磁阻调速电动机的功率变换器设计,中国矿业大学学报,1998, 27(2):158-161.
    [110] Ramu Krishnan, Peter N. Materu, Analysis and Design of a Low-cost Converter for Switched Reluctance Motor Drives, IEEE Trans. on Industry Application, 1993, 29(2):320-327.
    [111]王川云,双凸极无刷直流起动发电系统起动控制的研究与实现,[硕士学位论文],南京,南京航空航天大学,2002.
    [112] Yu-Kang Lo, Huang-Jen, Tzu-Herng Song, Elimination of Voltage Imbalance Between the Split Capacitors in Three-phase Half-bridge Switched-mode Rectifiers, Power electronic and drive systems, 2001 4th International conference, Bali, Indonesia, Oct. 2001:163-165.
    [113]阮新波,严仰光,四桥臂三相逆变器的控制策略,电工技术学报,2000,15(1):61-64.
    [114] Frede Blaabjerg, Philip C. Kjaer, Peter Omand Rasmussen, et al., Improved Digital Current Control Methods in Switched Reluctance Motor Drives, IEEE Trans. on Power Electronics, 1999, 14(3):563-572.
    [115] E. Aldabas, L. Romeral, A. Arias, et al., Software-based Digital Hysteresis-band Current Controller, IEE Proc.-Electr. Power Appl., 2006, 153(2):184-190.
    [116] L. Sonaglion, Predictive Digital Hysteresis Current Control, Conference Record of IEEE Thirtieth IAS Annual Meeting (IAS '95.), Orlando, Florida, USA, 1995:1879-1886.
    [117] D.M.E. Ingram, S.D. Round, A Novel Digital Hysteresis Current Controller for an Active Power Filter, Proceedings of Power Electronics and Drive Systems International Conference, Singapore, May 1997:744-749.
    [118] H.Chen, Q.Song, Windings Arrangement of a Three-phase Switched Reluctance Machine, Electric Machines and Drives Conference, 2003. IEMDC’03. IEEE International, Wisconsin, USA, 2003:1665-1668.
    [119]詹琼华,吴莹,郭伟,开关磁阻电机绕组连接方式的研究,电机与控制学报,2002, 6(2):93-95.
    [120] D. Panda, V. Ramanarayananm, Mutual Coupling and its Effect on Steady-State Performance and Position Estimation of Even and Odd Number Phase Switched ReluctanceMotor Drive, IEEE Trans. Magnetics, Aug. 2007, 43(8):3445-3456.
    [121] Mohsen Farshad, Jawad Faiz, Caro Lucas, Development of Analytical Models of Switched Reluctance Motor in Two-Phase Excitation Mode : Extended Miller Model, IEEE Transactions on Magnetics, Jun. 2005, 41(6):2145-2155.
    [122] A. K. Jain, Two Phase Modeling, Experimental Characterization, and Power Converter with Fast Demagnetization for Switched Reluctance Motor Drives, Ph.D. dissertation, Dept. Elect. Eng, University of Minnesota, Minneapolis, Minnesota, 2003.
    [123]范冬,邓智泉,杨钢等,基于CPLD的无轴承开关磁阻电机控制逻辑设计,电力电子技术,2007,41(3):36-38.
    [124]刘和平,严利平,张学锋等编著,TMS320LF240X-DSP结构、原理及应用,北京,北京航空航天大学出版社,2002.
    [125]张卫宁编译,TMS320C28x系列DSP的CPU与外设,北京,清华大学出版社,2005.
    [126] EDA先锋工作室,吴继华,王诚,编著,Altera FPGA/CPLD设计,北京,人民邮电出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700