碱性工业废渣湿法脱硫消溶机理分析及脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国能源消费以煤为主,占据煤炭消费主导地位的燃煤发电企业成为大气污染物SO2的主要排放源。随着环保法规的日益严格,以钙基脱硫剂—石灰石为主的湿法烟气脱硫方式成为燃煤发电机组脱硫首选方案,石灰石作为自然资源,其大量消耗不可避免对环境造成很大影响。
     在我国众多化工企业、有色金属企业排放出大量碱性工业废渣(简称废渣)如电石渣、赤泥、白泥、碱渣及盐泥等占据大量耕地,污染当地环境,成为相关企业可持续发展的制约因素。初步研究表明,碱性工业废渣具有一定的脱硫性能,可用作湿法烟气脱硫剂,实现以废治废。但对废渣在湿法脱硫中的速率控制步骤—消溶特性及机理的认识还存在许多不完善之处,影响废渣型脱硫剂的高效应用。
     本文借助化学分析及XRD物相分析,利用脱硫剂湿法脱硫性能筛选系统对采集于典型行业的碱性工业废渣进行脱硫性能初步筛选。结果表明脱硫性能优良的碱性工业废渣可分为3类:1)CaCO3基废渣,如白泥、碱渣、赤泥及盐泥;2)Ca(OH)2基废渣—电石渣;3)钙基复合硅酸盐基废渣—镁渣。而粉煤灰、炉渣、高炉渣及水处理废弃物等不宜单独用作湿法烟气脱硫剂使用。废渣型脱硫剂浆液脱硫过程pH值变化分析发现,脱硫过程pH值“三阶段”特征随浆液初始pH值升高而明显。浆液初始pH值越高,浆液中自由OH-离子浓度越高,脱硫第一阶段pH变化越平缓;pH值变化率峰值的出现与浆液中脱硫剂颗粒大量溶解有直接关系,废渣初始浆液pH值越低,出现第一个pH值变化率峰值的时间越早,废渣中易参与脱硫反应的物质溶解越快。
     以脱硫性能优良的碱性工业废渣作为研究对象,利用pH值静态法对碱性工业废渣消溶特性进行研究,针对pH值静态法中H+浓度恒定的特点,采用改良未反应收缩核模型分析废渣消溶机理,为设计适应碱性工业废渣的脱硫系统提供基础性数据。以消溶转化率及转化速率为考察指标,探讨影响废渣消溶的关键参数如pH值、反应温度、粒径及消溶时间等对废渣消溶特性的影响。研究发现pH值对脱硫剂消溶特性有极其重要的影响,降低浆液pH值有利于废渣的溶解。转化速率分析表明,CaCO3基废渣中易溶性碱金属含量越多,消溶反应过程中初始转化速率越大,但其转化速率的衰减速度也很快。镁渣中Ca2+的初始析出是一较慢速过程,后期析出占总析出的比重较其他碱性工业废渣大,达到相同脱硫效果的时间较长。温度对各碱性工业废渣消溶特性的影响规律基本一致,转化率随温度升高而增大;与pH值对消溶的影响有所不同,反应温度变化时,转化率曲线的末端趋于重合,说明在本实验范围内,温度只会影响反应的快慢,对最终转化率的影响不大。粒径对碱性工业废渣转化率的贡献最大;粒径越小,在相同反应时间内,转化率越大。粒径减小对镁渣消溶贡献最大,Ca(OH)2基脱硫剂电石渣次之,CaCO3基脱硫剂白泥、碱渣及盐泥等最小。
     采用改良未反应收缩核模型分析上述废渣的消溶机理并计算其动力学参数。研究表明:CaCO3基废渣中白泥、碱渣的消溶反应由液膜扩散和颗粒表面化学反应两个阶段所控制,它们在液膜扩散控制阶段的活化能分别为11.94±0.7、4.51±0.8kJ mol-1;在颗粒表面化学反应控制阶段的活化能分别为13.69±1.3、36.34±3.1kJ mol-1.而盐泥的消溶反应由颗粒表面化学反应控制,其消溶活化能分别为9.69±1.9kJ mol-1,物相成分中易溶性碱金属盐含量少是导致这一现象的根本原因。Ca(OH)2基废渣电石渣的消溶反应由液膜扩散和颗粒表面化学反应两个阶段所控制,其消溶活化能分别为7.64±1.8kJ mol-1及14.41±1.0 kJ mol-1。钙基复合硅酸盐基废渣镁渣的消溶反应由颗粒表面化学反应控制,其消溶活化能为14.42±1.5kJ mol-1。
     为掌握碱性工业废渣在湿法脱硫中的脱硫性能,采用液柱冲击塔对废渣脱硫性能进行研究,利用计算流体软件对液柱冲击塔实验台进行运行参数与结构参数优化以使实验台性能达到最佳。模拟发现入口倾角对气流在塔内分布有重要影响,对本文液柱塔,烟气入口倾角为13°时,塔内的流场与流速分布最佳。多孔挡板对气流整流作用明显,孔隙率为0.5时,多孔挡板对气流整流效果最优。液滴对气流有显著整流效果。喷淋量一定的情况下,塔内风速高低直接影响液滴分布,风速越高,挡板下方液滴数目越少,但挡板上方吸收段的液滴分布在风速达一定数值后受风速影响较小。综合考虑挡板上下液滴分布、除雾器负载及引风机出力等因素后,认为塔内最佳气流速度为3m/s。
     利用上述模拟优化结果,搭建液柱冲击塔实验台,对影响废渣型脱硫剂湿法脱硫性能的五个主要因素浆液pH值、烟气速度、喷淋密度、液气比和入口烟气温度进行研究,并探讨了不同配比下废渣型复合脱硫剂的脱硫性能。研究表明:浆液pH值高的脱硫剂如电石渣、盐泥、白泥等,在较低浆液喷液密度时,脱硫效率对烟气流速的变化非常敏感,烟气速度增大,脱硫效率明显增加。在较高喷液密度时,脱硫效率取决于液滴分布密度,烟气速度的绕流作用轻微。对于低pH值脱硫剂,其对SO2化学反应吸收过程的推动力一定,烟气速度的变化不会对脱硫效率造成明显影响。推荐液柱冲击塔中电石渣浆液池pH值在6-7之间,循环浆液pH值在8-9之间;推荐白泥、盐泥和赤泥浆液池pH值5-6,而循环浆液pH值分别为6.5-7.5、6.5-8、6.5-8。
     烟气速度不变时,液气比增大脱硫效率增加;而循环浆液量保持不变,增加烟气速度,减小液气比时,液气比对Ca(OH)2基废渣和CaCO3基废渣影响不同。对电石渣,液气比减小,脱硫效率降低;对白泥、盐泥、赤泥及石灰石等脱硫剂,在烟气速度2.1-2.7m/s时,随液气比的减小,脱硫效率反呈上升趋势。CaCO3基脱硫剂烟气速度3m/s时,脱硫剂脱硫性能达到临界值,气液流场达到最佳。当液气比为16L/m3,烟气速度3m/s时,各脱硫剂可获得如下脱硫效率:电石渣97%、白泥87%、赤泥84%、盐泥91%、石灰石95%。
     试验范围内,随烟气入口温度增加,脱硫效率稍有增加。
     为拓展废渣型复合脱硫剂的应用,利用液柱冲击塔试验台对废渣型复合脱硫剂脱硫性能进行研究。以石灰石为主料的废渣型复合脱硫剂研究表明:电石渣的加入导致溶解度很低的CaSO3·1/2H2O附着在石灰石表面,阻碍CaCO3的消溶,降低复合脱硫剂的脱硫效率;石灰石、盐泥配比为8:2时,既可发挥镁对脱硫的促进作用,又可最大程度的降低Cl-对脱硫的不利影响;石灰石赤泥型复合脱硫剂随赤泥加入量增加脱硫效率基本呈下降趋势;石灰石白泥型复合脱硫剂在白泥配比变化时,脱硫效率无明显改变。
     以电石渣为主料的废渣型复合脱硫剂,将CaCO3基废渣与电石渣配制复合脱硫剂时需要废渣中具有脱硫后溶解度大的物质,以抵消电石渣在高pH值脱硫时所产生软垢的影响;同时要求辅料需控制含有Al3+、Fe3+的物质含量。
     CaCO;基废渣型复合脱硫剂研究表明,Mg2+对脱硫的促进作用与Cl-对脱硫的抑制作用使得赤泥盐泥型复合脱硫剂在赤泥、盐泥配比为7:3时脱硫效果最佳。
The main energy consumption in China is coal. Coal fired plants are the main source of SO2 pollution because of their dominant role in coal consumption. With the environmental regulations increasingly strict, the wet flue gas desulfurization (WFGD) which main sorbent was calicium based-limestone, became the preferred desulfurization way. As one kind of natural source, the great amount of limestone consumption will influence the earth's ecological system inevitably.
     While a great quantity of alkaline industrial wastes(AIW) such as carbide slag(CS), rud mud(RM), paper white mud(PWM), alkali slag(AS) and salt slag(SS) were discharged by numerous chemical companies and non-ferrous metals industries in China, which resulted in the pollution of local environment and became the constraints of the above companies in sustainable development. Previous studies proved that AIW had the ability of desulfurization, and can be used as WFGD sorbent. However, the mechanism for AIW dissolution which is one of the rate control step in WFGD has not been well acknowledged.
     Desulfurization behaviors of collected AIW are screened through chemical analysis, XRD analysis and comparative study. Results show that there are three kinds of sorbents which have better desulphurization properties:1) CaCO3 based sorbent such as RM, PWM, AS and SS, et al.,2) Ca(OH)2 based sorbent for example CS and 3) calcium-aluminum oxide and calcium magnesium silicate based sorbent like magnesium slag(MS). While some sorbents such as fly ash, furnace slag, blast furnace slag and water treatment waste can not be used as desulfurization sorbent alone. The pH value analysis of AIW slurries show that the higher the pH value of AIW initial slurry, the more obvious of "three stages" in desulfurization process. The concentration of free OH- is increased with the increasing of the pH value of AIW initial slurry, which makes the first stage gently. The peak value of the changing rate of pH value has direct contact with the dissolution of sorbent particles, the lower the pH value of AIW initial slurry, the faster dissolution of the desulfurization sorbent.
     The AIW which have better desulfurization properties are mainly mentioned in this study and their dissolution characteristics are investigated through pH static method. The dissolution mechanisms of AIW are analyzed by modified unreacted shrinking core model(MUSCM) in order to obtain the data base for designing the desulfurization systems which fit to the AIW. The key parameters which influence AIW dissolution such as pH value, reaction temperature and particle size are discussed by conversion rate and conversion rate differential. pH values have the important effect on sorbents dissolution, the lower the pH value is, the easier the AIW sorbents dissolute. According to dissolution conversion rate differential, the higher pH value the CaCO3 based AIW initial slurry has, the higher the initial conversion rate, while its decay rate is faster also. The magnesium slag need more time to obtain the same desulfurization effect compared to other AIW because the separating of Ca2+ is a slower process. Conversion rate increases with the increasing of reaction temperature although the final curves of conversion rate closed to each other. This proves that reaction temperature affect the reaction velocity only and has slightly influence on final conversion rate. Particle sizes contribute to the AIW conversion rate. The smaller the particle size is, the higher the conversion rate in the same reaction time. According to the decending order, the contributions to AIW dissolution because of the decreasing of particle size are as follows:magnesium slag, Ca(OH)2 based AIW and CaCO3 based AIW.
     The dissolution mechanisms of CS, RM, PWM, AS, SS and MS are analyzed by MUSCM and their kinetic parameters are calculated. Results show that the dissolution reactions of PWM, AS and CS are under control of film diffusion and particle surface chemical reaction. The activation energies of PWM, AS and CS in film diffusion control step are 11.94±0.7,4.51±0.8 and 7.64±1.8kJmol-1, respectively. While in surface chemical reaction control step the activation energies are 13.69±1.3,36.34±3.1 and 14.41±1.0 kJ mol-1, respectively. The dissolution reactions of SS and MS are controlled by surface chemical reaction and their activation energies are 9.69±1.9and 14.42±1.5 kJ mol-1, respectively.
     The optimal operation and configuration parameters of impinge stream scrubber experimental bench are gained through CFD simulation analysis. The inlet angle has important effect to the distribution of gas flow in scrubber, when the inlet angle is 13°, the optimal flow and gas velocity distribution can be got. Perforated baffle has the obvious impact on gas flow straightening as the porosity is 0.5. Droplets have significant influence on gas flow straightening. To a given spray flow, droplets distribution have direct contact with gas velocity in scrubber, the higher the velocity is, the lower number of droplets under the baffle, however, the droplets distribution above the baffle are influenced slightly by gas velocity when it is above 3m/s. the optimal gas velocity 3m/s is got by taken the amount of droplets above and under the baffle, demister load and induced draft fan output into account.
     The impinge stream scrubber experimental bench is established, based on the above simulation results. The five main parameters such as pH value, gas velocity, spray density, liquid gas ratio and inlet gas temperature which influence the AIW sorbents wet desulfurization performances are investigated. The desulfurization behaviors of compound AIW sorbents are discussed also. Desulfurization efficiency is very sensitive to the change of gas velocity when the slurry has a high pH value. Under high spray density conditions, desulfurization efficiency is dependent on droplets distribution, while the flow around action of gas has slightly influence. To the low pH value sorbents, the changing of gas velocity has no significant effect on desulfurization efficiency because of the certain driving force of chemical sorption to SO2. It is recommended that to CS slurry tank the optimal pH value is 6-7, while the circulating slurry pH value is 8-9. To PWM, AS and RM slurry tank, the slurry tank pH vaule is 5-6, while the circulating slurry is 6.5-7.5,6.5-8 and 6.5-8, respectively.
     Desulfurization efficiency increases with the increasing of lquid gas ratio when gas velocity is stable, while the decreasing of the lquid gas ratio has different effects on Ca(OH)2 based and CaCO3 based AIW sorbents when increasing gas velocity. To CS sorbent, the lower the lquid gas ratio is, the lower the desulfruzation efficiency. While to PWM, RM, AS and limestone sorbents, the desulfurization efficiency rises with the decreasing of lquid gas ratio when gas velocity is 2.1-2.7m/s. The critical desulfurization properties and optimal gas liquid flow can be obtained to CaCO3 based AIW sorbents when gas velocity is 3m/s. When liquid gas ratio is 16L/m3 and gas velocity is 3m/s, the desulfurization efficiencies of CS, PWM, RM, AS and limestone are 97%,87%,84%,91% and 95%, respectively.
     The desulfurization efficiency is slightly increased with the increasing of inlet temperature under the experimental conditions.
     The properties of three kinds of compound desulfurization AIW sorbents are conducted in impinge stream scrubber such as limestone primary type, CS primary type and CaCO3 based AIW type.
     The mixing of CS in limestone results in CaSO3·1/2H2O adhering to the surface of limestone particles because of its low solubility, which will decrease the dissolution of CaCO3. When the compound ratio of limestone and AS is 8:2, the improvement of magnesium and the lowest negative effect of Cl- to desulfurization process can be got. Desulfurization efficiency of limestone-RM type sorbents decreases with the increasing compound ratio of RM. The desulfruzation efficiency of limestone-PWM type changes slightly regardless of the variation of PWM compound ratio.
     To CS primary type compound desulfurization sorbents, it is the quantity of high solubility material after desulfurization and Al3+, Fe3+concentration in AIW that are the two key factors when choosing CaCO3 based AIW as supplementary material in sorbents.
     Results on CaCO3 based AIW type show that, the best compound ratio 7:3 of RM-AS type compound sorbent is got because of the improvement of Mg2+ and the inhibition of Cl- to desulfurization process.
引文
[1]蒋文举.烟气脱硫脱硝技术手册[M].北京:化学工业出版社,2007
    [2]郭东明.脱硫工程技术与设备[M].北京:化学工业出版社,2007.
    [3]杨剑.火电厂烟气脱硫过程石灰石活性研究[D].重庆:重庆大学,2005.
    [4]中国电力企业联合会.2008年度火电厂烟气脱硫产业信息[R].北京:中国电力企业联合会,2009
    [5]廖永进,王雨嘉,方健.白泥作为湿法脱硫系统脱硫剂的可行性研究[J].中国电机工程学报,2009,29(s):161-163.
    [6]E. Jorjani, S. Chehreh Chelgani, Sh. Mesroghli.Application of artificial neural networks to predict chemical desulfurization of Tabas coal[J].Fuel,2008,87(12):2727-2734
    [7]Gulhan Gullu Elsamak, Nuren Altunta Ozta, Yuda Yurum. Chemical desulfurization of Turkish Cayirhan lignite with HI using microwave and thermal energy[J]. Fuel,2003,82(5):531-537
    [8]Stephen R. Palmer, Edwin J. Hippo, Xavier A. Dorai. Chemical coal cleaning using selective oxidation[J].Fuel,1994,73(2):161-169
    [9]Pablo S. Pina, Victor A. Oliveira, Flavio L.S. Cruz, etal. Kinetics of ferrous iron oxidation by Sulfobacillus thermosulfidooxidans[J]. Biochemical Engineering Journal,2010,51(3):194-197
    [10]Magda Constanti, Jaume Giralt, Albert Bordons. Degradation and desulfurization of dibenzothiophene sulfone and other sulfur compounds by Agrobacterium MC501 and a mixed culture[J]. Enzyme and Microbial Technology,1996,19(3):214-219
    [11]John J. Kilbane Ⅱ. Sulfur-specific microbial metabolism of organic compounds[J]. Resources, Conservation and Recycling,1990,3(2-3):69-79
    [12]Bettina Susanne Hoffmann, Alexandre Szklo. Integrated gasification combined cycle and carbon capture:A risky option to mitigate CO2 emissions of coal-fired power plants[J].Applied Energy,2011,88(11):3917-3929
    [13]Antonio Giuffrida, Matteo C. Romano, Giovanni Lozza. Thermodynamic analysis of air-blown gasification for IGCC applications[J].Applied Energy,2011,88(11):3949-3958
    [14]Alberto Pettinau, Caterina Frau, Francesca Ferrara. Performance assessment of a fixed-bed gasification pilot plant for combined power generation and hydrogen production[J].Fuel Processing Technology,2011,92(10):1946-1953
    [15]Yuegui Zhou, Jun Peng, Xian Zhu, etal. Hydrodynamics of gas-solid flow in the circulating fluidized bed reactor for dry flue gas desulfurization[J]. Powder Technology,2011,205(1-3): 208-216
    [16]Xiaoxun Ma, Takao Kaneko, Tsutomu Tashimo, etal. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science,2000,55(20):4643-4652
    [17]Ren-Bin Lin, Shin-Min Shih, Chiung-Fang Liu. Characteristics and reactivities of Ca(OH)2/silica fume sorbents for low-temperature flue gas desulfurization[J]. Chemical Engineering Science,2003,58(16):3659-3668
    [18]Binlin Dou, Weiguo Pan, Qiang Jin, etal. Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization[J]. Energy Conversion and Management,2009,50(10):2547-2553
    [19]Fabrizio Scala, Michele D'Ascenzo, Amedeo Lancia. Modeling flue gas desulfurization by spray-dry absorption[J]. Separation and Purification Technology,2004,34(1-3):V 143-153
    [20]R. Ortiz de Salazar, P. Ollero, A. Cabanillas, J. etal. Flue gas desulfurization in a circulating fluidized bed[J]. Coal Science and Technology,1995,24(10):1843-1846
    [21]F.J. Gutierrez Ortiz. A simple realistic modeling of full-scale wet limestone FGD units[J]. Chemical Engineering Journal,2010,165(2):426-439
    [22]L.E. Kallinikos, E.I. Farsari, D.N. Spartinos, N.G.etal. Simulation of the operation of an industrial wet flue gas desulfurization system[J]. Fuel Processing Technology,2010,91(12): 1794-1802
    [23]Nian Shi, Xingwang Zhang, Lecheng Lei. Sulfite oxidation in seawater flue gas desulfurization by a pulsed corona discharge process[J]. Separation and Purification Technology,2009,70(2): 212-218
    [24]Yong Jia, Qin Zhong, Xueyou Fan.etal. Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process[J]. Chemical Engineering Journal,2010, 164(1):132-138.
    [25]D.O. Ogenga, M.M. Mbarawa, K.T. Lee, etal. Sulphur dioxide removal using South African limestone/siliceous materials[J]. Fuel,2010,89(9):V 2549-2555
    [26]Yu Zhao, Shuxiao Wang, Lei Duan, etal. Primary air pollutant emissions of coal-fired power plants in China:Current status and future prediction[J]. Atmospheric Environment,2008,42(6): 8442-8452
    [27]Alessandro Franco, Ana R. Diaz. The future challenges for "clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy,2009,34(3):V348-354
    [28]钟秦.燃煤烟气脱硫脱销技术及工程实例[M].北京:化学工业出版社,2002,p39
    [29]张可钜,珞璜电厂进口的大型烟气脱硫装置,电力技术,1992,(8):9-13
    [30]童志权.工业废气净化与利用[M].北京:化学工业出版社,2001,p242-245.
    [31]赵日晖CT-121鼓泡式吸收塔在实际工程中的应用,中国电力教育,2006,155-157
    [32]马双忱,赵英,李守信.先进的烟气脱硫工艺—CT-121工艺,电力环境保护,1998,14(1):27-31.
    [33]孙冬梅,母朝静,杨勇.碳酸氢钠脱硫及其优化条件的筛选探讨,无机盐工业,2003,Vo135(6):22-23.
    [34]Sehultes M., Absorption of Sulfur Dioxide with Sodium Hydroxide Solution in Packed Colomns. Chem.Eng.Teehnol[J].1998,21,210-208
    [35]莫建松.双碱法烟气脱硫工艺的可靠性研究及工业应用[D].杭州:浙江大学,2006
    [36]李玉平,谭天恩.双碱法烟气脱硫的基础研究[J].重庆环境科学,1999,21(5):49-52
    [37]Arthur L. Kohl, Richard B. Nielsen. Gas Purification (Fifth Edition)[M]. Elsevier Inc. 1997. p546-554
    [38]孔华.石灰石湿法烟气脱硫技术的试验和理论研究[D].杭州:浙江大学,2001
    [39]王海风,张春霞,齐渊洪.氨法脱硫研究进展[J].环境工程,2010,28(6):55-58
    [40]李乐丰.氨法烟气脱硫工艺及应用时应注意的问题[J].山东电力技术,1996(6):45-50
    [41]袁钢,马永亮,汪黎东.氧化镁烟气脱硫反应特性研究[J].环境工程学报,2010,4(5):1134-1138
    [42]崔可,柴明,徐康富.回收法氧化镁湿法烟气脱硫机理和工艺基础研究[J].环境科学,2006,27(5):846-849
    [43]郭如新.镁法烟气脱硫技术国内应用与研发近况[J].硫磷设计与粉体工程,2010, (3):16-20
    [44]宋宝华.湿式镁法烟气脱硫技术发展综述[J].中国环保产业,2009,(8):28-30
    [45]陈光富.氧化镁脱硫技术的工程应用研究[D].上海:上海交通大学,2007
    [46]吴真.海水脱硫技术在日照电厂一期工程中的应用[J].电力环境保护,2009,25(6):18-21
    [47]董学德.深圳西部电厂#2机组(300MW)海水烟气脱硫示范工程综述[J].电力环境保护,1996,12(3):38-41
    [48]李湘军.海水脱硫技术的优化研究[D].济南:山东大学,2007
    [49]曹艳华.氧化锰矿脱硫技术的探讨[J].广西轻工业,2008,(9):33-34
    [50]黄妍,王治军,童志权.软锰矿浆脱除烟气中SO2的研究[J].环境工程,1998,16(4):43-46
    [51]林德生.氧化锌法烟气脱硫技术的工业应用[J].硫酸工业,2011(2):43-47
    [52]陈南洋.氧化锌法处理低浓度SO2烟气的试验研究和生产实践[J].硫酸工业,2004,(4):9-14
    [53]黄明,张俊丰.氧化锌烟灰脱除废气中二氧化硫[J].化工进展,2007,26(5):720-724
    [54]温高,于洁.碱式硫酸铝—石膏法烟气脱硫技术[J].内蒙古科技与经济,2007,(8):304-305
    [55]肖定远.碱式硫酸铝—石膏法在沈阳冶炼厂的应用[J].硫酸工业,1988,(3):19-24
    [56]杨中文,邓修.柠檬酸钠法脱硫制液体SO2的技术经济评价[J].硫酸工业,1987,(2):8-13
    [57]常州第二化工厂中试室.柠檬酸钠法制备液体SO2中试装置投入运行[J].硫酸工业,1983,(2):48
    [58]任必锐,陈丽芳,袁建军.“盐泥”用于锅炉烟气脱硫工业化研究与应用[J].盐业与化工,2010,39(5):49-51
    [59]张新玲,李春虎,王文泰等.白泥烟气脱硫的应用[J].能源环境保护,2008,22(3):9-12
    [60]吴金泉.白泥脱硫剂的开发应用[J].中国造纸,2011,(7):52-56
    [61]曹友洪.造纸白泥烟气脱硫技术的工业应用[J].环境保护科学,2009,35(4):13-15
    [62]芮玉兰,梁英华,王彦艳.碱渣用于模拟烟气湿式脱硫的研究[J].环境科学与技术,2006,29(7):21-25
    [63]彭铁成,刘宗瑜.碱渣用于湿式烟气脱硫的研究[J].天津理工学院院报,1999,15(sp):54-56
    [64]张玉娟,张绍训,罗跃.碱厂废渣在湿法烟气脱硫中的应用实例[J].广州化工, 2011,39(10):168-170
    [65]吕宏俊.电石渣—石膏湿法脱硫技术的应用分析[J].电站系统工程,2011,27(1):41-42,45
    [66]张磊,张增利,陈财来.电石渣—石膏法烟气脱硫工艺的运行总结[J].中国氯碱,2010,(9):38-39
    [67]刘盛余,能子礼超,邱伟等.喷淋塔中电石渣烟气脱硫工艺过程的研究[J].煤炭学报,2011,36(6):1011-1015
    [68]张新玲,李春虎,侯影飞等.用白泥和赤泥制备烟气脱硫剂[J].化工环保,2008,28(3):258-261
    [69]于绍忠,满瑞林.赤泥用于热电厂烟气脱硫研究[J].矿冶工程,2005,25(6):63-65
    [70]余世清,吴忠标.飞灰及其混合脱硫剂浆液脱硫特性的实验研究[J].环境污染与防治,2002,24(6):335-338
    [71]徐正中.飞灰烟气脱硫及其工艺设计[J].环境工程,1991,9(2):21-25
    [72]童梓和,冯旅平.制碱废液脱除电厂烟气中SO2的研究[J].环境科技,1992,12(2):35
    [73]刘越.工业废料法和双碱法烟气脱硫工艺的研究[D].杭州:浙江大学,2001.
    [74]吴忠标,潘学良,钟丽等.钢渣湿法脱硫试验研究[J].环境工程,1996,14(6):14-22
    [75]李英杰,韩奎华,路春美等.流化床锅炉温度条件下钙基工业废弃物的固硫反应性能[J].化工学报,2010,61(3):712-719
    [76]韩奎华,赵建立,郑斌等.碱性废渣用于煤燃烧固硫的性能与改性[J].煤炭学报,2009,34(12):1697-1702
    [77]樊兆燕.工业废弃物用于湿法脱硫的试验研究[D].济南:山东大学.2008
    [78]万小涛.碱基工业废弃物用于液柱塔湿法脱硫的试验研究[D].济南:山东大学.2010
    [79]赵改菊.含碱工业废弃物硫化反应特性与机理实验研究[D].济南:山东大学.2007
    [80]国营长安机器制造厂.工厂分析化学手册(上、下册)[M].北京:国防工业出版社,1982.
    [81]建筑材料科学研究院.水泥化学分析[M].北京:中国建筑工业出版社,1979.
    [82]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [83]尹连庆,徐铮.氯离子对脱硫石膏脱水影响研究及机理探讨[J].2008,(3):12-14
    [84]钟秦,刘爱民.湿法烟气脱硫中石灰石消溶特性[J].南京理工大学学报,2000(6):561-564.
    [85]A.J. Toprac, G.T. Rochelle, Limestone dissolution in stack gas desulfurization[J],Environ. Prog. 1 (1982)52-58.
    [86]Brogren C, Karlsson H T. A model for prediction of limestone dissolution in wet flue gas desulfurization application[J]. Ind. Eng. Chem. Res,1997,36(12):3889-3895.
    [87]Z.O. Siagi, M. Mbarawa, Dissolution rate of South African calcium-based materials at constant pH, [J]. Hazard. Mater.163 (2009) 678-682.
    [88]S.M. Shih, J.P. Lin, G.Y. Shiau, Dissolution rates of limestones of different sources[J]. Hazard. Mater. B79 (2000) 159-171.
    [89]C. Hoten, M. Gulsun. Reactivity of limestones from different sources in Turkey[J]. Minerals Engineering,2004,17(1):97-99
    [90]Catherine Noiriel, Linda Luquot, Benolt Made, etal. Changes in reactive surface area during limestone dissolution:An experimental and modelling study[J].Chemical Geology, 2009,265(1-2):160-170
    [91]M. Wallin, I. Bjerle, A mass transfer model for limestone dissolution from a rotating cylinder[J], Chem. Eng. Sci.1989,44 (1):61-67.
    [92]T. Allers, M. Luckas, K.G. Schmidt, Modeling and measurement of the dissolution rate of solid particles in aqueous suspensions. Part Ⅱ. Experimental results and validation, Chem. Eng. Technol.2003,26 (4):1225-1229.
    [93]A. Stergarsek, M. Gerbec, R. Kocjancic, P. Frkal, Modelling and experimental measurements of limestone dissolution under enhanced wet limestone FGD process conditions[J]. Acta Chimica Slovenska,1999,46 (3):323-333.
    [94]郭瑞堂,高翔,王君等.湿法烟气脱硫石灰石的活性[J].燃烧科学与技术,2007,13(6):485-490
    [95]郭瑞堂,高翔,王惠挺等.石灰石活性对SO2吸收的影响[J].燃烧科学与技术,2009,15(2):141-145
    [96]Charlotte Brogren, Hans T. Karlsson. A Model for Prediction of Limestone Dissolution in Wet Flue Gas Desulfurization Applications[J]. Ind. Eng. Chem. Res.1997,36(9):3889-3897
    [97]Bo Sun, Qulan Zhou, Xi Chen etal.. Effect of particle size in a limestone-hydrochloric acid reaction system[J]. Journal of Hazardous Materials.2010,179(1-3):400-408
    [98]童艳,周屈兰,惠世恩,等.电石渣在湿法脱硫中的消溶特性[J].动力工程,2006,26(6):884-887.
    [99]Berner, R. A. and J. W. Morse. Dissolution kinetics of calcium carbonate in sea water,part IV: theory of calcite dissolution[J]. Amer. J. Sci.,1974.8(6):274
    [100]Ingemar Bjerle, Gary T. Rochelle. Limestone dissolution from a plane surface[J]. Chemical Engineering Science.1984,39(1):183-185
    [101]Kasper Lund, H.S.Fogler, C.C.Mccune. Acidization-Ⅰ. The dissolution of dolomite in hydrochloric acid[J]. Chemical Engineering Science.1973,28(3):691-700
    [102]Kasper Lund, H.S.Fogler, C.C.Mccune etal. Acidization-Ⅱ. The dissolution Of calcite in hydrochloric acid[J]. Chemical Engineering Science.1975,30(4):825-835
    [103]E. Lennart Sjoberg, David T. Rickard. Calcite dissolution kinetics:Surface speciation and the origin of the variable pH dependence[J]. Chemical Geology.1984,42(1-4):119-136
    [104]E. Lennart Sjoberg, David T. Rickard.The effect of added dissolved calcium on calcite dissolution kinetics in aqueous solutions at 25℃[J]. Chemical Geology.1985,49(4):405-413
    [105]Hillary Rutto, Zachariah Siagi, M. Mbarawa. Effect of ammonium compounds on dissolution rate of South African calcium-based material[J]. Journal of Hazardous Materials.2009,168(2-3): 1532-1536
    [106]Gao Xiang, Guo Rui-tang, Ding Hong-lei. Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite[J]. Journal of Hazardous Materials.2009,168(2-3): 1059-1064
    [107]Jarl Ahlbeck, Torbjorn Engman, Stefan FaltieN etal.. Measuring The Reactivity Of Limestone For Wet Flue-Gas Desulfurization[J]. Chemical Engineering Science.1995,50(7):1081-1089
    [108]Jarvis J B, Meserole F B, Selm T J. Development of a predictive model for limestone dissolution in wet FGD systems paper presented at EPA/EPRI Combined FGD and Dry SO2 Control Symposium, St. Louis,1988.
    [109]Gage G L, Rochelle G T. Limestone dissolution in flue gas scrubbing:effect of sulfite[J]. Air Waste Manage. Assoc.1992,42 (7):926-935.
    [110]Aydogan S, Erdemo glu M, Aras A. Kinetics of Galena dissolution in nitric acid solutions with hydrogen peroxide[J]. Hydrometallurgy.2007,88 (1-4):52-57.
    [111]樊惠玲,郭汉贤,上官炬.氧化锌颗粒脱硫中固体扩散的动力学分析[J].燃料化学学报,2000,28(4):368-371
    [112]M. Alkattan, E.H. Oelkers, J.-L. Dandurand, etal.. An experimental study of calcite and limestone dissolution rates as a function of pH from 1 to 3 and temperature from 25 to 80℃[J]. Chemical Geology 1998,151 (1):199-214.
    [113]D.K. Gledhill, J.W. Morse, Calcite dissolution kinetics in Na-Ca-Mg-Cl brines[J]. Geochimica et Cosmochimica Acta 2006,70 (8):5802-5813.
    [114]J.W. Morse, R.S. Arvidson. The dissolution kinetics of major sedimentary carbonate minerals, Earth Science Reviews 2002,58 (1):51-84.
    [115]何苏浩,项光明,姚强,等.石灰石/石灰—石膏湿法脱硫几种反应塔的比较.电力环境保护,2001,17(3):5~8
    [116]何苏浩,项光明,姚强,等.石灰石/石灰—石膏湿法脱硫反应塔模型比较.煤炭转化,2001,24(3):41-44
    [117]何苏浩,项光明,姚强,等.沈阳化肥总厂新型液柱烟气脱硫除尘系统.电站系统工程,2002,18(1):43-46
    [118]He Suhao,Xiang Guangming,Yao qiang,etal..Commercial test of slurry jet and PM collection FGD system.Environmental Progress.2002,21(2):131-136
    [119]万玮,项光明,冯文,等.简易液柱式湿法烟气脱硫装置的试验研究.煤炭转化,2003,26(1):74-77
    [120]项光明.液柱喷射烟气脱硫研究[D].北京:清华大学,2003
    [121]程峰.液柱冲击塔湿法烟气脱硫的试验和理论研究[D].杭州:浙江大学,2005
    [122]程峰,骆仲泱,高翔.液柱冲击塔湿法烟气脱硫的试验研究[J].浙江大学学报(工学版),2005,39(11):1783-1787
    [123]王福军.计算流体动力学分析[M].北京:清华大学出版社,2008.
    [124]张政,谢灼利.流体—固体两相流的数值模拟.化工学报,2001,52(1):1-12.
    [125]王维,李佑楚.颗粒流体两相流模型研究进展.化学进展,2000,12(2):208-217.
    [126]Zhou L.X., Li L., Li R.X., Zhang J. Simulation of 3-D gas-particle flows and coal combustion in a tangentially furnace using a two-fluid-trajectory model. Powder Technology,2002,125: 226-233.
    [127]Tomiyama A., Zun I., Higaki H., Makino Y. A three dimensional particle tracking method for bubbly flow simulation. Nuclear Engineering and Design,1997,175:77-86.
    [128]闻建平,黄琳,周怀.气液固三相湍流流动的E/E/L模型与模拟.化工学报,2001,52(4):343-348.
    [129]王明明.液柱冲击塔内的流场特性研究[D].济南:山东大学,2011
    [130]陈庆光,徐忠,张永健.RNG κ-ε模式在工程湍流数值计算中的应用[J].力学季刊,2003,24(1):88-95.
    [131]Danckwerts P V.Gas-liquid reactions[M],McGr-aw Hill,1970.
    [132]Gerbec M, Stergarsec A, Kocjancic R. Simulation model of wet flue gas desulfurization plant[J].Computers Chem.Engng,1995,19:283-286
    [133]Angelo J B,Lightfoot E N,Howard D W.Generalization of the penetration theory for surface stretch:application forming and oscillating drops.AIChE J.,1966,12(4):751
    [134]杨小勇,李彦,项光明.湿法液柱喷射烟气脱硫反应的实验研究[J].工热物理学报,2006,27(1):167-170
    [135]杜谦,马春元,董勇,等.液气比对石灰石-石膏湿法烟气脱硫过程的影响[J].动力工程,2007,27(3):422-426
    [136]缪明烽,于耘.湿式逆流喷淋脱硫塔中SO2吸收特性的研究[J].环境工程学报,2010,4(4):887-892
    [137]孙忠伟,周屈兰,惠世恩,等.气液双流程烟气脱硫塔内脱硫效率与传质性能的研究[J].热能动力工程,2010,25(3):326-329
    [138]钟毅,高翔,骆仲泱,等.湿法烟气脱硫系统脱硫效率的影响因素[J].浙江大学学报(工学版),2008,42(5):890-894
    [139]段建中,范玉明.湿式石灰石法脱硫效率与吸收剂浆液pH值关系的试验研究[J].热力发电,2009,38(6):38-40
    [140]陈昭琼,童志权.pH值对石灰(石灰石)湿法脱硫反应机理的影响[J].环境科学,1996,17(5):42-44
    [141]潘维加,谢又成,周玲,等.吸收塔浆液pH值控制系统的分析与改进[J].电站系统工程,2006,22(6):43-44,47
    [142]Frandsen J, Kiil S, Johnsson J. Optimisation of a Wet FGD Pilot Plant Using Fine Limestone Andorganic Acids. Chemical Engineering Seienee.2001,56(10):3275-3287
    [143]Soren K, Michael L M, Kim D J. Experimental Investigtion and Modeling of a Wet Flue Gas Desulfurization Pilot Plant. Industrial&EngineeringChemistryReseareh,1998,37(7):2792-2806
    [144]孙文寿.添加剂强化石灰石/右灰湿式烟气脱硫研究[D].杭州:浙江大学,2001
    [145]He S,Oddo J E,Tomson M B.The nucleation kinetics of calcium sulfate dihydrate in NaCl solutions up to 6m and 90℃ Journal of colloid and interface science,1994,162(3):297-303
    [146]Ukawa N, Okino S. effects of salt on limestone dissolution rate in wet limestone flue gas desulfurization. Journal of Chemical Engineering of Japan,1993,26(1):112-113
    [147]Davini P, Demichele G, Ghetti P. An investigation of the influence of sodium chloride on the desulphurization properties of limestone. Fuel,1992,71(7):831-834
    [148]李军,王建华,钟本和,等.Al3+对二水硫酸钙结晶动力学影响的研究.成都科技大学学报,1996,92(2):53-59
    [149]李军,王国平,钟本和Fe3+、Al3+、Mg2+对石膏结晶习性影响的研究.化学工业与工程,1997,14(2):1-5
    [150]李军,陶晓秋,钟本和.铁、镁、氟杂质对石膏聚晶形成的影响研究.磷肥与复肥,1997,20(2):6~10
    [151]邓志银,袁义义,孙骏,等.硫石膏制备硫酸钙晶须的影响因素研究[J].粉煤灰,2009,(6):25-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700