新型TiO_2基纳米材料一体化脱除燃煤烟气中多种污染物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤是我国储量最丰富的化石燃料,在相当长的一段时间内我国以煤炭为主的能源结构将不会发生改变。大量的燃煤消耗带来了严重的环境污染,煤燃烧后向大气中排放出大量的SO2、NOx和重金属汞,而电厂燃煤锅炉是这些污染物的集中释放源。我国燃煤电厂在逐步配置脱硫设备及脱硝设备的同时,开始关注汞的排放与控制,在污染物种类繁多、烟气净化装置增加和投资运营成本升高的背景下,开发新型的催化剂,研究燃煤烟气中多种污染物一体化脱除具有重要意义。
     本文使用溶胶凝胶法制备了硅酸铝纤维负载纳米TiO2复合材料(TAS),使之用来脱除模拟燃煤烟气中的SO2、NO和Hg0。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDX)、紫外和可见光谱仪(UV-Vis)和比表面及孔隙分析仪(BET)对复合材料进行表征。结果表明TAS在500℃热处理下表现出最强的吸光度和最高的光学活性,并且具有最大的比表面积。
     使用500℃热处理下的TAS脱除模拟燃煤烟气中的SO2、NO和Hg0。系统研究了TAS的脱硫脱硝和脱汞效率、SO2和NO对TAS脱汞的影响、以及O2、H2O、紫外光强和反应温度等因素对TAS光催化氧化的影响。结果表明TAS的光催化脱汞效率最高,为84%。气态的O2能够作为氧化剂对TAS脱硫脱硝和脱汞均有明显的促进作用。H2O由于竞争吸附对TAS的光催化氧化表现出抑制作用。较高的温度会使气相的SO2、NO和Hg0在TAS表面的沉积和吸附减弱,从而降低污染物的脱除效率。而紫外光的强度是影响TAS光催化氧化反应的最重要因素,当紫外光强度较弱时,活性自由基的数量会减少从而导致光催化脱除效率的降低。
     为了扩展TiO2的光响应范围到可见光区域并提高其光学活性,在TiO2中掺杂金属氧化物或贵金属。使用静电纺丝法制备CuO、In2O3、V2O5、WO3和Ag掺杂TiO2的纳米纤维。采用XRD、SEM、透射电子显微镜(TEM)、EDX、UV-Vis和BET对纳米纤维进行表征。结果表明TiO2基纳米纤维中TiO2以锐钛矿形态存在,纤维的直径均为200±50nm,粗细均匀,纤维由大量直径在10nm左右的微小颗粒组成。使用TiO2基纳米纤维脱除模拟燃煤烟气中的Hg0,考察其在不同光照条件下的脱汞效率。结果表明TiO2-V2O5在可见光下的脱汞率从6%增加到63%,电子的跃迁是TiO2-V2O5在可见光下脱汞率升高的主要原因。TiO2-WO3在紫外光下的脱汞率有了非常大的提高,几乎高达100%,其原因是表面酸性的增加和快速有效的电荷转移。同时发现TiO2-Ag在任意光照条件下的脱汞率都能迅速升高到95%左右,其原因是烟气中的单质汞与Ag能够快速的通过齐化反应形成银汞合金。
     为了在高温下得到好的脱汞效果,采用静电纺丝法将V2O5和Ag同时掺杂到TiO2中,制得TiO2-V2O5-Ag (TVA)纳米纤维,使之在典型的SCR操作温度下进行脱硫脱硝和脱汞实验,系统考察了V2O5的含量、氨氮比和烟气组分对催化脱硝的影响;以及Ag含量、反应温度和烟气组分对脱汞的影响。结果表明TVA的催化脱硝温度窗口较宽,V2O5/TiO2的最佳质量比为5%,NH3/NO的最佳摩尔比为1.0时;2%的O2能够满足脱硝反应的发生;烟气中的SO2对NO的脱除没有明显影响,而H2O则对NO的脱除有抑制作用。同时发现TVA在370℃下能获得较高的脱汞率,因此TVA可实现在SCR脱硝的同时对元素汞的脱除。
     根据Langmuir-Hinshelwood理论,建立TAS脱硫脱硝和脱汞的光催化动力学模型,其中TAS脱汞的动力学模型和实验数值匹配最为吻合。同时建立TiO2基纳米纤维光催化脱汞的动力学模型,模型和实验数据匹配良好,能够真实反映纤维的实际脱汞性能。
Coal is the most abundant fossil fuel. It is still and will be the main energy source in a long time for China. However, coal combustion is the greatest anthropogenic source of toxic air pollution. SO2, NOx and trace metal mercury are the main toxic pollutants from coal combustion. Coal-fired boiler of power plants releases large amounts of these pollutants. At present, the coal-fired power plants in our country are being installed desulphurization equipments and denitrification equipments. At the same time, the control of mercury emission from coal-fired power plants has also caused significant concern. The release of multiple pollutants leads to the increasing of flue gas purification devices and the rising of investment and operating cost. Thus, development of novel catalysts and integration removal of multiple pollutants from coal-fired flue gas have great significance.
     In this study, a novel TiO2-aluminum silicate fiber (TAS) nanocomposite, synthesized by a sol-gel method, is proposed to use as a photocatalyst for the removal of SO2、NO and Hg0. The photocatalyst has been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersing X-ray (EDX), Brunauer-Emmett-Teller (BET), and UV-Vis spectra (UV-Vis). The results showed that TAS calcined at500℃exhibited the highest crystallinity, highest photocatalytic activity and greatest BET surface area.
     The TAS calcined at500℃was used as the photocatalyst for the removal of SO2、NO and Hg0from simulated coal combustion flue gas. In this work, systematic experiments were conducted to investigate the removal efficiencies for SO2, NO and Hg0over TAS, the effects of SO2and NO on mercury removal and also the effects of temperature, O2, H2O and UV intensity on the photocatalytic removal efficiency. The results showed that the mercury removal efficiency over TAS is the highest, which is84%. During the simultaneous removal of SO2, NO and Hg0over TAS, O2served as an oxidant exhibited a promotional effect on the photocatalytic desulfurization, denitrification and mercury removal. However, the addition of water vapor to the simulated flue gas inhibited the oxidation of SO2, NO and Hg0. Higher temperatures weakened the depositions and adsorptions of SO2, NO and Hg0on the catalyst surface, which resulted in a reduction of pollutants removal efficiency. In addition, the UV intensity was the most important factor in the photocatalytic oxidation over TAS. There was a reduction of photoexcited active species with the decrease of UV intensity, which resulted in the reduction of photocatalytic removal efficiency for SO2, NO and Hg0.
     In order to extend the light response range of TiO2to visible light region and enhance its optical activity, various metal oxides (CuO, In2O3, V2O5and WO3) and precious metal silver were doped into the TiO2nanofibers. These nanofibers prepared by an electrospinning method were used to remove elemental mercury from simulated coal combustion flue gas. The catalysts have been characterized by XRD, SEM, EDX, UV-Vis spectra and transmission electron microscopy (TEM). The results showed that the TiO2in the fibers all existed as anatase. The diameter of the TiO2-based nanofibers was200±50nm. The fibers have uniform thickness and they were composed of a large number of nanoparticles with diameter of around10nm. Hg0removal efficiencies over the TiO2-based nanofibers were tested under dark, visible light irradiation and UV irradiation, respectively. The results showed that the Hg0removal efficiency over TiO2-V2O5increased from6%to63%under visible light irradiation due to the electron transition. Additionally, WO3doped TiO2exhibited the highest Hg0removal efficiency of almost100%under UV irradiation, which was attributed to the increase of surface acidity and better photoelectron-hole separation. Moreover, Ag doped TiO2showed a steady Hg0removal efficiency of around95%without any light due to the formation of silver amalgam.
     In order to effective removal of Hg0at higher temperature, TiO2-V2O5-Ag (TVA) nanofibers prepared by an electrospinning method were proposed to use as the novel SCR catalysts for simultaneous removal of NO and Hg0at typical SCR operating temperature. In this work, systematic experiments were conducted to investigate the NO, Hg0and SO2removal efficiencies over TVA; the effects of Ag doping amount, NH3/NO molar ratio, and individual flue gas components on NO removal; and the effects of Ag doping amount, operating temperature, and individual flue gas components on Hg0removal. The results showed that TVA had wide temperature window for selective catalytic reduction. The best mass ratio of V2O5/TiO2was5%, and the best molar ratio of NH3/NO was1.2%O2has met the demands of the SCR reaction. Further increasing of O2concentration had no significant effect on NO removal. The introduction of SO2into the gas flow did not change the NO removal efficiency. However, H2O had a prohibitive effect on NO removal due to the adsorption of H2O on the active sites. Moreover, Hg0removal rate over TVA could reach98%at370℃. The TVA nanofibers had wide operating temperature range to remove Hg0. Therefore, the TVA nanofibers could realize the simultaneous removel of NO and Hg0at typical SCR operating temperature.
     The pollutants removal over TiO2-based nanomaterials follows the Langmuir-Hinshelwood mechanism. The photocatalytic kinetic model of desulfurization and denitrification and mercury removal over TAS was built. There was fine coincidence between fitting function of mercury removal over TAS and experimental data. In addition, the photocatalytic kinetic model of mercury removal over TiO2-based nanofibers was also built. Experimental data matched with the kinetic model very well. Such knowledge is of fundamental importance in developing effective catalysts for pollution control technologies.
引文
[1]中国统计年鉴,2009. http://www.stats.gov.cn/tjsj/ndsj/2009/indexch.htm.
    [2]Shafiee, S., Topal, E. An econometrics view of worldwide fossil fuel consumption and the role of US. Energ Policy.2008,36(2):775-786.
    [3]International Energy Agency, World energy outlook 2010. IEA publications,2010.
    [4]You, C. F., Xu, X. C. Coal combustion and its pollution control in China. Energy. 2010,35(11):4467-4472.
    [5]中国统计年鉴,2010. http://www.stats.gov.cn/tjsj/ndsj/2010/indexch.htm.
    [6]2011年煤炭中期市场报告.http://www.nea.gov.cn/2011-12/22/c_131320896.htm.
    [7]全国电力供需与经济运行形势分析预测报告(2010-2011年度).http://news.cntv.cn/20110216/102405.shtml.
    [8]Kunstler, J. H. Long emergency:Surviving the converging catastrophes of the twenty-first century. Atlantic Monthly Press, New York,2005.
    [9]姚强.洁净煤技术.北京:化学工业出版社,2005.
    [10]中华人民共和国环境保护部,中国环境公报.http://jcs.mep.gov.cn/hjzl/zkgb.
    [11]Xu, X. C., Chen, C. H., Qi, H. Y, et al. Development of coal combustion pollution control for SO2 and NOx in China. Fuel Processing Technology.2000, 62(2-3):153-60.
    [12]曾庭华,杨华,马斌,等.湿法烟气脱硫系统的安全性及优化.北京:中国电力出版社,2004.
    [13]Dahlan, I., Lee, K. T., Kamaruddin, A. H., et al. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. Journal of Hazardous Materials.2009,166(2-3):1556-1559.
    [14]叶代启.烟气中氮氧化物污染的治理.环境保护科学.1999,25(4):1-4.
    [15]Niu, S. L., Han, K. H., Lu, C. M. Release of sulfur dioxide and nitric oxide and characteristic of coal combustion under the effect of calcium based organic compounds. Chemical Engineering Journal.2011,168 (1):255-261.
    [16]Man, C. K., Gibbins, J. R., Witkamp, J. G, et al. Coal characterisation for NOx prediction in air-staged combustion of pulverised coals. Fuel,2005,84(17): 2190-2195.
    [17]United Nations Environment Programme. The global atmospheric mercury assessment:Sources, emissions and transport. Technical Geneva, Switzerland,2008.
    [18]U.S. Environmental Protection Agency, Mercury Study Report to Congress,1997, EPA-452/R-97-003.
    [19]Pirrone, N., Cinnirella, S., Feng, X., et al. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics.2010,10(13):5951-5964.
    [20]Pacyna, E. G., Pacyna, J. M., Sundseth, K., et al. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment.2010,44(20):2487-2499.
    [21]Streets, D. G, Hao, J., Wu, Y., et al. Anthropogenic mercury emissions in China. Atmospheric Environment.2005,39(40):7789-7806.
    [22]Li, H., Wu, C. Y., Li, Y, et al. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology.2011,45(17):7394-7400.
    [23]Brown, T. D., Smith, D. N., Hargis, R. A., et al. Mercury measurement and its control:What we know, have learned and need to further investigate. Journal of the Air & Waste Management Association.1999,49(6):628-640.
    [24]Hua, X. y., Zhou, J. s., Li, Q., et al. Gas-phase elemental mercury removal by CeO2 impregnated activated coke, Energy & Fuels.2010,24(10):5426-5431.
    [25]Stein, E. D., Cohen, Y., Winer, A. M. Environmental distribution and transformation of mercury compounds, Critical Reviews in Environmental Science and Technology. 1996,26(1):1-43.
    [26]Sondreal, E. A., Benson, S. A., Pavlish, J. H., et al. An overview of air quality III: mercury, trace elements, and particulate matter. Fuel Processing Technology.2004, 85(6-7):425-440.
    [27]United Nations Environment Programme. Global mercury assessment, Technical Geneva, Switzerland,2002.
    [28]Mercury Study Report to Congress Volume I:Executive Summary, Technical Office of Air Quality Planning and Standards and Office of Research and Development: Washington, DC, December,1997.
    [29]胡长兴.燃煤电站汞排放及活性炭稳定吸附机理研究.[博士论文].机械与能源工程学院,浙江大学,2007.
    [30]U.S. Environmental Protection Agency. Mercury study report to congress. Volume V: Health effects of Mercury and Mercury Compounds.1997. http://www.epa.gov/ttn/oarpg/t3/reports/volume5.pdf
    [31]Vounter, S., Buchanan, L., Lauell, G, et al. Flood mercury and auditory neuro-sensory responses in children and adults in the Nambija gold mining area of Ecuador. Neurotoxicology.1998,19(2):185-196.
    [32]Solis, M., Yuen, E., Cortez, P. S., et al. Family poisoned by mercury vapor inhalation. The American Journal of Emergency Medicine.2000,18(5):599-602.
    [33]Beck, C, Krafchik, B., Traubici, J., et al. Mercury intoxication:It still exists. Pediatric Dermatology.2004,21(3):254-259.
    [34]Torres, A. D., Rai, A. N., Hardiek, M. L. Mercury intoxication and arterial hypertension:Report of two patients and review of the literature. Pediatrica.2000, 105(3):34.
    [35]Bodnar, D. C., Burlibasa, L., Varlan, C., et al. Mercury, biocompatibility and its impact on environment. Metalurgia International.2009,14(16):95-100.
    [36]Meili, M., Bishop, K., Bringmark, L., et al. Critical levels of atmospheric pollution: criteria and concepts for operational modelling of mercury in forest and lake ecosystems. Science of The Total Environment.2003,304(1-3):83-106.
    [37]王云彩.汞污染对人体健康的危害.生活与健康.2004,(3):21-23.
    [38]Khan, B., Tansel, B. Mercury Bioconcentration Factors in American Alligators (Alligator mississippiensis) in the Florida Everglades. Ecotoxicology and Environmental Safety.2000,47(1):54-58.
    [39]江刚.格陵兰汞污染增加.中国环境科学.2001,21(6):552.
    [40]Zhong, Y., Gao, X., Huo, W., et al. A model for performance optimization of wet flue gas desulfurization systems of power plants. Fuel Processing Technology.2008, 89(71):1025-1032.
    [41]Gao, X., Ding, H. L., Wu, Z. L., et al. Analysis on Leaching Characteristics of Iron in Coal Fly Ash under Ammonia-Based Wet Flue Gas Desulfurization (WFGD) Conditions. Energy & Fuels.2009,23:5916-5919.
    [42]Brogren, C., Karlsson, H. T. The impact of the electrical potential gradient on limestone dissolution under wet flue gas desulfurization conditions. Chemical Engineering Science.1997,52(18):3101-2509.
    [43]中国环境保护产业协会锅炉炉窑除尘脱硫委员会.我国火电厂脱硫脱硝行业2010年发展综述.
    [44]Scala, F., D'Ascenzo, M., Lancia, A. Modeling flue gas desulfurization by spray-dry absorption. Separation and Purification Technology.2004,34(1-3):143-153.
    [45]樊保国,项光明,祁海鹰,等.常温循环流化床烟气脱硫影响脱硫效率的参数及机理.燃烧科学与技术.2001,7(3):228-232.
    [46]Hou, B., Qi, H. Y., You, C. F., et al. Dry desulfurization in a circulating fluidized bed (CFB) with chain reactions at moderate temperatures. Energy & Fuels.2005, 19(1):73-78.
    [47]Wu, Y., Charland, J. P., Anthony, E. J., et al. A study on the reactivation of five fly ashes from commercial circulating fluidized bed (CFB) boilers. Energy & Fuels. 2004,18(3):830-834.
    [48]赵旭东,高继慧,吴少华,等.干法、半干法(钙基)烟气脱硫技术研究进展及趋势.化学工程.2003,31(4):64-67.
    [49]Hsieh, M. F., Wang, J. M. Development and experimental studies of a control-oriented SCR model for a two-catalyst urea-SCR system. Control Engineering Practice.2011,19(4):409-422.
    [50]Tronconi, E., Nova, I., Ciardelli, C., et al. Redox features in the catalytic mechanism of the "standard" and "fast" NH3-SCR of NOX over a V-based catalyst investigated by dynamic methods. Journal of Catalysis.2007,245(1):1-10.
    [51]Liang, Z. Y., Ma, X. Q., Lin, H., et al. The energy consumption and environmental impacts of SCR technology in China. Applied Energy.2011,88(4):1120-1129.
    [52]Mahmoudi, S., Baeyens, J., Seville, J. P. K. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass & Boenergy.2010,34(9):1393-1409.
    [53]Muzio, L. J., Quartucy, G. C., Cichanowicz, J. E. Overview and status of post-combustion NOx control:SNCR, SCR and hybrid technologies. International Journal of Environment and Pollution.2002,17(1-2):4-20.
    [54]中国环境保护产业协会锅炉炉窑除尘脱硫委员会.我国火电厂脱硫脱硝行业2008年发展综述.
    [55]中国环境保护产业协会锅炉炉窑除尘脱硫委员会.我国脱硫脱硝行业2011年发展综述.
    [56]Milford, J. B., Pienciak, A. After the Clean Air Mercury Rule:Prospects for Reducing Mercury Emissions from Coal-Fired Power Plants. Environmental Science & Technology.2009,43(8):2669-2673.
    [57]National Association of Clean Air Agencies, State Mercury Programs for Utilities, April 2010, http://www.4cleanair.org/Documents/StateTableupdatedApril2010.doc (accessed 20.06.10).
    [58]U.S. Environmental Protection Agency, Air Toxics Standards for Utilities, http://www.epa.gov/ttn/atw/utility/utilitypg.html (accessed 18.09.10).
    [59]中华人民共和国国家标准GB 13223-2011.火电厂大气污染物排放标准.
    [60]Helble, J. J., Mojtahedi, W., Lyyranen, J. Trace element partitioning during coal gasification. Fuel.1996,75:931-939.
    [61]Linak, W. P., Wendt, J. O. Trace metal transformation mechanisms during coal combustion. Fuel Processing Technology.1994,39(2):173-198.
    [62]Frandsen, F., Erickson, T. A., Kuhnel, V. Equilibrium speciation of As, Cd, Cr, Hg, Ni, Pb, and Se in oxidative thermal comversion of coal:A comparison of thermodynamic packages. High temperature Gas Clean.1996:462-473.
    [63]Frandsen, F., Kim, D. J., Rasmussen, P. Trace elements from combustion and gasification of coal-An equilibrium approach. Progress in Energy and Combustion Science.1994,20(3):115-138.
    [64]Yan, R., Gauthier, D., Flamant, G. Possible interactions between As, Se, and Hg during coal combustion. Combustion and Flame.2000,120(1-2):49-60.
    65] Kevin, C. G., Christopher, J. Z. Mercury transformations in coal combustion flue gas. Fuel Processing Technology.2000,66(6):289-310.
    66] Romero. C.E., Li, Y. Bilirgen, H., et al. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers. Fuel.2006,85(2): 204-212.
    [67]Senior, C. L., Helble, J. J., Sarofim, A. F. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Processing Technology. 2000,65:263-288.
    [68]Presto, A. A., Granite, E. J. Survey of catalysts for oxidation of mercury in flue gas. Environmental Science & Technology.2006,40(18):5601-5609.
    [69]陈进生,袁东星,李权龙,等.燃煤烟气净化设施对汞排放特性的影响.中国电机工程学报.2008,28(2):72-76.
    [70]Cao, Y., Chen, B., Wu, J., et al. Study of Mercury Oxidation by a Selective Catalytic Reduction Catalyst in a Pilot-Scale Slipstream Reactor at a Utility Boiler Burning Bituminous Coal. Energy & Fuels.2007,21(1):145-156.
    [71]Pritchard, S. Predictable SCR co-benefits for mercury control. Power Engineering. 2009,113(1):42.
    [72]刘建忠,范海燕,周俊虎.煤粉炉PM10/PM2.5排放规律的试验研究.中国电机工程学报.2003,23(1):145-149.
    [73]Pavlish, J. H., Sondreal, E. A., Mann, M. D., et al. Status review of mercury control options for coal-fired power plants. Fuel Processing Technology.2003,82(2-3): 89-165.
    [74]Zhang, L., Zhuo, Y. Q., Chen, L., et al. Mercury emissions from six coal-fired power plants in China. Fuel Processing Technology.2008,89(11):1033-1040.
    [75]Strivastava, R. Control of mercury emissions from coal fired electric utility boilers: An update, technical. U.S. Environmental Protection Agency:Cincinnati, Ohio, 2010.
    [76]Sjostrom, S., Durham, M., Bustard, C. J., et al. Activated carbon injection for mercury control:Overview. Fuel.2010,89(6):1320-1322.
    [77]Hutson, N. D., Ryan, S. P., Touati, A. Assessment of PCDD/F and PBDD/F emissions from coal-fired power plants during injection of brominated activated carbon for mercury control. Atmospheric Environment.2009,43(26):3973-3980.
    [78]Choi, H. K., Lee, S. H., Kim, S. S. The effect of activated carbon injection rate on the removal of elemental mercury in a particulate collector with fabric filters. Fuel Processing Technology.2009,90 (1):107-112.
    [79]Uddin, M. A., Ozaki, M., Sasaoka, E. Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas. Energy & Fuels.2009,23(10):4710-4716.
    [80]Lee, S. S., Lee, J. Y., Keener, T. C. Mercury oxidation and adsorption characteristics of chemically promoted activated carbon sorbents. Fuel Processing Technology, 2009,90(10):1314-1318.
    [81]Diamantopoulou, I., Skodras, G., Sakellaropoulos, G. P. Sorption of mercury by activated carbon in the presence of flue gas components. Fuel Processing Technology.2010,91(2):158-163.
    [82]Hu, C, Zhou, J., He, S. Effect of chemical activation of an activated carbon using zinc chloride on elemental mercury adsorption. Fuel Processing Technology.2009, 90(6):812-817.
    [83]Clack, H. L. Mercury Capture within coal-fired power plant electrostatic precipitators:Model evaluation. Environmental Science & Technology.2009,43(5): 1460-1466.
    [84]Seneviratne, H. R., Charpenteau, C., George, A., et al. Ranking low cost sorbents for mercury capture from simulated flue gases. Energy & Fuels.2007,21(6): 3249-3258.
    [85]Hassett, D. J., Eylands, K. E. Mercury capture on coal combustion fly ash. Fuel. 1999,78(2):243-248.
    [86]Dunham, G. E., DeWall, R. A., Senior, C. L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology.2003, 82(2-3):197-213.
    [87]Galbreath, K. C., Zygarlicke, C. J. Mercury transformations in coal combustion flue gas. Fuel Processing Technology.2000,65(8):289-310.
    [88]Chen, L., Zhuo, Y., Zhao, X. Thermodynamic comprehension of the effect of basic ash compositions on gaseous mercury transformation. Energy & Fuels.2007,21(2): 501-505.
    [89]Chen, X. Impacts of fly ash composition and flue gas coponents on mercury speciation. Master. Department of Civil and Environmental Engineering, University of Pittsburgh,2007.
    [90]Ghorishi, S. B., Lee, C. W., Jozewicz, W. S., et al. Effects of fly ash transition metal content and flue gas HCl/SO2 ratio on mercury speciation in waste combustion. Environmental Engineering Science.2005,22(2):221-231.
    [91]Antonia Lopez-Anton, M., Abad-Valle, P., Diaz-Somoano, M. The influence of carbon particle type in fly ashes on mercury adsorption. Fuel.2009,88(7): 1194-1200.
    [92]Galbreath, K. C., Zygarlicke, C. J., Tibbetts, J. E. Effects of NOx, α-Fe2O3, γ-Fe2O3, and HCl on mercury transformations in a 7-kW coal combustion system. Fuel Processing Technology.2005,86(4):429-448.
    [93]Jennifer, W., Erdem, S. Ads orption of trace elements and sulfur dioxide on Ca-based sorbents. International Pittsburgh Coal Conference.2006.
    [94]任建莉,周劲松,骆仲泱.钙基类吸附剂脱除烟气中气态汞的试验研究.燃料化学学报.2006,34(5):557-561.
    [95]Liu, Y. Zeolite-supported silver nanoparticles for coal-fired power plant mercuryemission control. Ph.D. Thesis, University of Alberta, Edmonton, Alberta, Canada.2009.
    [96]Morency, J. R., Panagiotou, T., Senior, C. L. Zeolite sorbent that effectively removes mercury from flue gases. Filtration and Separation.2002,39(7):24-26.
    [97]Kwon, S., Vidic, R. D. Evaluation of two sulfur impregnation methods on activated carbon and bentonite for the production of elemental mercury sorbents. Environmental Engineering Science.2000,17(6):303-313.
    [98]Dunham, G. E., DeWall, R. A., Senior, C. L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology.2003, 82(2-3):197-213.
    [99]Li, J., Yan, N. Catalytic oxidation of elemental mercury over the modified catalyst Mn/a-Al2O3 at lower temperatures. Environmental Science & Technology.2010, 44(1):426-431.
    [100]Qiao, S., Chen, J., Li, J. Adsorption and catalytic oxidation of gaseouselemental mercury in flue gas over MnOx/Alumina. Industrial & Engineering Chemistry Research.2009,48(7):3317-3322.
    [101]Ghorishi, S. B., Singer, C. F., Sedman, C. Preparation and evaluation of modified lime and silica-lime sorbents for mercury vapor emissions control. EPRI-DOE-EPA Combined Utility Air Pollution Control Symposium, Atlanta, Georgia.1999.
    [102]US Environmental Protection Agency. Workshop on source emission and ambient air monitoring of mercury. Bloomington, MN, United States,1999.
    [103]黄治军,段钰锋,王运军.改性氢氧化钙吸附脱除模拟烟气中汞的试验研究.中国电机工程学报.2009,29(17):56-62.
    [104]Lee, J. Y., Ju, Y, Keener, T. C. Development of cost-effective noncarbon sorbents for Hg0 removal from coal-fired power plants. Environmental Science and Technology.2006,40(8):2714-2720.
    [105]Hsi, H. C., Rood, M. J., Rostam-Abadi, Rostam-Abadi, M., Chen, S. G, Chang, R. Mercury adsorption properties of sulfur-impregnated adsorbents. Journal of Environmental Engineering.2002,128(11):1080-1089.
    [106]Abu-Daabes, M. A., Pinto, N. G. Synthesis and characterization of a nano-structured sorbent for the direct removal of mercury vapor from flue gases by chelation. Chemical Engineering Science.2005,60(7):1901-1910.
    [107]Jurng, J., Lee, T. G, Lee, G. W., et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere.2002,47(9):907-913.
    [108]Meyer, D. E., Meeks, N., Sikdar, S., et al. Copper-doped silica materials silanized with bis-(triethoxy silyl propyl)-tetra sulfide for mercury vapor capture. Energy & Fuels.2008,22(4):2290-2298.
    [109]Morency, J. R., Panagiotou, T., Senior, C. L. Zeolite sorbent that effectively removes mercury from flue gases. Filtration and Separation.2002,39(7):24-26.
    [110]Kwon, S., Vidic, R. D. Evaluation of two sulfur impregnation methods on activated carbon and bentonite for the production of elemental mercury sorbents. Environmental Engineering Science.2000,17(6):303-313.
    [111]Jurng, J., Lee, T. G, Lee, G Y, et al. Mercury removal from incineration flue gas by organic and inorganic adsorbents. Chemosphere.2002,47(9):907-913.
    [112]Eswaran. S., Stenger, H. G, Fan, Z. Gas-phase mercury adsorption rate studies. Energy and Fuels.2007,21(2):852-857.
    [113]Ding, F., Zhao, Y., Mi, L., et al. Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents. Industrial & Engineering Chemistry Research.2012.51(7):3039-3047.
    [114]Wu, Z., Jiang, B., Liu, Y, et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method. Journal of Hazardous Materials.2007,145(3):488-494.
    [115]Fan, X., Li, C., Zeng, G, et al. Removal of gas-phase element mercury by activated carbon fiber impregnated with CeO2. Energy & Fuels.2010,24(8):4250-4254.
    [116]Qi, G S., Yang, R. T., Chang, R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Applied Catalysis B:Environmental.2004,51(2):93-106.
    [117]Wu, S., Oya, N., Ozaki, M., et al. Development of iron oxide sorbents for Hg0 removal from coal derived fuel gas:Sulfidation characteristics of iron oxide sorbents and activity for COS formation during Hg0 removal. Fuel.2007,86(17-18): 2857-2863.
    [118]Wu, S., Ozaki, M., Uddin, M. A., et al. Development of iron-based sorbents for Hg0 removal from coal derived fuel gas:Effect of hydrogen chloride. Fuel.2008, 87(4-5):467-474.
    [119]Poulston, S., Granite, E. J., Pennline, H. W., et al. Metal sorbents for high temperature mercury capture from fuel gas. Fuel.2007,86(14):2201-2203.
    [120]刘晓荣,丁琳,杨锦,等.纳米TiO2的光催化作用及其负载.上海应用技术学 院学报.2003,3(3):189-193.
    [121]Kim, T. K., Lee, M. N., Lee, S. H., et al. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films.2005,475(1-2):171-177.
    [122]Frank, S. N., Bard, A. J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solution at TiO2 power. Journal of the American Chemical Society.1997, 99(1):303-309.
    [123]Frank, S. N., Bard, A. J. Hererogeneous photocatalytic oxidation of cyanide and sulfate in aqueous solution at semiconductor powers. Journal of Chemical Physics. 1997,81(15):1481-1489.
    [124]Lee, T. G., Biswas, P., Hedrick, E. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation. Industrial & Engineering Chemistry Research.2004,43(6):1411-1417.
    [125]Pitoniak, E., Wu, C. Y., Mazyck, D. W., et al. Adsorption enhancement mechanisms of silica-itania nanocomposites for elemental mercury vapor removal. Environmental Science & Technology.2005,39(5):1269-1274.
    [126]Li, Y., Wu, C. Y. Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environmental Science & Technology.2006,40(20):6444-6448.
    [127]Kamata, H., Ueno, S. i., Sato, N., et al. Mercury oxidation by hydrochloric acid over TiO2 supported metal oxide catalysts in coal combustion flue gas. Fuel Processing Technology.2009,90(7-8):947-951.
    [128]Fujishima, A., Rao, T. N., Tryk, D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C:Photochemistry Reviews.2000,1(1):1-21.
    [129]Kajitvichyanukul, P., Ananpattarachai, J., Pongpom, S. Sol-gel preparation and properties study of TiO2 thin film for photocatalytic reduction of chromium(VI) in photocatalysis process. Science and Technology of Advanced Materials.2005, 6(3-4):352-358.
    [130]Pantelis, A. P., Nikolaos, P. X., Dionissios, M. Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Research.2006,40(6):1276-1286.
    [131]Ying, L., Murphy, P., Wu, C. Y. Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2-TiO2 nanocomposite. Fuel Processing Technology.2008,89(6):567-573.
    [132]Tao, Yong., Wu, C. Y., Mazyck, D. W. Microwave-assisted preparation of TiO2/activated carbon composite photocatalyst for removal of methanol in humid air streams. Industrial and Engineering Chemistry Research.2006,45(14):5110-5116.
    [133]张海燕,王宝辉,陈颖.光催化氧化处理含油污水的研究.化工进展.2003,22(1):67-70.
    [134]Bahnemann, D., Bocketmann, D., Goalich, R. Mechanistic studies of water detoxification in illuminated TiO2 suspensions. Solar Energy Materials & Solar Cells.1991,24(1-2):564-583.
    [135]Granite, E. J., Pennline, H. W. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research.2002,41(22):5470-5476.
    [136]杨珊,张军营,赵永椿,等.纳米TiO2-活性炭的制备及光催化脱汞初探.工程热物理学报.2010,31(2):339-342.
    [137]赵毅,韩静,马天忠.活性炭纤维负载TiO2同时脱硫脱硝实验研究.中国电机工程学报.2009,29(11):44-49.
    [138]Pitoniak, E., Wu, C. Y, Mazyck, D. W. Adsorption enhancement mechanisms of silica-titania nanocomposites for elemental mercury vapor removal. Environmental Science and Technology.2005,39(5):1269-1274.
    [139]Chen, S. F., Zhang, S. J., Liu, W., et al. Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2. Journal of Hazardous Materials.2008,155(1-2): 320-326.
    [140]Sakthivel, S., Shankar, M. V., Palanichamy, M., et al. Enhancement of photocatalytic activity by metal deposition:characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Research.2004,38(13): 3001-3008.
    [141]Liu, Y., Wang, Y J., Wang, H. Q., et al. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method. Catalysis Communications. 2011,12(14):1291-1294.
    [142]Li, S. J., Ma, Z. C., Wang, L., et al. Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange. Science in China Series B-Chemistry.2008,51(2):179-185.
    [143]Wan, Q., Duan, L., He, K. B., et al. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chemical Engineering Journal.2011,170(2-3):512-517.
    [144]Pitoniak, E., Wu, C. Y., Londeree, D., et al. Nanostructured silica-gel doped with TiO2 for mercury vapor control. Journal of Nanoparticle Research.2003,5(3-4): 281-292.
    [145]豆斌林,陈晖,葛红花,等.Sol-gel法制备纳米TiO2粉体材料及其脱除汞污染物的研究.动力工程.2008,28(5):779-782.
    [146]Sopyan, I., Watanabe, M., Murasawa, S., et al. An efficient TiO2 thin-film photocatalyst:Photocatalytic properties in gas-phase acetaldehyde degradation. Journal of Photochemistry and Photobiology A:Chemistry.1996,98(1):79-86.
    [147]靳晓洁.TiO2光催化同时脱硫脱硝效率预测研究.[硕士论文].环境工程,华北电力大学,2008.
    [148]赵莉.光催化氧化同时脱硫脱硝的实验研究.[博士论文].热能工程,华北电力大学,2007.
    [149]卢晓平,戴文新,王绪绪.纳米Ti02的负载及其在环境光催化中的应用.应用化学.2004,21(11):1087-1091.
    [150]Hoffmann, M. R., Martin, S. T., Choi, W. Y. Environmental application of semiconductor photocatalysis. Chemical Reviews.1995,95(1):69-96.
    [151]Uchida, M., Kim, H. M., Kokubo, T., et al. Apatite-forming ability of sodium-containing titania gels in a simulated body fluid. Journal of the American Ceramic Society.2001,84(12):2969-2974.
    [152]岳明,铁军,邓谦,等.蒸汽转移水解法制备纳米Ti02及其光催化降解丙酮的研究.湖南科技大学学报(自然科学版).2006,21(1):90-93.
    [153]石建稳,郑经堂,胡燕.溶胶-凝胶法制备纳米Ti02及其光催化活性研究.稀有金属快报.2006,25(7):22-26.
    [154]杨珊.纳米Ti02复合物光催化氧化脱除单质汞的实验研究.[硕士论文].能源与动力工程学院,华中科技大学,2009.
    [155]陈长琦,干蜀毅,朱武.扫描电子显微镜成像信号分析.真空.2001,(6):42-44.
    [156]Okte, A.N., Sayinsoz, E. Characterization and photocatalytic activity of TiO2 supported sepiolite catalysts, Separation and Purification Technology.2008,62(3): 535-543.
    [157]Chen, S. F., Zhang, H. Y., Yu, X. L., et al. Preparation, characterization and activity evaluation of heteroj unction ZrTi2O6/Ti02 photocatalyst, Materials Chemistry and Physics.2010,124(2-3):1057-1064.
    [158]Gao, B. F., Ma, Y., Cao, Y, et al. Great enhancement of photocatalytic activity of nitrogen-doped titania by coupling with tungsten oxide. Journal of Physical Chemistry B.2006,110(29):14391-14397.
    [159]Laudal, D. L. T., Pavlish, J. H., Brickett, L., et al. Mercury speciation at power plants using SCR and SNCR control technologies.3rd International Air Quality Conference. Arlington, Virginia, September,2002.
    [160]Eswaran, S., Stenger, H. G Understanding mercury conversion in selective catalytic reduction (SCR) catalysts. Energy and Fuels.2005,19(6):2328-2334.
    [161]Dickinson, R. G, Sherrill, M. S. Formation of ozone by optically excited mercury vapor. Proceedings of the National Academy of Sciences.1926,12(3):175-178.
    [162]Wang, K. H., Jehng, J. M., Hsieh, Y. H., et al. The reaction pathway for the heterogeneous photocatalysis of trichloroethylene in gas phases. Journal of Hazardous Materials.2002,90(1):63-75.
    [163]Hoffmann, M. R., Martin, S. T., Choi, W. Environmental applications of semiconductor photocatalysis. Chemical Reviews.1995,95(1):69-96.
    [164]顾少轩,余倩卿,赵修建.Li2O-BaO-TiO2-Te02透明微晶玻璃的二阶非线性光学效应.华中科技大学学报(自然科学版).2009,37(2):92-95.
    [165]Chen, Q. F., Shi W. M., Jiang, D., et al. Visible-light-activated Ni-Si co-doped TiO2 with photocatalytic performance. Chimica Sinica.2010,68(4):301-308.
    [166]Xu, B. L., Fan, Y. L., Liu, L., et al. Dispersion state and catalytic properties of vanadia species on the surface of V2O5/TiO2 catalysts. Science in China Series B:Chemistry.2002,45(4):407-415.
    [167]Greiner, A., Wendorff, J. H. Electrospinning:A fascinating method for the preparation of ultrathin fibers. Angewandte Chemie International Edition.2007, 46(30):5670-5703.
    [168]Teo, W. E., Ramakrishna, S. A review on electrospinning design and nanofibre assemblies, Nanotechnology.2006,17(14):89-106.
    [169]Lu, H. W., Zeng, W., Li., Y. S., et al. Fabrication and electrochemical properties of three-dimensional net architectures of anatase TiO2 and spinel Li4Ti5O12 nanofibers. Journal of Power Sources.2007,164(2):874-879.
    [170]Yang, Y., Wang, H., Li, X., et al. Electrospun mesoporous W6+-doped TiO2 thin films for efficient visible-light photocatalysis. Materials Letters.2009,63(2): 331-333.
    [171]Ahn, Y. R., Park, C. R., Jo, S. M., et al. Enhanced charge-discharge characteristics of RuO2 supercapacitors on heat-treated TiO2 nanorods. Applied Physics Letters, 2007,90(12):122106.
    [172]Xu, S., Sun, D. D. Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO. International Journal of Hydrogen Energy.2009, 34(15):6096-6104.
    [173]Rodriguez-Gonzalez, V., Moreno-Rodriguez, A., May, M., et al. Slurry photodegradation of 2,4-dichlorophenoxyacetic acid:A comparative study of impregnated and sol-gel In2O3-TiO2 mixed oxide catalysts. Journal of Photochemistry and Photobiology A:Chemistry.2008,193(2-3):266-270.
    [174]Yan, B., Liao, L., You, Y, et al. Single-crystalline V2O5 ultralong nanoribbon waveguides. Advanced Materials.2009,21(23):2436-2440.
    [175]Iliev, V., Tomova, D., Rakovsky, S., et al. Enhancement of photocatalytic oxidation of oxalic acid by gold modified WO3/TiO2 photocatalysts under UV and visible light irradiation. Journal of Molecular Catalysis A:Chemical.2010,327(1-2): 51-57.
    [176]Lalitha, K., Reddy, J. K., Sharma, M. V. P., et al. Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation:A structure-activity correlation. International Journal of Hydrogen Energy.2010,35(9):3991-4001.
    [177]薛聪,胡影影,黄争鸣.静电纺丝原理研究进展.高分子通报.2009,(6):38-47.
    [178]李斗星.透射电子显微学的新进展.电子显微学报.2004,23(3):269-277.
    [179]武建兵,王辉,秦张峰,等.V205/TiO2-ZrO2催化剂上甲醇选择氧化制甲缩醛.燃料化学学报.2011,39(1):64-68.
    [180]Li, H., Li, Y, Wu, C. Y., et al. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas. Chemical Engineering Journal.2011,169(1-3):186-193.
    [181]Wu, C. Y, Li, Y, Murphy, P. D., et al. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas. Environmental Science & Technology.2008,42(14):5304-5309.
    [182]Eom, Y, Jeon, S. H., Ngo, T. A., et al. Heterogeneous mercury reaction on a selective catalytic reduction (SCR) catalyst. Catalysis Letters.2008,121(3-4): 219-225.
    [183]Kim, M. H., Ham, S. W., Lee, J. B. Oxidation of gaseous elemental mercury by hydrochloric acid over CuCl2/TiO2-based catalysts in SCR process. Applied Catalysis B:Environmental.2010,99(1-2):272-278.
    [184]Ji, L., Sreekanth, P. M., Smirniotis, P. G., et al. Manganese oxide/titania materials for removal of NOx and elemental mercury from flue gas. Energy & Fuels.2008, 22(4):2299-2306.
    [185]Li, H. L.,Wu, C. Y., Li, Y., et al. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Applied Catalysis B:Environmental.2012,111:381-388.
    [186]Kobayashi, M., Kuma, R., Masaki, S., et al. TiO2-SiO2 and V205/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Applied Catalysis B:Environmental.2005,60(3-4): 173-179.
    [187]Granite, E. J., Pennline, H. W., Hargis, R. A. Novel sorbents for mercury removal from flue gas. Industrial & Engineering Chemistry Research.2000,39(4): 1020-1029.
    [188]Busca, G, Lietti, L., Ramis, G., et al. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review. Applied Catalysis B:Environmental.1998,18(1-2):1-36.
    [189]Zhuang, Y., Laumb, J., Liggett, R., Holmes, M., et al. Impacts of acid gases on mercury oxidation across SCR catalyst. Fuel Processing Technology.2007,88(10): 929-934.
    [190]Niksa, S., Fujiwara, N. Predicting extents of mercury oxidation in coal-derived flue gases. Journal of the Air & Waste Management Association.2005,55(7):930-939.
    [191]Kamata, H., Ueno, S. i., Naito, T., Yukimura, A. Mercury Oxidation over the V2O5(WO3)/TiO2 Commercial SCR Catalyst. Industrial & Engineering Chemistry Research.2008,47(21):8136-8141.
    [192]Niksa, S., Fujiwara, N. A predictive mechanism for mercury oxidation on selective catalytic reduction catalysts under coal-derived flue gas. Journal of the Air & Waste Management Association.2005,55(12):1866-1875.
    [193]Wu, C. L., Cao, Y, Dong, Z. B., et al. Evaluation of mercury speciation and removal through air pollution control devices of a 190 MW boiler. Journal of Environmental Sciences-China.2010,22(2):277-282.
    [194]Kobayashi, M., Kuma, R., Masaki, S., et al. TiO2-SiO2 and V2O5/TiO2-SiO2 catalyst: Physico-chemical characteristics and catalytic behavior in selective catalytic reduction of NO by NH3. Applied Catalysis B:Environmental.2005,60(3-4): 173-179.
    [195]Nova, I., Acqua, L. D., Lietti, L., et al. Study of thermal deactivation of a de-NOx commercial catalyst. Applied Catalysis B:Environmental.2001,35(1):31-42.
    [196]Lee, T.G, Biswas, P., Hedrick, E. Overall kinetics of heterogeneous elemental mercury reactions on TiO2 sorbent particles with UV irradiation. Industrial & Engineering Chemistry Research.2004,43(6):1411-1417.
    [197]Rodriguez, S., Almquist, C., Lee, T. G. A mechanistic model for mercury capture with in situ-generated titania particles:Role of water vapor. J. Journal of the Air & Waste Management Association.2004,54(2):149-156.
    [198]Kim, S. B., Hong, S. C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B: Environmental.2002,35(4):305-315.
    [199]Alfano, O. M., Cabrera, M. I., Cassano, A. E. Photocatalytic reactions involving hydroxyl radical attack. I. Reaction kinetics formulation with explicit photon absorption effects. Journal of Catalysis.1997,172(2):370-379.
    [200]Anpo, M. Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation:Approaches in realizing high efficiency in the use of visible light. Bulletin of the Chemical Society of Japan.2004,77(8):1427-1442.
    [201]Jiang, Y., Zhang, P., Liu, Z., et al. The preparation of porous nano-TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism. Materials Chemistry and Physics.2006,99(2-3):498-504.
    [202]Zhu, Y. Q., Wang, Z. H., Jiang, S. D., et al. Investigation on elemental mercury oxidation mechanism by non-thermal plasma treatment. Fuel Processing Technology. 2010,91(11):1395-1400.
    [203]Liu, J. H., Yang, R., Li, S. M. Preparation and characterization of the TiO2-V2O5 photocatalyst with visible-light activity. Rare Metals.2006,25(6):636-642.
    [204]Wang, Y., Su, Y. R., Qiao, L., et al. Synthesis of one-dimensional TiO2/V2O5 branched heterostructures and their visible light photocatalytic activity towards Rhodamine B. Nanotechnology.2011,22(22):225702.
    [205]Martin, C., Solana, G, Rives, V., et al. Physico-chemical properties of WO3/TiO2 systems employed for 4-nitrophenol photodegradation in aqueous medium. Catalysis Letters.1997,49(3-4):235-243.
    [206]Keller, V., Bernhardt, P., Garin, F. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis.2003,215(1): 129-138.
    [207]Lv, K. Z., Li. J., Qing, X. X., et al. Synthesis and photo-degradation application of WO3/TiO2 hollow spheres. Journal of Hazardous Materials.2011,89(1-2):329-335.
    [208]Luo, G., Yao, H., Xu, M., et al. Carbon nanotube-silver composite for mercury capture and analysis. Energy & Fuels.2010.24(1):419-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700