基于WFGD系统的硫、氮、汞污染物协同脱除的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO_2污染对环境、人类健康以及经济发展都具有非常大的影响。近年来随着电力行业的迅猛发展,SO_2、NO和Hg的污染有加重的趋势。针对电站锅炉的SO_2污染,我国开展了大规模的电站锅炉湿法烟气脱硫(WFGD)系统的建设。针对NO污染,目前比较常见的有炉内控制技术如低NOx燃烧器与选择性非催化还原(SNCR)技术,烟气脱硝技术如选择性催化还原(SCR)技术。今后排放标准如果提高,炉内控制技术可能无法保证烟气达标排放,而SCR技术因场地限制而使应用是受到一定制约。根据我国的环境现状以及国家节能减排的政策,正在对更多的其它污染物排放进行控制。如何利用已有的污染物控制设备实现多种污染物协同脱除具有非常重要的研究意义。目前我国石灰石/石膏WFGD工艺应用非常广泛,利用已有的WFGD系统进行污染物协同脱除具有非常良好的经济性,对于场地紧张的电站而言尤其具有吸引力。
     在对国内外污染物协同脱除的研究进展进行综述的基础上,对复合添加剂同时脱硫脱硝的反应动力学研究。采用平面传质搅拌反应器进行了SO_2和NO的吸收特性研究,确定了不同因素如气体分压、添加剂浓度对于SO_2和NO的吸收速率的影响,并根据实验结果确定了该反应的反应级数、反应速率常数、活化能等动力学参数;在反应动力学研究的基础上,对复合添加剂同时脱硫脱硝的影响因素进行了研究。采用不同反应器对复合添加剂进行了同时脱硫脱硝的实验,确定了各种因素如pH值、烟气流量、添加剂浓度、添加剂与污染物摩尔比、液气比对于脱硫脱硝效率的影响。采用洗瓶反应器进行了复合添加剂吸收零价汞的实验,确定了上述因素对于零价汞吸收的影响。
     针对实际工程,开展了WFGD系统喷淋塔多种污染物协同脱除性能优化的数值模拟研究。本文基于计算流体力学(CFD)技术,应用混合网格技术,采用标准κ-ε湍流模型描述塔内烟气湍流运动,颗粒轨道模型描述液滴运动,随机漫步模型描述湍流对液滴运动的影响,Rosin-Rammler模型描述液滴的粒径分布,采用SIMPLE算法进行计算。根据塔内实际情况,对脱硫过程采用非稳态传质理论建立了脱硫脱硝数学模型,从而实现对喷淋塔内污染物浓度分布的计算。对某300 MW机组WFGD吸收塔内不同设计和运行条件下脱硫脱硝效率的变化进行了数值计算。脱硫效率的计算结果与实测结果两者吻合较好。基于数值模拟结果对喷淋塔内污染物协同脱除性能优化提供了建议。依据数值模拟结果,提出了基于WFGD系统的脱硫脱硝除汞一体化的应用方案,并对该方案的经济性进行了比较。
     石灰石/石膏WFGD工艺因其优点已成为最广泛采用的工艺。该技术主要以国外引进技术为主,因国内外机组运行模式差异导致运行过程出现了故障与停运问题,研究与开发具有自主知识产权的脱硫技术势在必行。物料平衡计算是WFGD技术设计优化的基础与关键。基于物料衡算基本理论,结合系统设计流程,对WFGD系统的能量平衡、水平衡、固平衡、气平衡、氯平衡、镁平衡等进行了详尽分析,形成了系统物料平衡计算软件。采用该计算软件对具体工程项目进行了计算,并与实际工程设计运行结果进行比较。结果表明该软件可应用于实际工程的物料平衡计算。
The pollution of SO_2 has many great influences on environment,human health and economic development.The pollution of SO_2,NO and mercury is becoming worse and worse with the rapid development of power industry in recent days.More and more large-scale wet flue gas desulfurizaiton(WFGD) systems were constructed to control the pollution of SO_2.In order to control the pollution of NO,the in-furnance control technologies such as low NOx burner(LNB) and selective non-catalytic reduction(SNCR) and flue gas deNOx technologies such as selective catalytic reduction(SCR) were taken.If the NO emission standard improves in future,the in-furnance control technologies can not gurantee the NO emission below the emission standard.The application of SCR technology is confined because of its space need.Control of emission of more pollutant is required to protect the environment and satisfy the policy of energy conservation and emission reduction in China.Therefore,it is meaningful to realize the multi-pollutants control in existed pollutant control system.Limestone/gypsum WFGD technique is applied widely for control the SO_2 emission in China.The technique to control multi-pollutants in the WFGD system is economical and attractive,especially for those power plants with limited space to take great construction.
     Based on the review of advance of multi pollutant removal technology,kinetics of DeSO_2 and DeNOx in the compound solutions was studied.Effects of partial pressure and concentration of reagents to the absorption rate of SO_2 and NO were determined in the experiments of absorption characteristic in stirred reactor with plate mass transfer surface. The kinetics parameters such as reaction order,rate constant,activated energy were determined according to experimental data.After the study of kinetics,effects to efficiency of removal of SO_2,NOx and Hg in the compound solutions were studied.The effects such as pH value,flow of flue gas,reagents concentration,and molar rate reagents to pollutants and liquid to gas rate to the efficiency of removal of SO_2,NOx were determined in the experiments with different reators.The absorptions of Hg~0 in the compound solutions with washing bottle were taken.Effects of parameters mentioned above to the efficiency of Hg removal were determined.
     Aimming at the application of the WFGD systems in power plants,the numerical simulation of performance optimization for multi-pollutant removal in spray scrubber of WFGD system was studied.Based on computational fluid dynamics(CFD) technology and structuralized-non-structuralized hybrid grid technology,the standardκ-εturbulent model which describe the flue gas turbulent motion in the tower,the Discrete Phase Models which trace the movement of droplets,Discrete Random Walk model which describe the turbulent motion influence to the movement of droplets,the Rosin-Rammler model which describe droplets distribution,the gas-liquid fluid flow field in spraying tower was simulated with the SIMPLE calculation method.The pollutants concentration fields in the scrubber were determined by desulfurization and deNOx mathematical model which build up non-steady state mass transfer theory.The numerical calculation of the scrubber of a 300 MW power unit was taken in different design and operation conditions. The calculation results of desulfurization are in good agreement with the results measured in the performance test.Based on the numerical simulation results,some advices were proposed for the optimization of multi-pollutants removal in the spray scrubber.Based on the results of numerical simulation,the programme of removal of SO_2,NOx and Hg in WFGD system was proposed and the economy of the programme was analyzed.
     Limestone/gypsum WFGD technique is the most popular technique used in the desulfurization because of its advantages.Nearly all the limestone/gypsum WFGD techniques are from foreign corperation and lots of WFGD systems are in malfunction or out of service because the operation modes of utility boilers in China are different to those of foreign utility boilers.It is necessary to develop WFGD technique with independent intellectual property rights.Material balance is the key and base for the WFGD design and optimization.Based on the basic theory of material balance and system design,the system of sod energy balance,water balance,solid balance,gas balance,chlorine balance and magnesium balance of WFGD system are analyzed detailedly to form a material balance calculation software package.The calculation results of several WFGD systems by the software package are in good agreement with design and operation results in the large scale WFGD systems in power plants.The software package can be applied to the material balance calculations of WFGD system.
引文
1.中华人民共和国国家统计局.中国统计年鉴[M].北京:中国统计出版社,1975-2006.
    2.郝吉明.中国燃煤二氧化硫污染控制战略与政策.烟气脱硫技术讲座资料,2005:
    3.倪健民.国家能源安全报告[M].北京:人民出版社,2005.
    4.钟毅.低温催化吸附剂及其脱除SO_2研究[D].武汉:华中科技大学.2003.
    5.王惠挺,王建峰.火电厂大气污染物排放新标准实施后电站脱硫技术与市场分析[J].能源工程,2005,(3):29-32.
    6.7亿千瓦:电力工业加速度.2007;Available from:http://news.cepee.com/html/2008/1/20081382338.htm.
    7.我国发电装机容量突破7亿千瓦.2008;Available from:http://www.cpnn.com.cn/bwtj/200801/t20080114_191716.htm.
    8.林永明.大型石灰石-石膏湿法喷淋脱硫技术研究及工程应用[D].杭州:浙江大学.2006.
    9.环保总局呼吁将排放数据纳入干部考核.2007;Available from:http://finance.sina.com.cn/g/20070823/08153909186.shtml.
    10.实施脱硫电价政策 减少二氧化硫排放——国家发展改革委有关负责人答记者问.2007;Available from:http://www.ndrc.gov.cn/zcfb/jd/2007/t20070611_140742.htm.
    11.王金南.二氧化硫排放交易[M].北京:中国环境科学出版社,2000.
    12.王力,刘泽常.煤的燃前脱硫工艺[M].北京:煤炭工业出版社,1996.
    13.张东晨.微生物脱除煤炭中的黄铁硫矿[M].合肥:合肥工业大学出版社,2005.
    14.Paul L.B.Pollution prevention:fundamentals and practice[M].Boston:McGraw-Hill press,2000.
    15.郭东明.硫氮污染防治工程技术及其应用[M].北京:化学工业出版社环境科学与工程出版中心,2001.
    16.郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    17.雷仲存.工业脱硫技术[M].北京:化学工业出版社环境科学与工程出版中心,2001.
    18.项光明,姚强,何苏浩,等.烟气脱硫技术的研发进展[J].中国煤炭,2002,28(2):39-43.
    19.钟秦.燃煤烟气脱硫脱硝技术及工程实例[M].北京:化学工业出版社,2002.
    20.岑可法,姚强,骆仲泱,等.燃烧理论与污染控制[M].北京:机械工业出版社,2004.
    21.孙克勤,钟秦.火电厂烟气脱硫系统设计、建造及运行[M].北京:化学工业出版社,2005.
    22.阎维平,刘忠,王春波.电站燃煤锅炉石灰石湿法烟气脱硫装置运行与控制[M].北京:中国电力出版社,2005.
    23.杨飏.二氧化硫减排技术与烟气脱硫工程[M].北京:冶金工业出版社,2004.
    24.姚强,陈超.洁净煤技术[M].北京:化学工业出版社,2005.
    25.俞珠峰.洁净煤技术发展及应用[M].北京:化学工业出版社,2004.
    26.郑楚光.洁净煤技术[M].武汉:华中理工大学出版社,1996.
    27.中国环境与发展国际合作委员会能源战略与技术工作组.能源与可持续发展[M].北京:中国环境科学出版社,2004.
    28.曹征彦.中国洁净煤技术[M].北京:中国物资出版社,1998.
    29.陈文敏.洁净煤技术[M].北京:煤炭工业出版社,1997.
    30.何苏浩,项光明,姚强,等.石灰石/石灰-石膏湿法脱硫反应塔模型比较[J].煤炭转化,2001,24(03):41-45.
    31.孔华.石灰石湿法烟气脱硫技术的实验和理论研究[D].杭州:浙江大学.2001.81-103.
    32.项光明.液柱喷射烟气脱硫研究[D].北京:清华大学.2002.104-127.
    33.William J.M.Current U.S.air pollution control technologies and future trends[R].Hamon Research-Cottrell Inc.:2002.
    34.程峰.液柱冲击塔湿法烟气脱硫的试验和理论研究[D].杭州:浙江大学.2005.
    35.Nygaard H.G.,Kiil S.,Johnsson J.E.,et al.Full-scale measurements of SO_2 gas phase concentrations and slurry compositions in a wet flue gas desulphurisation spray absorber[J].Fuel,2004,83(9):1151-1164.
    36.曾庭华,杨华,马斌,等.湿法烟气脱硫系统的安全性及优化[M].北京:中国电力出版社,2004.
    37.Schuettenhelm W.,Robinson T.,Licata A.FGD technology developments in Europe and north America[C].EPA-DOE-EPRI mega symposium.2001,8.
    38.Schuttenhelm W.,Braun W,Dreuscher H.烟气脱硫技术的最新发展状况及其优化方面[C].Proceedings of 2004中国国际脱硫脱硝技术与设备展览会暨技术研讨会.北京,2004:320-322.
    39.Astarita G.,Savage D.W.,Bisio A.Gas treating with chemical solvents[M].New York:John Wiley & Sons Inc.,1983.
    40.Bamthaler K.,Malecek M.,Maier H.Design and start up of FGD Melnik(2×110MW,1×500MW)in Czech republic.Project report:1996:
    41.Henzel D.S.,Laseke B.A.,Smith E.O.,et al.Handbook for flue gas desulfurization scrubbing with limestome[M].New Jersy:Noyes Data Corporation,1982.
    42.Hudson J.L.,Rochelle G.T.Flue Gas Desulfurization[C].ACS symposium.1982,
    43.Marsulex I.Wet,semi-dry & ammonia FGD technologies[C].SO2 control workshop hosted by US DOE of Fossil Energy & Chinese Ministry of Science & Technology.2003,6.
    44.格拉梅尔特 S.湿式烟气脱硫装置的设计和应用[J].国际电力,1998,(3):54-58.
    45.管一明,李仁刚.湿式石灰石烟气脱硫工艺现状与发展[[J].电力环境保护,1999,15(2):53-58.
    46.湿法技术介绍及各种流派比较.2006;Available from:http://www.china-lucency.com/webtry/bbs/show.asp?id=44&bd=14.
    47.山东三融环保工程有限公司.比晓夫技术介绍.2006;Available from:http://www.ssepec.net/gc.asp?classid=26.
    48.福建龙净环保股份有限公司比晓夫技术介绍.2006;Available from:http://www.longking.cn/zdcp/tl-gf.htm.
    49.B&W I.Wet flue gas desulfurization(FGD) system.B & W Inc.report:2001
    50.浙江天地环保工程有限公司托盘塔技术介绍.2006;Available from:http://www.ztepe.com/jszt.asp?NewsID=398.
    51.Nolan P.S.,Redinger K.E.,Amrhein G.T.,et al.Demonstration of additive use for enhanced mercury emissions control in wet FGD systems[J].Fuel Processing Technology,2004,85(6-7):587-600.
    52.Williams P.J.Wet Flue Gas Desulfurization Pilot Plant Testing of High Velocity Absorber Modules[C].EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium.Atlanta,Georgia,U.S.A.,1999,August 16-20.
    53.Ducon technologies Inc.US-China SOx/NOx technical workshop.2005.8:
    54.川崎石灰石-石膏湿法脱硫喷淋塔幻灯片介绍2006;Available from:http://bbs2.zhulong.com/forum/detail2687433_1.html.
    55.Mascarenhas A.S.Techniques to reduce sulfur oxide emissions[J].Energy management and policy,2003.
    56.VattenfallEuropepowerconsult.Vattenfall Europe Generation电厂湿法脱硫工艺经验[C].电厂脱硫除尘技术研讨会—专题七.2003,7.
    57.Burmeister&WainEnergyAS.BWE CT-121 flue gas desulfurization process.2005:
    58.Zheng Y.,Kiil S.,Johnsson J.E.Experimental investigation of a pilot scale jet bubbling reactor for wet flue gas desulfurization[J].Chemical Engineering Science,2003,58(10):4695-4703.
    59.韩旭,徐寅生,李瑞鑫,等,武汉凯迪电力股份有限公司.液柱鼓泡式湿法烟气脱硫装置[P]:中国国家知识产权局,实用新型专利说明书2005.
    60.何苏浩,项光明,姚强,等.石灰石/石灰-石膏湿法脱硫几种反应塔的比较[J].电力环境保护,2001,17(3):5-8.
    61.万玮,项光明,冯文,等.简易液柱式湿法烟气脱硫装置的试验研究[J].煤炭转化,2003,26(1):74-77.
    62.刘国瑞,高翔,张岗,等.湍球塔湿法脱硫的试验研究[J].热力发电,2006,(6):22-27.
    63.汪洪涛,吴少华,杜谦,等.下降液膜湿法烟气脱硫的实验研究及机理分析[J].哈尔滨工业大学学报,2003,35(6):715-718.
    64.EPRI.Integrated environmental control for multiple air pollutants[R].Palo Alto:2005.
    65.Tavoulareas E.S.,Jozewicz W.Multipollutant emission control technology options for coal-fired power plants[R].Washington D.C.:2005.
    66.Bielawski G T.How low can we go?[C].Proceedings of the U.S.EPA-DOE-EPRI combined power plant air pollution control symposium:the Mage symposium symposium and the A & WMA specialty conference on mercury emissions:fate,effects,and control.Chicago IL.,2001,Aug.
    67.Milobowski M.G.Wet FGD enhanced mercury control for coal-fired utility boilers[C].Proceedings of the U.S.EPA-DOE-EPRI combined power plant air pollution control symposium:the Mage symposium symposium and the A & WMA specialty conference on mercury emissions:fate,effects,and control.Chicago IL.,2001,Aug.
    68.Milohowski M.G.,Amrhein G T.,Kudlac G A.Wet FGD enhanced mercury control for coal-fired utility boilers[C].The U.S.EPA/DOE/EPRI combined power plant air pollutant control symposium.Chicago Illinois U.S.A.,2001,1.10.
    69.Richardson C.,Machalek T.,Miller S.,et al.Effects of NOx control processes on mercury speciation in utility flue gas[C].Proceedings of the U.S.EPA-DOE-EPRI combined power plant air pollution control symposium:the Mage symposium symposium and the A & WMA specialty conference on mercury emissions:fate,effects,and control.Chicago IL.,2001,Aug.
    70.Fu Y.,Diwekar U.M.,Suehak N.J.Optimization framework for modeling the low temperature oxidation process for NOx reduction[J].Adv.Env.Res.,2003,3(4):424-438.
    71.Ferrell R.,Suchak N.,Hwang S.C.,et al.A report on the application of low temperature oxidation for control of NOx emission[C].Presented at ICAC forum 02.Houston TX.,2002,
    72.Goss W.L.,Lutwen R.C.,Ferrel R.,et al.A report of the startup of a multi-pollutant removal system for NOx,SOx,and particulate control using a low temperature oxidation system on a 25 MW coal fired boiler[C].Presented at Power-Gen 2001.Las Vegas NV,,2001,Dec.12.
    73.Mclarnon C.R.,Jones M.D.Electro-Catalytic oxidation process for multi-pollutant control at FirstEnergy's R.E.Burger generating station[C].Electric Power 2000.Cincinnati convention center,2000,April 5.
    74.王智化.燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D].杭州:浙江大学.2005.
    75.Jin D.S.,Deshwal B.R.,Park Y.S.,et al.Simultaneous removal of SO_2 and NO by wet scrubbing using aqueous chlorine dioxide solution[J].J.Hazard.Mater.,2006,135(1-3):412-417.
    76.Downs W.,Bailey R.T.,McDermott Technology Inc.Apparatus for control of mercury[P]:USPTO,US 6284199,1999.
    77.Rolan P.S.,Bailey R.T.,Downs W.,the Babcock & Wilcox company,McDermott Technology Inc.Method for controlling elemental mercury emissions[P]:USPTO,6855859,2005.
    78.王琼,胡将军,邹鹏.NaClO_2湿法烟气脱硫脱硝技术研究[J].电力环境保护,2005,21(2):4-6.
    79.Chien T.W.,Chu H.,Hsueh H.T.Kinetic Study on Absorption of SO_2 and NO_x with Acidic NaClO_2 Solutions Using the Spraying Column[J].J.Environ.Eng.,2003,129(11):967-974.
    80.Brogren C.,Karlsson H.T.,Bjerle I.Absorption of NO in an aqueous solution of NaClO_2[J]. Chem.Eng.Technol.,1998,21(1):61-70.
    81.夏式均.电极电势及其应用[M].杭州:浙江人民出版社,1980.
    82.Makansi J.Will combined SO_2/NOx processes find a niche in the market[J].Power,1990,134:26-28.
    83.Kobayashi H.,Takezawa N.,Niki T.Removal of nitrogen oxides with aqueous solutions of inorganic and organic reagents[J].Environ Sci Technol,1977,11:190-192.
    84.Sada E.,Kumazawa H.,Hayakawa N.Absorption of NO in aqueous solutions ofKMnO_4[J].Chem Eng Sci,1977,32:1171-1175.
    85.Chu H.,Chien T.W.,Li S.Y.Simultaneous absorption of SO_2 and NO from flue gas with KMnO_4/NaOH solutions[J].Sci Total Environ,2001,275(1-3):127-135.
    86.Chu H.,SY.Li,Chien T.W.The absorption kinetics of NO from flue gas in a stirred tank reactor with KMnO_4/NaOH solutions[J].J Environ Sci Health Part A,1998,A33:801-827.
    87.Uchida S.,Kobayashi T.,Kageyama S.Absorption of nitrogen monoxide into aqueous KMnO4/NaOH and Na2SO3/FeSO4 solutions[J].Ind.Eng.Chem.Process Des.Dev.,1983,22:323-329.
    88.Brogren C.Models for wet scrubbing of SO_2 and NOx[D].Lund:Lund University.1997.
    89.Brogren C.,Karlsson H.T.,Bjerle I.Absorption of NO in an alkaline solution of KMnO_4[J].Chem.Eng.Technol.,1997,20(6):396-402.
    90.俞成丙,刘伟平.碱性高锰酸钾溶液湿法脱硝氮氧化物废气的实践[J].安全与环境学报,2006,6(3):90-92.
    91.Sada E.,Kumazawa H.Absorption of lean NOx in aqueous solutions of NaClO2 and NaOH[J].Ind.Eng.Chem.Proc.Des.Dev.,1979,18(2):275-278.
    92.Sada E.,Kumazawa H.,Kudo I.,et al.Absorption of NO in aqueous mixed solutions of NaClO_2and NaOH[J].Chem.Eng.Sci.,1978,33:315-318.
    93.Sada E.,Kumazawa H.,Yazanaka Y.,et al.Kinetics of absorption of sulfur dioxide and nitric oxide in aqueous mixed solutions of sodium chlorite and sodium hydroxide[J].J Chem Eng Jpn,1978,11:276-282.
    94.Chu H.,Chien T.-W.,Twu B.-W.Simultaneous absoption of SO_2 and NO in a stirred tank reactor with NaClO_2/NaOH solutions[J].Water Air Soil Poll,2003,143:337-350.
    95.Chien T.W.,Chu H.Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution[J].J Hazard Mater,2000,B80:43-57.
    96.Yang C.,Shaw H.Aqueous absorption of nitric oxide induced by sodium chlorite oxidation in the presence of sulfur dioxide[J].Environ Progress,1998,17(2):80-85.
    97.Hsu H.W.,Lee C.J.,Chou K.S.Absorption of NO by NaClO2 solution:performance characteristics[J].Chem Eng Communication,1998,170:67-81.
    98.Adewuyi Y.G.,He X.D.,Shaw H.,et al.Simultaneous absorption and oxidation of NO and SO2by aqueous solutions of sodium chlorite[J].Chem Eng Communication,1999,174:21-51.
    99.Shi Y.,Littlejohn D.,Chang S.G.Kinetics of NO Absorption in Aqueous Iron(Ⅱ)Bis(2,3-dimercapto-1-propanesulfonate) Solutions Using a Stirred Reactor[J].Ind.Eng.Chem.Res.,1996,35(5):1668-1672.
    100.Yih S.-m.,Lii C.-W.Simultaneous absorption of nitric oxide and sulphur dioxide in Fe Ⅱ-EDTA solution in a packed absorber-stripper unit[J].Chemical Engineering Journal,1989,3(3):145-152.
    101.Li W.,Mendelsohn M.,Harkness J.B.L.,et al.Modeling and simulation of NO_x/SO_2 removal in an aqueous scrubber system using the additive Fe(Ⅱ)*EDTA[C].Proceedings of Environmental progress.U.S.:American Institute of Chemical Engineering,1996.
    102.李伟,吴成志,马碧瑶,等.半胱氨酸亚铁溶液吸收一氧化氮的研究[J].中国环境科学,2005,(03):13-16.
    103.钟秦,吕喆,陈迁乔.可再生半胱氨酸亚铁溶液同时脱除SO_2和NO_x[J].南京理工大学学报,2000,24(5):441-445.
    104.辛志玲,陈茂兵,肖文德,等.乙二胺合钴溶液脱除NO[J].华东理工大学学报,2006,32(11):1258-1261.
    105.周春琼,邓先和,潘朝群.甘氨酸合钴溶液脱除NO[J].化工学报,2006,57(04):943-947.
    106.Wang L.,Zhao W.,Wu Z.Simultaneous absorption of NO and SO_2 by Fe(Ⅱ)EDTA combined with Na_2SO_3 solution[J].Chemical Engineering Journal,2007,In Press,Corrected Proof.
    107.Long X.,Xin Z.,Chen M.,et al.Kinetics for the simultaneous removal of NO and SO_2 with Cobalt Ethylenediamine Solution[J].Separation and Purification Technology,2007,In Press,Accepted Manuscript.
    108.Shi Y.,Littlejohn D.,Chang S.-G.Kinetics of NO absorption in aqueous iron(Ⅱ) bis(DMPS)solutions using a stirred reactor[J][J].Ind.Eng.Chem.Res.,1996,36:1668-1672.
    109.Beek W.J.,Muttzall K.M.K.,Heuven J.W.v.transport phenomena[M].北京:化学工业出版社,2003.
    110.Bird R.B.,Stewart W.E.,Lightfoot E.N.Transport Phenomena[M].2nd edition.北京:化学工业出版社,2002.
    111.邓修,吴俊生.化工分离工程[M].北京:科学出版社,2002.
    112.陈声宗.化工设计[M].北京:化学工业出版社,2002.
    113.叶世超,夏素兰,易美桂等.化工原理[M].北京:科学出版社,2006.
    114.钟穗生.化学工程计算[M].北京:北京师范大学出版社,1992.
    115.Perry R.H.,Green D.W.Perry's chemical engineers'handbook(seventh edition)[M].北京:科学出版社,2001.
    116.Danckwerts P.V.Gas-liquid reaction[M].New York:McGraw-Hill press,1970.116-128.
    117.Onda K.,Sada E.,Kobayashi T.,et al.Salting-out parameters of gas solubility in aqueous salt solutions[J].J.of Chem.Eng.Jpn,1970a,3(1):18-24.
    118.Onda K.,Sada E.,Kobayashi T.,et al.Solubility of gases in aqueous solutions of mixed salts[J].J. of Chem.Eng.Jpn,1970b,3(2):137-142.
    119.傅献彩,沈文霞,姚天扬.物理化学(第四版)[M].北京:高等教育出版社,1990.
    120.Chu H.,Chien T.-W.,Twu B.-W.The absorption kinetics of NO in NaClO_2/NaOH solutions[J].Journal of Hazardous Materials,2001,B84:241-252.
    121.Hsu H.W.,Lee C.T.,Chou K.S.Absorption of NO by NaClO2 solution:performance characteristics[J].Chem Eng Communication,1998,170:67-81.
    122.Chien T.W.,Chu H.Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution[J].Journal of hazardous materials,2001,B80:43-57.
    123.万敬敏.液相烟气同时脱硫脱硝的实验研究[D].保定:华北电力大学.2005.
    124.赵音.液相同时脱硫脱硝技术及机理研究[D].保定:华北电力大学.2006.
    125.刘光启,马连湘,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    126.Takeuchi H.,Ando M.,Kizawa N.Absorption of nitrogen oxides in aqueous sodium sulfite and bisulfite solutions[J].Ind Eng Chem Process Des.,1977,16(303-308).
    127.EPRI.An assessment of mercury emissions from U.S.coal fired power plants[R].Palo Alto:EPRI,2000.
    128.Pavlish J.H.,Sondreal E.A.,Mann M.D.,et al.Status review of mercury control options for coal-fired power plant[J].Fuel processing technology,2003,82:89-165.
    129.Meij R.The fate of mercuy in coal-fired power plants and the influence of wet flue gas desulphurization[J].Water,air and soil pollution,1991,56:21-33.
    130.Senior C.L.,Helble J.J.,Sarofim A.F.Predicting the speciation of mercury emissions from coal fired power plants[C].Proceedings of Proceedings of the air quality Ⅱ:mercury,trace elements,and particulate matter conference.Mclean VA,2000:A5-2.
    131.张栋.失效分析[M].北京:国防工业出版社,2004.
    132.Livengood C.D.,Raleigh C.E.Enhancement of mercury control in flue gas cleanup system[C].Proceedings of Proceedings of U.S.DOE/PETC first joint power & fuel systems contractors conference Pittsburgh,Penn.,1996.
    133.Hower J.C.,Robl T.L.,Anderson C.,et al.Characteristics of coal combustion products(CCP's)from Kentucky power plants,with emphasis on mercury content[J].Fuel,2005,84(11):1338-1350.
    134.田贺忠.利用湿式FGD系统吸收汞[J].国际电力,2005,9(6):58-61.
    135.朱燕群.气相汞的吸收、稳定性及燃煤电站锅炉汞形态迁移的数值模拟研究[D].上海:上海理工大学.2007.
    136.Amrhein G.T.,Kudlac G A.,Madden D.M.Full-scale testing of mercury control for wet FGD systems[C].27th international technical conference on coal utilization and fuel systems.Clearwater,Florida,2002,March 4-7.
    137.Farthing G.,Full-scale testing of enhanced mercury control technologies for wet FGD system.2003.
    138.McDonald D.K.,Amrhein G.T.,Kudlac G.A.,et al.Full-scale testing of enhanced mercury control technologies for wet FGD systems[R].Barberton & Alliance:Babcock&Wilcox,Inc.&McDERMOTT Technology,Inc.,2003.
    139.张俊姣,董长青,刘启望.城市生活垃圾焚烧过程中汞污染防治研究[J].能源研究与利用,2001,6(1):17-19.
    140.叶群峰.吸收法脱除模拟烟气中气态汞的研究[D].杭州:浙江大学.2006.
    141.叶群峰,王成云,徐新华,等.高锰酸钾吸收气态汞的传质-反应研究[J].浙江大学学报(工学版),2007,41(5):831-835.
    142.吴维昌,冯洪清,吴开治.标准电极电位数据手册[M].北京:科学出版社,1991.
    143.王建平.计算流体动力学(CFD)及其在工程中的应用[J].机电设备,1994,(5):39-41.
    144.Gerbec M.,Stergarsek A.,Kocjancic R.Simulation model of wet flue gas desulphurization plant [J].Computers & Chemical Engineering,1995,19(Supplement 1):283-286.
    145.Brogren C.,Karlsson H.T.Modeling the absorption of SO_2 in a spray scrubber using the penetration theory[J].Chemical Engineering Science,1997,52(18):3085-3099.
    146.Warych J.,Szymanowski M.Model of the Wet Limestone Flue Gas Desulfurization Process for Cost Optimization[J].Ind.Eng.Chem.Res.,2001,40(12):2597-2605.
    147.Warych J.,Szymanowski M.Optimum Values of Process Parameters of the "Wet Limestone Flue Gas Desulfurization System"[J].Chem.Eng.Technol.,2002,25(4):427-432.
    148.Strock T.,Gohara W.Approach and techniques for the scrubber fluid mechanics[J].Chem Eng Sci,1994,24(4667-4679).
    149.Dudek S.A.,Rogers J.A.,Gohara W.F.Computational fluid dynamics(CFD) model for predicting two-phase flow in a flue-gas-desulfurization wet scrubber[C].EPRI-DOE-EPA Combined Utility Air Pollutant Control Symposium.Atlanta,Georgia,U.S.A.,1999,August 16-20.
    150.Maier H.大型洗涤塔系统采用CFD模拟的重要性[C].Proceedings of 2004中国国际脱硫脱硝技术与设备展览会暨技术研讨会论文集.北京,2004:320-322.
    151.曾芳,陈力,李晓芸.湿式脱硫塔流场数值计算[J].华北电力大学学报,2002,29(02):106-110。
    152.张红蓉.湿法脱硫立式圆形吸收塔内过程的数值模拟[D].北京:华北电力大学.2002.
    153.唐志永,仲兆平,孙克勤.湿法脱硫喷淋塔空塔流场数值模拟[J].能源研究与利用,2003,(3):10-12.
    154.薛景杰.鼓泡式脱硫反应过程试验研究及数值模拟[D].重庆:重庆大学.2003.
    155.郎方年,陈金玉,吴建卫,等.波纹板脱硫除雾器的除雾性能研究[J].机床与液压,2003,(05):137-140
    156.李铁军.喷淋式脱硫塔内流场的试验研究和数值模拟[D].北京:华北电力大学.2006.
    157.潘羽.湿法脱硫复合式液柱吸收塔内过程数值模拟及优化[D].北京:华北电力大学.2005.
    158.岩月元臣,石坂浩,吉川博文.湿式排烟脱硫装置的性能预测模拟[J].日立公司资料.
    159.汪洋.湿法脱硫喷淋塔数值模拟[D].北京:华北电力大学.2006.
    160.何苏浩.下落碱性液滴对酸性气体吸收的试验与建模[D].北京:清华大学.2001.
    161.王福军.CFD软件原理与应用[M].北京:清华大学出版社,2004.
    162.Rollet-Miet P.,Laurence D.,Ferziger J.LES and RANS of turbulent flow in tube bundles[J].International Journal of Heat and Fluid Flow,1999,20(3):241-254.
    163.Fluentlnc.Fluent User's Guide[M].Fluent Inc.,2003.
    164.赵喆,田贺忠,阿庆兴,等.湿式烟气脱硫喷淋塔内部流场数值模拟研究[J].环境污染治理技术与设备,2005,(05):18-22.
    165.周山明,金保升,仲兆平,等.大型烟气脱硫塔的流体动力学模拟及优化设计[J].东南大学学报(自然科学版),2005,35(01):105-110.
    166.Morsi S.A.,Alexander A.J.An Investigation of Particle Trajectories in Two-Phase Flow Systems [J].J.Fluid Mech.,1972,55(2):193-208.
    167.Levenspiel O.Chemical reaction engineering,3rd ed.[M].Beijing:Chemical industry press,2002.
    168.Seader J.D.,Henley E.J.Seperation process priciples[M].北京:化学工业出版社,2002.
    169.Norman K.Y.Liquid phase mass transfer in spray contactors[D].Austin:The University of Texas.2002.37-94.
    170.Bruce W.L.,Tang J.E,James M.,et al.A review of DOE/NETL's advanced NOx control technology R& D program for coal-fired power plants[C].2005,
    171.李应麟,尹其光.化工过程的物料衡算和能量衡算[M].北京:高等教育出版社,1987.
    172.International R.,C L.L.Electric utility engineer's FGD manual,volume I-FGD process design[R].Austin Texas:1996.
    173.吴志泉,涂晋林,徐汛.化学工艺计算[M].上海:华东理工大学出版社,1998.
    174.Felder R.M.,Rousseau R.W.Elementary principles of chemical processes[M].New York:John Wiley & Sons,Inc.,1978.
    175.范从振.锅炉原理[M].北京:水力电力出版社,1985.
    176.周淑贞.气象学与气候学[M].北京:高等教育出版社,1997.
    177.汤争光,梅拥军.石灰石-石膏湿法烟气脱硫废水处理浅析[J].上海环境科学,2001,20(12):609-612.
    178.陶雷行.石灰石湿法脱硫系统废水处理与零排放[J].上海电力,2006,(6):601-603.
    179.钟毅,林永明,高翔,等.石灰石/石膏湿法烟气脱硫系统石灰石活性影响因素研究[J].电站系统工程,2005,(04).
    180.冯俊凯,沈幼庭.锅炉原理及计算[M].北京:科学出版社,1992.
    181.Kiil S.,Michelsen M.L.,Dam-Johansen K.Experimental and theoretical investigations of wet flue gas desulphurisation pilot plant[J].Ind Eng Chem Res,1998,37(7):2792-2806.
    182.Kalagnanam J.R.,Rubin E.S.Development of the integrated environmental control model[R].Pittsburgh:Carnegie Mellon University,1995.
    183.杨祖荣.化工原理[M].北京:化学工业出版社,2004.
    184.Neter J.,Wasserman W.,Kutner M.H.应用线性回归模型[M].北京:中国统计出版社,1990.
    185.方开泰,全辉,陈庆云.实用回归分析[M].北京:科学出版社,1988.
    186.朱军.线性模型分析原理[M].北京:科学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700