双循环多级水幕反应器脱硫性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国经济快速发展、煤炭消耗量持续增加而SO_2减排任务重的严峻形势下,WFGD作为主流烟气脱硫工艺在大型燃煤锅炉SO_2减排中扮演了重要角色。中小型燃煤锅炉因负荷变化大、脱硫系统易结垢腐蚀、湿法除尘脱硫一体化脱硫效率偏低等,通过改进WFGD工艺或研发新型脱硫反应器,改善反应器内气液流场和接触传质性能,优化工艺运行参数,提高烟气脱硫效率,为现有中小型燃煤锅炉湿法烟气脱硫提供技术支持。
     本论文设计的双循环多级水幕反应器,基于钙基脱硫反应动力学原理,采用双循环运行模式和pH值分段控制,反应器内以双圆锥和导流堰组合生成多级水幕代替常规喷淋塔的多层喷淋;运用AUTOCAD、GAMBIT和FLUENT流场模拟软件对塔内构件和流场进行正交模拟优化,得到塔内流场和气液接触最佳的双圆锥和导流堰组合结构参数。反应器采用下段较低pH值有利于石灰石的溶解和上段较高pH值保证SO_2的吸收的双循环运行模式,协调了石灰石利用率与脱硫效率之间的矛盾,研发的反应器具有运行稳定、脱硫效率高、无结垢腐蚀等性能。
     以脱硫效率和石灰石利用率为指标,通过正交试验和综合平衡法分析,得出冷态最优试验方案,即空塔风速为3.0 m/s,预处理循环和吸收循环浆液pH值分别为4.8-5.0和5.9-6.1,L/G均为20 L/m3,SO_2浓度为1000mg/m3。在最优试验方案条件运行,脱硫效率为98.2%,石灰石利用率为95.2%, Ca/S为1.03。当预处理循环浆液pH值低至4.0、吸收循环浆液pH值在5.4-5.6时,吸收段内壁易出现软垢。当上、下循环浆液pH值均为7.0时,塔内出现大量硬垢。冷态脱硫性能试验表明:双循环多级水幕反应器在进口SO_2浓度为1000-5000 mg/m3时,脱硫效率高于91.3%;不仅为低浓度SO_2治理提供有效的技术支持,而且突破了常规脱硫技术难以处理高浓度SO_2的限制。
     添加剂强化脱硫试验结果表明,添加剂的加入改善了浆液条件,促进了石灰石的溶解,有效提高了石灰石利用率和脱硫效率,防止塔内结垢,确保脱硫系统运行的稳定性。己二酸和MgSO4组合的复合添加剂强化脱硫试验结果证明二者间存在协同效应,脱硫效率和石灰石利用率比空白试验、MgSO_4强化和己二酸强化分别高出19.6%、14.32%、8.11%和11%、8%、5%。
     热湿交换性能试验结果表明,循环浆液温度变化对出口烟气状态的影响大于进口烟气本身的影响;上段循环浆液对烟温、湿度的影响程度要大于下段循环浆液的影响。运用Matlab优化工具箱中的lsqnonlin函数,建立进口烟气状态和工艺参数与出口烟气温度和湿度之间关系的热湿交换数学模型,该模型客观反映了脱硫塔下段进出口烟气状态间的关系,不仅可预测进口烟气温度和湿度的变化对脱硫系统和出口烟气状态的影响,而且可有效调控脱硫反应器的运行。
     通过正交试验和综合平衡法分析,得出热态烟气条件的最优试验方案,即空塔风速3.0m/s,入塔烟温为105℃,预处理循环和吸收循环浆液pH值和L/G分别为4.5、6.0和18 L/m3、15 L/m~3。最优试验方案运行对应的脱硫效率达到88.3%,石灰石利用率为82.2%,钙硫比Ca/S=1.07。当预处理循环浆液pH值为6.0时,反应器入口处极易结垢。L/G对脱硫效率的影响试验表明,吸收循环浆液L/G对脱硫效率的影响要远大于预处理循环浆液L/G的影响。
     本文利用Eviews软件建立脱硫效率与6种运行参数之间关系的数学模型: 426.44T/Y2-2778.24/Y=4.69V+0.45LGD+0.87LGU+2.67PHD+4.57PHU-100
     该模型的各项评价指标值均处于精确水平,预测值均值和实际值均值无显著差异。模型的建立有助于从理论角度理解反应器脱硫性能,指导反应器工艺运行参数的调整。
     该论文有图54幅,表13个,参考文献146篇。
With the fast developing of economy and continued increasing consumption of coal, wet flue gas desulfurization (WFGD) acts an important role in large-scale coal-fired boilers’SO_2 emission reduction as a mainly used flue gas desulfurization (FGD) technic, while the medium to small scale coal-fired boilers’flue gas desulfurization situation are unoptimistic and total SO_2 emission amount can not be belittled because of the boilers’load changing frequently, easy scaling and corrode, and lower desulfurization efficicency of integrative devices for dust removal and desulphurization. Through the modification of the WFGD technology or developing the new style desulfurzation reactor, improving the flow field and contacting mass transfer process between gas and liquid, increasing desulfurization efficicency, this paper provide the technological support for medium to small scale coal-fired boilers.
     The designing of double circulation and multi-stage water film tower in this paper bases on the calcium based desulfuration reaction dynamics, uses double circulation model and pH piecewise control, multi-stage water film produced by double cone and stream guidance weir substitited for the muti-layer sprayers inside the spray tower. In order to achieve the structural parameters of the combination of double cone and stream guidance weir which have the optimum flow field and contacting mass transfer inside the tower, three flow field simulation softwares: Autocad, Gambit and Fluent are used to orthogonal simulate and optimize the components inside the tower in this paper. The reactor uses double circulation running mode, the lower slurry pH was adopted of lower part of reactor in favor of the calcium carbonate’s solubility, while the higher slurry pH was adopted of the upper part of reactor in favor of the absorption of sulfur dioxide. The reactor designed coordinated the contradictory between the limestone utilization and desulfurization efficiency. The designed tower has the advantages of running stabilization, high desulfurization efficiency, none scaling and corrosion.
     Through the orthogonal experiment and analysis of integrated equilibrium method, the experiment achieved the most favorable running parameters of room temperature state, the gas speed of empty tower is 3.0 m/s, the slurry pH of pretreatment circulation and absorption circulation are 4.8-5.0 and 5.9-6.1 respectively, the liquid versus gas ratio (L/G) of pretreatment circulation and absorption circulation are both 20 L/m~3. The desulfurization efficiency is 98.2%, the limestone utilization is 95.2%, and the calcium versus sulfur ratio (Ca/S) is 1.03 when the system running at the optimized situation. Absorption part of inside the reactor appeared soft scale when the slurry pH of pretreatment circulation and absorption circulation lower to 4.0 and 5.4-5.6 respectively. Large numbers of hard scale were arisen both upper and lower part inside the reactor when the slurry pH of pretreatment circulation and absorption circulation both are 7.0. This paper reached an important conclusion through the cold state desulfurization experiment, that is, the designed double circulation and multi-stage water film tower not only find an effective way to treat low SO_2 concentration, but also breakthrough the restriction of traditional desulfurization tower to treat high SO_2 concentration, outlet SO_2 concentration could still meet the discharge standard when the inlet SO_2 concentration higher than 4500 mg/m3.
     Desulfurization efficiency and stability are improved markedly, the slurry condition that limestone’s solution needed made better, the limestone utilization increased effectively, and scale inside the tower was inhibited when additives are added. The desulfurization efficiency and limestone utilization were uplifted 19.6%, 14.32%, 8.11% and 11%, 8%, 5% when the compound additives added compared with none additives’enhancement, MgSO4 enhancement and adipic acid enhancement. The experimental results show that synergistic effect exists when compound additive of adipic acid and MgSO4 is added. The desulfurization efficiency and limestone utilization were uplifted 19.6%, 14.32%, 8.11% and 11%, 8%, 5% respectively when the compound additives added compared with none additives’enhancement, MgSO4 enhancement and adipic acid enhancement.
     Through the hot-moisture exchanging experiment, the paper grasped the results of outlet flue gas state effected by inlet flue gas temperature, moisture and slurry temperature. The results showed that the outlet flue gas state effected by slurry temperature is greater than effected by inlet flue gas state, the flue gas temperature and moisture effected by slurry of upper part is greater than slurry of lower part. The paper established the mathematical model of lower part using the function of lsqnonlin which belongs to optimization toolbox. The model not only reflects the relationship of inlet and outlet flue gas states, be used to direct the upper part hot and moisture exchange experiment objectively, but also be use to adjusts and controls the desulfurization system’s running effectively.
     Through the orthogonal experiment and analysis of integrated equilibrium method, the experiment achieved the most favorable running parameters of hot state flue gas, the gas speed of empty tower is 3.0 m/s, the inlet flue gas temperature is 105℃,the slurry pH and L/G of pretreatment circulation and absorption circulation are 4.5,6.0 and 18 L/m3, 15 L/m3. When the system running at the optimized parameters, the desulfurization efficiency is 88.3%, the limestone utilization is 82.2%, and the calcium versus sulfur ratio (Ca/S) is 1.07. The inlet of reactor easily appears scale when the slurry pH of pretreatment circulation is 6.0. The influence of slurry L/G to desulfurization efficiency shows that desulfurization efficiency effected by absorption slurry L/G is greater than pretreatment slurry L/G.
     Eviews software was used to establish the mathematical model between the desulfurization efficiency and six running parameters in this paper. The mathematical model contributes to comprehend the reactor’s desulfurization characteristics, instruct the reactor’s actual application and running parameters’adjustment from the angle of theory. The P value, significance, R2 and R 2 value, akaike info criterion, schwarz criterion, and etc. were used to evaluate the model’s significance test, and the paper obtained the optimized model as follows: 426.44T/Y2-2778.24/Y=4.69V+0.45LGD+0.87LGU+2.67PHD+4.57PHU-100
     All the evaluating indicators of the model are lie in accurate level, the forecast precision is high, and there is no difference between the forecast value and test value. The model not only can help to understand the desufurization characteristics of reactor, but also can direct the double circulation and multi-stage water film tower’s application and adjust the running parameters.
引文
[1]肖胜会,黄丽.我国二氧化硫排放情况及控制措施[J].环境.2006(2):177-178
    [2]周欣青.空气中二氧化硫的污染危害及其防治对策[J].沼气与生态.2006(4):16
    [3]王伟加,戴洪财.二氧化硫污染现状及其防治[J].江苏环境科技.2004(12增):29-30
    [4]张新民,柴发合,王淑兰等.中国酸雨研究现状[J].环境科学研究.2010.5,23(5):527-532
    [5]赵志龙.我国酸雨状况及综合防治对策研究[J].矿冶.2007.9,16(3):63-68
    [6]薛剑,李骏,朱骅.我国酸雨污染及镇江市酸雨污染现状分析[J].SCIENCE & TECHNOLOGY INFORMATION.2010(1):1036
    [7]侯青,赵艳霞.2007年中国区域性酸雨的若干特征[J].气候变化研究进展.2009.1,5(1): 7-11
    [8]伍远辉,刘天模,孙成等.酸雨作用下酸性土壤酸化过程中铜的腐蚀行为[J].四川大学学报(工程科学版).2010.1,42(1):119-125
    [9]蔡娈卉,陈新育.对农作物的影响及防御措施[J].现代农业科技.2009(5):197-198
    [10]李芳.酸雨对建筑材料的影响及防治研究综述[J].污染防治技术.2010.2,23(1):67-69
    [11]包华晖.酸雨对户外构筑物的危害及防护措施[J].中国住宅设施.2009(4):40-41
    [12]2006年中国环境状况公报.43-49
    [13]2007年中国环境状况公报.24-27
    [14]2008年中国环境状况公报.30-34
    [15]2009年中国环境状况公报.24-27
    [16]中华人民共和国国民经济和社会发展第十一个五年规划纲要
    [17]荆岩明,张建军,荆岩平.中小型锅炉选择脱硫技术应注意的若干问题探讨[J].工业技术. 2008(5):50-51
    [18]孟志坚,林天立.中小型燃煤工业锅炉湿法烟气脱硫设备存在的问题及对策[J].能源环境保护.2004,18(4):49-50
    [19]宣军传.提高中小型燃煤锅炉热效率的途径[J].有色设备.2008(5):24-26
    [20]张钦海.中小型锅炉及相关产业的发展动向[J].中国品牌与防伪.2008(7):4-5
    [21]张万红,魏斌.中小型燃煤锅炉热损失技术分析[J].青海科技.2009(2):69-71
    [22]吴华广.中小型燃煤锅炉烟气脱硫技术及其选择[J].煤炭科技.2005(4):17-18
    [23]曹文忠.中小型锅炉烟气脱硫的技术探讨[J].山西建筑.2004,30(12):96-97
    [24]李丹,李立清,陈昭宜等.中小型工业锅炉湿式钙法脱硫中结垢堵塞问题研究[J].热力发电.2004(06):31-34
    [25]张杨帆,李定龙,王晋.中小型燃煤锅炉烟气脱硫除尘一体化技术的研究与应用[J].工业安全与环保.2007,33(3):30-32.
    [26]李湘.浅议TL湍流式烟气脱硫除尘器的研制与实践应用[J].新疆环境保护.2008,30 (2):44-46
    [27]周瑞福,李建生,尹宾宾.湍流式除尘脱硫技术的应用[J].工业锅炉.2002(6):32-35
    [28]方芳,莫建松,王凯南.石灰—石膏法旋流板塔脱硫技术及其应用[J].环境污染与防治. 2008,30(12):100-105
    [29]姜阳,孙文寿,朱蕾.旋流板塔煤浆法烟气脱硫研究[J].青岛理工大学学报.2009,30(2): 65-69
    [30]王明基.旋流板—填料塔在烟气治理中应用的探讨[J].广州环境科学.2004, 19(4):16-17
    [31]杜立新.关于改进麻石水膜除尘脱硫技术的探讨[J].北方环境.2010,22(1):43-45
    [32]张旭海,杜红梅,李玉松.简易麻石水膜脱硫除尘装置运行中的问题及改进[J].能源与环境.2006(2):42-44
    [33]王辉.锅炉麻石水膜除尘器的脱硫改造工艺[J].机械工程与自动化.2005(6):83-84
    [34]王光武.工业锅炉麻石水膜脱硫除尘器的安装改造及使用[J].山西科技. 2004(1):71-72
    [35]丁志明.水膜除尘改造为高效湿式脱硫除尘器的实践[J].环境保护,2000(5):18-19
    [36]陈明功,王震.麻石水膜除尘塔的脱硫改造[J].煤矿环境保护.2000,14(5):39-40
    [37]项光明.液柱喷射烟气脱硫研究[D],清华大学,北京,200
    [38]孔华.石灰石湿法烟气脱硫技术的实验和理论研究[D],浙江大学,杭州,2001
    [39] Morse J W .Dissolution kinetics of calcium carbonate in seawaterⅥ:the near equilibrium dissolution kinetics of calcium carbonate rich sea sediments[J]. Am Jour Sci.1978,278 (2):344-353.
    [40] Gage C L, Rochelle G T. Limestone dissolution in flue gas scrubbing: effect of sulfite[J]. Air Waste Manage Asso,1992,42(4):926-933. 41] Ukawa N, Takashina T, Shinoda N. Effects of Particle Size Distribution on Limestone Dissolution in Wet FGD Process Applications [J]. Environmental Progress, 1993,12(3): 238-242.
    [42] Ahlbeck J,Engman T, Falten S,et al. A method for Measuring the Reactivity of Absorbents for Wet Flue Gas Desulfurization [J]. Chem Eng Sci,1993,48(20):3479 -3484.
    [43] Brogren C,Karlsson H T. A Model for Prediction of Limestone Dissolution in Wet Flue Gas Desulphurization Applications [J].Ind Eng Chem Res,1997(36):3889-3997.
    [44]钟秦,刘爱民.湿法烟气脱硫中石灰石溶解特性[J].南京理工大学学报,2000, 24(6):561-569
    [45].Mehra A. Gas absorption into reactive slurries: particle dissolution near gas-liquid interface[J]. Chemical Engineering Science, 1996,51(3):461-477.
    [46]Uchida S.,Koide K.and Shindo M. Gas absorption with fast reaction into a slurry containing fine partieles [J]. Chemical Engineering Science, 1975, 30(6):644-646.
    [47]Romachandran P.A.and Shanna M.M. Absorption with the fast reaction in a slurry containing sparingly soluble fine Partieles [J]. Chemical Engineering Science,1969, 24(11):1681-1686.
    [48] Bjerle I.,Bengtsson S.and Farnkvist K. Absorption of SO2 in CaCO3 slurry in a laminar jet absorber [J]. Chemical Engineering Seience,1972,27(10):1853-1861.
    [49]Sada E.,Kumazawa H.and Butt M.H. Single and simultaneous absorption of lean S02 and NO2 into aqueous slurry of Ca(OH)2 and Mg(OH)2 particles [J]. Journal of Chemical Engineering of Japan, 1977,12(2):111-117.
    [50]Sada E.,Kumazawa H.,Sawada Y.and Hashizurne I. Kinetics of absorptions of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide [J]. Chemical Engineering Science, 1981,36(l):149-155.
    [51]Sada E.,Kumazawa H.,Hashizume I. and Kamishima M. Desulfurization by limestone slurry with added magnesium sulfate [J]. Chemical Engineering Joumal, 1981, 22:133-141.
    [52]Sada E.,Kumazawa H.,Hashizume I. and Nishimura H. Absorption of dilute S02 into aqueous slurries of CaSO3 [J]. Chemical Engineering Science, 1982, 37(9):1432-1435.
    [53] Lancia A,Musmarra D,Pepe F. Modeling of SO2 Absorption into Limestone Suspensions [J]. Ind Eng Chem Res, 1997, 36:197-203.
    [54]Uehida S.,Wen C.Y.. Rate of gas absorption into a slurry accompanied by instantaneous reaction [J]. Chemical Engineering Science, 1977, 32:1277-1281.
    [55]Sada,E.Kumazawa H.,Butt M.A. Single gas absorption with reaction in a slurry containing fine Particles [J]. Chemical Engineering Science, 1977, 32:1165-1170.
    [56]Rochelle G.T. and King C.J. The effect of additives on mass transfer in CaC03 or CaO slurry scrubbing of S02 form waste gases [J]. Industrial & Engineering Chemistry Fundamentals, 1977, 16:67-75.
    [57]Sada E., Kumazawa H.,Butt M.A. Absorption of sulfur dioxide in aqueous slurries of sparingly soluble fine Particles [J]. The Chemical Engineering Journal, 1980, 19(2):131-138.
    [58]Sada E., Kumazawa H., Hashizume. Further consideration on chemical absorption mechanism by aqueous slurries of sparingly soluble fine particles [J]. Chmical Engineering Science, 1981, 36(4):639-642.
    [59] M. Matsukata, K. Takeda, T. Miyatani and etc. Simultaneous of chlorination and sulfurization of calcined limestone [J]. Chemical Engineering Science, 1996, 5(1):2529--2534.
    [60]Takeda T., et al. A Paper submitted to the 12th Fall Meeting of the Society of ChemicalEngineering of Japan [A], Nagoya, 1976.
    [61]Brogren C. and Karlsson H.T. Modeling the absorption of S02 in a spray scrubber using the penetration theory [J]. Chemical Engineering Seience,1997,52(18):3085-3099.
    [62]Gage C.L. and Rochelle G.T. Modeling of S02 removal in slurry scrubbing as a function of limestone type and grind [J]. The 1993 S02 Contro1 Symposium,1993.
    [63]周至祥.介绍2种湿式FGD强制氧化方法.电力环境保护,2002,18(3):52-54.
    [64] Ramadhandhan P A, Sharma M M. Absorption with fast chemical reaction in a slurry containing sparingly soluble fine particle [J]. Chem Eng Sci, 1969, 24:1681-1689.
    [65] Sada E , Kumazawa H, Sawada Y, Hashizume I. Kinetics of absorption of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide [J]. Chem Eng Sci,1981,63:778-783.
    [66] Asiuk-Bronikowska W, Rudzinski K J. Absorption of SO2 into aqueous systems [J]. Chem Eng Sci, 1985,46:2281-2291.
    [67] Yagi H, Hikita H. Gas absorption into a slurry accompanied by chemical reaction with solute from sparing soluble particles [J]. Chem Eng J, 1987, 36:69-174.
    [68] Gerbec M, Stergarek A, Kocjani R. Simulation model of wet flue gas desulphurization plant [J]. Computers Chem Eng, 1995, 19:S283-S286.
    [69] Binlin Dou, Weiguo Pan, Qiang Jin. Prediction of SO2 removal efficiency for wet Flue Gas Desulfurization [A]. Energy Conversion and Management 50 (2009) 2547–2553
    [70] Dirk E, Luckas M.. A Heat and Mass Transfer Model for Simulation of the Wet Limestone Flue Gas Scrubbing Process [J]. Chem Eng Technol, 1998, 21:56-60.
    [71]钟秦.湿法烟气脱硫的理论和试验研究(I)——湿壁塔脱硫反应系统及操作特性[J].南京理工大学学报, 1998, 26 (2):517-525.
    [72] Noblett JG, Hebets MJ, Moser RE. EPRI’s FGD Process Model (FGDPRISM) [A]. EPA/EPRI Symposium on FGD, New orleans,1990.
    [73] Olausson S, Wallin M, Bjerle I. A model for the absorption of sulphur dioxide absorption into a lime slurry [J]. Chem Eng J., 1993(51):99-108.
    [74] A. Irabien, F. Cortabitarte, M.I. Ortiz. Kinetics of flue gas desulfurization at low temperatures: nonideal surface adsorption model [J]. Chemical Engineering Science.1992, 47(7): 1533-1543
    [75] Eden D, Luckas M. A heat and mass transfer model for simulation off flue gas treatment by the 1imestone scrubbing process [J]. Chem Eng Tech, 1998, 70(12):160-164.
    [76] Brogren C, Karlsson HT. Modeling the absorption of S02 in a spray scrubber using the penetration theory [J]. Chem Eng Sci, 1997, 50(18):3085-3099.
    [77] Oosterhoff AT. Modeling and simulation of a flue gas desulphurization installation [J].Journal A, 1990:31(2).
    [78] Waryeh J, Szymanowski M. Model of the wet limestone flue gas desulfurization process for cost optimization [J]. Ind Eng Chem Res, 2001(40):2597-2605.
    [79] Waryeh J, Szymanowski M. Optimum values of process parameters of the wet 1imestone flue gas desulfurization system [J]. Chem Eng Tech, 2002, 25(4):427-432.
    [80]钟秦.湿法烟气脱硫的理论和试验研究((II)—湿壁塔烟气脱硫数学模型[J].南京理工大学学报, 1999, 23(1):1- 5.
    [81]钟秦.湿法烟气脱硫的理论和试验研究—工艺试验和脱硫模型的验证[J].南京理工大学学报, 1999, 23(2): 157-161.
    [82]Kill S., Michelsen M.L.and Johansen K.D. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant [J]. Industrial & Engineering Chemistry Research, 1998, 37: 2792-2806.
    [83] Kiil S, Miehelsen ML,Dam-Johansen K. Experimental and theoretical investigations of wet flue gas desulphurization pilot plant [J]. Ind Eng Chem Res, 1998, 37(7):2792-2806.
    [84] Kill S, Nygaard H, Johnsson JE. Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desu1puurization pilot plant [J]. Chem Eng Sci, 2002, 57(3): 347-354.
    [85] Kill S. Experimental and theoretical investigations of wet flue gas desu1phurisation, PHD Thesis. Lyngby, Denmark, Technical University of Denmark, 1998.
    [86] Frandsen JB, Kill S, Johnsson JE. Optimation of a wet FGD pilot plant using fine limestone and organic acids [J]. Chem Eng Sci, 2001, 56(10):3275-3287.
    [87] F. C.里森费尔德等(沈余生等译).气体净化[M].中国建筑工业出版社,1982.
    [88] Rochelle G T, King C J. The Effect of Additives on Mass Transfer in CaCO3 or CaO Slurry Scrubbing of SO2 from Waste Gases [J]. Ind Eng Chem Fund, 1977, 16(1):67-75.
    [89] Ukawa N, Okino S. Effect of Salts Limestone Dissolution Rate in Wet Limestone Flue Gas Desulfurization [J]. Journal of Chemical Engineering of Japan, 1993, 26(1):112-113.
    [90] Ukawa N, Takashina T. Effects of Salts on Limestone Dissolution Rate in Wet Limestone Flue Gas Desulfurization [J]. Environmental Progress, 1993,12(4):294-299.
    [91]孙文寿,吴忠标,谭天恩.旋流板塔镁强化石灰脱硫过程研究[J].环境科学, 2001, 22 (3): 104-107.
    [92]李玉平,谭天恩,景国红.无机盐对SO2-H2O-CaCO3气、液、固三相反应系统pH的影响[J].环境污染预防治, 1997, 19 (5):1-5.
    [93] Kiil S, Nygard H, Jan E. Johnsson. Simulation studies of the influence of HCl absorption on the performance of a wet flue gas desulphurization pilot plant [J]. Chemical and EngineeringScience. 2002 ,57:347-354.
    [94]奚胜兰.石灰石湿法烟气脱硫添加剂的实验研究[J].能源环境保护, 2003, 17 (l):32-35.
    [95] Brogren C, Karlsson H T. A Model for Prediction of Limestone Dissolution in Wet Flue Gas Desulphurization Applications [J]. Ind Eng Chem Res, 1997, 36:3889-3997.
    [96] Mobley J D .Organic Acids Can Enhance Wet Limestone Flue Gas Scrubbing [J]. Power Engineering, 1986, 5:32-35.
    [97] Chang C S,Rochelle G T. Effect of Organic Acids Additives on SO2 Absorption into CaO/CaCO3 Slurries [J]. ARICHE Journal, 1982, 28(2):261-266.
    [98] Dickenman J C, et al. Prepared for Presented on the Eight FGD Symposium [J]. Journal of the Air Pollution Control Association, 1983,11:1-4.
    [99] Charles A. The Conemaugh Station Phase I Compliance Using Wet Scrubbers. EPPI, SO2 Control Symposium, Book 2, Session 4A, 1995.
    [100] Frandsen W, Kiil H. Optimization of a wet FGD pilot plant using fine limestone and organic acids [J]. Chemical and Engineering Science, 2001, 51:3275-3287.
    [101] Chang J C S,et al. Testing and commercialization of byproduct dibasic acids as buffer additives for limestone flue gas desulfurization systems [J]. Journal of the Air Pollution Control Association, 1983, 3(10):955-962.
    [102] Chang J C S, et al. Pilot Testing of Sodium sulfate [J]. Environment Progress,1986,5(4):225-233
    [103] Mobley J D,Cassidy M A .Organic Acids Can Enhance Wet Limestone Flue Gas Scrubbering [J]. Power Engineering, 1986, 90(5):32-35.
    [104] David G S, Katzberger S M. Options Are Increasing for Reducing Emission of SO2 [J]. Power Engineering, 1988, 92(12):30-33.
    [105] David W, Hendry J G,Weis R L. Ray. Scrubbing Upgrade Achieve 95% Removal Efficiency [J]. Power Engineering, 1991, 95(3):25-28.
    [106]吴忠标,谭天恩.石灰/石灰石湿法脱硫中添加剂的研究[J].中国环境科学,1995, 15(6):438-442.
    [107]孙文寿.添加剂强化石灰石/石灰湿式烟气脱硫研究[D].浙江大学,杭州, 2001
    [108]孙文寿,吴忠标,谭天恩.烟气脱硫过程中添加剂对石灰石的促溶作用[J].中国环境科学, 2002, 22(4):305 -308.
    [109]石法恩,李振坦.石灰湿式烟气脱硫中复合添加剂的研究[J].四川有色金属, 2003,18(3):27-29.
    [110]王晋刚,胡金榜,段振军,陈之强.复合添加剂在两种烟气脱硫中脱硫工艺中的应用[J].热能动力工程,2006,1(1):93-95.
    [111]温正,石良辰FLUENT流体计算应用教程清华大学出版社2009.1
    [112]王瑞金,张凯,王刚.Fluent技术基础与应用实例[M].清华大学出版社, 2007.2
    [113]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社, 2004.6
    [114]李进良,李承曦.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.10
    [115]王银春.AutoCAD实用教程[M].北京:北京理工大学出版社,2005.7
    [116]乔爱科.机械CAD软件开发应用技术教程[M].北京:机械工业出版社,2008.7
    [117]李吉祥.AutoCAD 2008应用教程[M].北京:北京师范大学出版社,2009.2
    [118]杜群贵,刘胜,黄晓东.闭曲面有限元网格生成的边界预调整方法[J].华南理工大学学报(自然科学版).2007,35(2):27-32
    [119]张军,谭俊杰,褚江.一种新的非结构动网格的生成方法[J].南京航空航天大学学报.2007,39(5):633-636
    [120]姚彦忠,王瑞利,袁光伟.复杂区域上的一种结构网格生成方法[J].计算物理. 2007, 24(6):647-654
    [121]刘小平,张敏,刘晶.商用软件GAMBIT的解析和应用[J].南京工业大学学报(自然科学版).2008,30(1):101-104
    [122]李思民.新型湿法除尘脱硫斜板塔的数值模拟[D].湖南大学,湖南,2007.4
    [123]陈景仁.湍流模型及有限分析法[M].上海:上海交通大学出版社,1989
    [124]黄宏艳,王强.过膨胀状态下轴对称收一扩喷管内外流场计算及分析[J].航空动力学报.2007,22(7):1069-1073.
    [125] Launder B E, Spalding D B. The numerical computation of turbulent flow [J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3:269-289.
    [126] Kader B. Temperature and concentration profiles in fully turbulent boundary layers [J]. Journal of Heat Mass Transfer. 1981, 24(9):1541-1544.
    [127]White F, Christoph G. A Simple New Analysis of Compressible turbulent skin friction under arbitrary condition [R]. February 1971, Technical Report AFFDL-TR-70-133.
    [128]齐恩伍,蒋丹,刘斌.前处理软件GAMBIT参数化建模功能增强的研究[J].东华大学学报(自然科学版).2008,34(3):341-343
    [129] D.S.Henzel. Handbook of FGD Scrubbing with Limestone [M], Noyes Data Corp., New Jersery,U.S.A,1982
    [130]王丽丽.添加剂强化石灰石湿法烟气脱硫试验研究[D].徐州:中国矿业大学,2009
    [131]李玉平,谭天恩,景国红.无机盐对SO2-H2O-CaCO3气、液、固三相反应系统pH值的影响[J].环境污染与防治, 1997, 19(5):1-5.
    [132]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2002:38-92.
    [133] Nannen L W, West R E, Kreith F. Removal of SO2 from Sulfur Coal Combustion Gases by Limestone Scrubbing [J]. Journal of Pollution Air Control Association 1974, 24(1):29-39.
    [134] Prasad D S N, Rani A, Sharma M, et al. Rates of Autoxidation of Sulphur in Aqueous Suspensions of Limestone Powder: Implications for Scrubber Chemistry [J]. Indian Journal of Chemical Technology, 1994, 1:87-92.
    [135] Uchida S,Ariga O. Absorption of Sulfur Dioxide into Limestone Slurry in a Stirred Tank [J]. The Canadian Journal of Chemical Engineering, 1985, 63:778-783
    [136] Morse J W. Dissolution kinetics of calcium carbonate in seawaterⅥ:the near equilibrium dissolution kinetics of calcium carbonate rich sea sediments [J]. Am Jour Sci, 1978, 278 (2):344-353
    [137] Nannen L W,West R E,Kreith F. Removal of SO2 from Sulfur Coal Combustion Gases by Limestone Scrubbing [J]. Journal of Pollution Air Control Association, 1974, 24(1):29-39.
    [138] Reid R C, Prausnitz J M, Poling B E. The Properties of Gases and Liquids, 4th Ed. [M]. New York: McGraw-Hill Book Company, 1977.
    [139]张云峰.影响火电机组用湿式石灰石-石膏系统(WFGD)脱硫性能的研究[A].第十届全国燃煤二氧化硫、氮氧化物污染治理技术暨烟气脱硫脱氮工程建设和运行管理交流会论文集,2007.1
    [140]张红蓉.湿法脱硫立式圆形吸收塔内过程的数值模拟[D].华北电力大学(北京),2002.4.
    [141] Meikap B C, Kundu G, Biswas M N. Modeling of an novel multistage bubble column scrubber for flue gas desulfurization[J].Chem. Eng. Journal,2002,86(3):331-342.
    [142]贺超英. MATLAB应用与实验教程[M].电子工业出版社, 2010.1
    [143]张晓峒. EVIEWS使用指南与案例[M].北京:机械工业出版社. 2007.2
    [144]易丹辉.数据分析与EVIEWS应用[M].北京:中国统计出版社. 2002.10
    [145]张大维. Eviews数据统计与分析教程(第1版) [M].北京:清华大学出版社. 2010.6 2006.09
    [146]易丹辉.数据分析与EViews应用(数据分析系列教材)[M].北京:中国人民大学出版社. 2008.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700