用户名: 密码: 验证码:
脱硫粉煤灰元素释放动力学特征与风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粉煤灰是燃煤电厂的副产物,为了控制SO2的排放,大部分电厂均实行了脱硫技术;但硫等元素被固化在粉煤灰中并排放在贮灰场后,在堆放甚至利用过程中,仍再次释放到环境中,造成环境风险。本文依托Europe-Asia Link项目,以徐州地区主要的燃煤电厂的脱硫粉煤灰为研究对象,充分利用扫描电子显微镜/能量色散仪、X射线衍射仪、电感耦合等离子质谱仪等现代分析测试技术,全面地研究了脱硫灰渣的理化性质、释放规律和环境风险;为了减少粉煤灰中硫等元素再次释放的风险,进行稳定化试验研究,建立了稳定化动力学模型。
     研究工作与成果如下:
     (1)各电厂脱硫粉煤灰粒径分布总体上相似,以煤粉炉燃煤的电厂形成的粉煤灰颗粒粒径较均匀,以循环流化床锅炉燃煤的电厂形成的粉煤灰颗粒粒径差异较大;微观形态上,煤粉炉高温燃烧产生的粉煤灰,主要以规则的圆球形、表面附着晶体的球形颗粒、多孔的球形颗粒和不呈规则圆球形的颗粒四种形态存在,而煤粉在循环流化床锅炉内属中温燃烧,产生的粉煤灰多为不规则颗粒。由于脱硫工艺的影响,循环流化床粉煤灰中可以见到脱硫产物,主要为石膏晶体。所有的脱硫粉煤灰样品中均含有一定量的不同燃烧程度的残碳,残碳呈网状、层状、球状等多种外形。
     (2)各电厂灰渣中主要的结晶矿物有石英、莫来石,另外还含有一些伊利石、长石、方解石、石膏、赤铁矿等矿物。硅、铝和铁的氧化物是构成燃煤灰渣的主要化学成分,含量超过80%。灰渣中含有多种微量元素,它们在不同电厂产生的灰渣中的含量具有明显的差异性,多数元素在粉煤灰中的含量高于底渣中的含量,元素在粉煤灰中具有富集的趋势。
     (3)燃煤电厂脱硫粉煤灰的颗粒物排放因子比较接近,研究结果表明使用煤粉炉的燃煤电厂产生的粉煤灰的颗粒物排放因子较使用循环流化床锅炉的电厂要高;同时研究的脱硫粉煤灰中10种元素的排放因子,以Mn元素的排放因子最大,Cd元素的排放因子最小;建立了在已知煤中元素含量、灰分和相应的颗粒物排放因子的情况下相应元素排放因子的函数关系:,指数b的取值范围分别是:煤粉炉为0.26-1.51,循环流化床锅炉为0.23-1.52。
     (4)利用Meij提出的相对富集因子()揭示了反应不同元素在脱硫粉煤灰上的富集特征,并根据其数值大小确定元素挥发性的难易程度:相对富集因子数值大的元素挥发性较差,相对富集因子数值小的元素属于易挥发性元素。采用质量平衡法获得了燃烧产物中各元素在粉煤灰、底渣和烟气中的分配比例,大部分元素燃烧后主要以脱硫粉煤灰和底渣的形式存在,但是部分元素(如V和Cu)在烟气中所占的比例较大。
     (5)为了揭示脱硫粉煤灰中元素的释放特征,进行了静态浸出实验和动态淋滤实验。在两种释放实验中,都以Mo元素的释放浓度为最高,Hg和Mn元素最低。各元素的释放特征有一定的差异,动态淋滤实验更接近粉煤灰自然状态下接触降水或其他液体的情况,其释放规律更具有参考价值。释放实验后脱硫粉煤灰的微观形态和矿物组成都发生了一定的改变,颗粒粒径在一定程度上有所变小,球形颗粒表面多发现粘连晶体或者出现小孔,部分样品中方解石含量有所增加。
     (6)对动态淋滤实验相关元素的累积含量进行非线性回归拟合,得到元素的释放动力学方程:,其中d是与脱硫粉煤灰样品表面积、体积、其中某一元素含量和淋出液体积有关的一个常数。经过验证,该方程可以很好的模拟粉煤灰中元素向水体释放的动力学过程。
     (7)脱硫粉煤灰浸出毒性评价确定了采样电厂粉煤灰并不是具有浸出毒性的危险废物,但是对通过食入、皮肤接触和吸入三种暴露途径进入人体的粉煤灰进行健康风险评价表明,华美和徐塘两家电厂都存在潜在的风险危害,所以在粉煤灰的再利用之前需要做相应的处理,以降低粉煤灰对环境和人体健康的危害作用。
     (8)为了减少粉煤灰中元素再次释放的风险,进行了稳定化实验,建立了元素在稳定化实验过程中的动力学方程:′,其中[X]是溶液中元素浓度,′是反应速率常数,SP是脱硫粉煤灰比表面积,m是脱硫粉煤灰质量,t是反应时间,f表示反应的最终状态。
Fly ash is the byproducts of the coal-fired power plants. And most power plantsutilize the desulfurization technology that aimed to control the SO_2emission. Butthese elements will be released to the environment and lead to environmental risk inthe process of fly ash piled and recycled when they are stabilized in the fly ash.Supported by Europe-Asia Link project, the fly ash were collected from somecoal-fired plants in Xuzhou city and analyzed by SEM/EDS, XRD, ICP-MS and someother modern analytical techniques in my research. The physicochemical properties ofthe fly ash, releasing characteristics and environmental risk assessment were studiedin this dissertation, and in order to reduce the re-release risk of the sulfur and otherelements in the fly ash, the stabilization experiments were did and a stable dynamicmodel was established.
     The main results were showed as follows:
     (1)The particle size distributions of all desulfurized fly ash samples fromdifferent types of power plants were similar. On the particles morphology, fly ashfrom pulverized coal fired boiler mainly consisted of spherical particles, includingregular spherical particles, spherical particles which surface attached with crystals orhad pores, and irregular spherical particles; while the fly ash from circulatingfluidized bed were more irregular particles. Influenced by desulfurized technology,gypsum could be detected in the fly ash from circulating fluidized bed. Some kinds ofresidual carbons in different burning degree like meshy, laminar and sphericalmorphology were included in all the fly ash samples.
     (2)Quartz and mullite were the main crystalline phase, and other crystallinephases like illite, feldspar, calcspar, gypsum and hematite could also be seen in the ash.The oxides of silicon, aluminum and iron were the main chemical compositions of theash, and their content was more than80%. Trace elements were also included in theash. The content of trace elements had significant differences in different power plantsash, and the content in the fly ash were higher than those in the bottom ash in thesame plant. Elements easily enriched in fly ash.
     (3)The emission factor of the fly ash particles were close for these power plants,but the factors of the plants used pulverized coal fired boiler were higher than thoseused circulating fluidized bed. Elements emission factor were also studied for10elements, Mn had the highest factor, while Cd had the lowest factor. Established the function of the elements emission factor when the elements content in coal, coal ashand particles emission factor were known. The function was:, indexb values ranged from0.26-1.51and0.23-1.52for pulverized coal fired boiler andcirculating fluidized bed respectively.
     (4)Relative Enrichment Factor proposed by Meij was used toreflect the enrichment behavior of the different elements in particles. And the volatileof the elements could be confirmed according to the REF values. The REF valueswere high, the volatile of the elements were poor; the REF values were low, theelements more easily to be volatilized. The proportion of the elements in fly ash,bottom ash and flue gas were obtained by the mass balance method. Most elementsexisted in fly ash and bottom ash; but still had some elements in the flue gas with alarge proportion, such as V and Cu.
     (5)Batch leaching test and column leaching test were done that in order toexplain the releasing behavior of the elements in fly ash. In the two leaching tests, Moelement concentration was the highest in the two different samples, Hg and Mnconcentrations were lower in the leachates. The two kinds of releasing tests haddifferent effect on the elemental leaching behavior, column leaching test was closer tothe fly ash contact with the rain or the other liquid in natural state, its releasingbehavior had the reference value. The fly ash before and after the test were different inmicrostructure and mineral composition. Particle size became smaller, the surface ofthe spherical particles adhered crystal or had more pores, the content of calcsparincreased in some samples.
     (6)Carrying on the nonlinear regression fitting the cumulative contents of theelements in column leaching test, and set up the releasing model of the elements:, and β was a constant related to the surface of particles, volume,contents of elements and the volume of leachate. This equation described the releasingprocess of the elements from fly ash to water.
     (7)Leaching toxicity assessment confirmed that the fly ash were not thehazardous wastes from the two different plants. But the health risk assessment mainlyestimated the risk caused by ingestion, dermal contact and inhalation, the resultsshowed that the fly ash from two plants were harmful to the workers. So the fly ashmust be disposed before the utilization.
     (8) Stabilization experiment was designed to reduce the releasing risk of the elements from the fly ash to the environment. And in my work, the kinetic model ofthe elements in the stabilization experiment was set up. The model was:. In the equation,[X] was the elementsconcentration in the liquids, k’ was the reaction rate constant, SPwas the specificsurface area, m was the fly ash mass; t was the time, f represented the final reactionstatus.
引文
[1]2010年中国煤炭行业研究报告.北京君略产业研究院.
    [2]杨爱伦,江雍年,赵星敏等.2010煤炭的真实成本——粉煤灰调查报告.绿色和平组织.
    [3]黄晓军.粉煤灰的环境危害与新技术利用[J].广东化工,2007,34(5):77-79.
    [4]唐福军,毕红梅,高金玲.煤灰的资源化利用与研究现状[J].黑龙江八一农垦大学学报,2006,18(6):76-79.
    [5]陈孟伯,陈舸.煤矿区粉煤灰的差异及利用[J].煤炭科学技术,2006,34(7):72-76.
    [6]杨旭中.燃煤电厂脱硫装置[M].北京:中国电力出版社,2006:8-19.
    [7]张秀云,郑继成.国内外烟气脱硫技术综述[J].电站系统工程2010,4:1-2.
    [8]李彪,沙杰.煤炭燃前脱硫方法及其应用现状[J].矿山机械2010,20:9-11.
    [9]戴建虹,苏文新,于春恩.燃煤锅炉脱硫技术分析及应用[J].内蒙古电力技术,2003,23(5):58-60.
    [10]孙海龙.西水自备电厂锅炉烟气脱硫技术的选择和应用[J].能源研究与信息.2009,(3):138-142.
    [11]刘岩,王卫兵,李鹏.基于DCS的循环流化床炉内喷钙脱硫控制系统的设计与实现[J].哈尔滨理工大学学报,2009,(5):56-59.
    [12]张焕江,钟祚群,徐复成等.喷钙脱硫技术在中小型循环流化床锅炉上的应用[J].电站系统工程.2008,(2):53-54.
    [13] Hiroyuki Akiho, Shigeo Ito, Hiromitsu Matsuda. Effect of oxidizing agents on selenateformation in a wet FGD[J]. Fuel,2010,89(9):2490-2495.
    [14] F.J. Gutiérrez Ortiz. A simple realistic modeling of full-scale wet limestone FGD units[J].Chemical Engineering Journal,2010,165(2):426-439.
    [15]郝宇,肖成.循环流化床锅炉脱硫性能设计及试验研究[J].环境工程,2010, S1:167-169.
    [16]于树辉.循环流化床锅炉炉内添加石灰石脱硫的研究[J].电力科技与环保,2010,1:45-48.
    [17]吴忠标,刘越,盛重义等.氨法烟气脱硫工艺实验研究[J].环境科学与技术.2010,2:135-137.
    [18] Yong Jia, Qin Zhong, Xueyou Fan, et al. Kinetics of oxidation of total sulfite in theammonia-based wet flue gas desulfurization process[J]. Chemical Engineering Journal,2010,164(1):132-138.
    [19]李若萍.循环流化床干法烟气脱硫技术的应用[J].江西电力2009,1:32-34.
    [20]张芸,兰新哲,宋永辉.活性半焦(兰炭)烟气脱硫的研究进展[J].煤炭燃烧,2008,14(1):65-69.
    [21]王雪芹,吕宝航,刘江玲.干法烟气脱硫技术研究现状及进展[J].天津化工,2008,22(6):4-7.
    [22]李忠华,薛建明,王小明等.循环流化床烟气脱硫技术分析及工程应用[J].电力科技与环保,2010,2:50-52.
    [23] Yi Zhong, Xiang Gao, Wang Huo, et al. A model for performance optimization of wet fluegas desulfurization systems of power plants[J]. Fuel Processing Technology,2008,89(11):1025-1032.
    [24]高晓燕,张惠娟,韩玉霞.湿法烟气脱硫技术及其应用[J].能源研究与利用,2008,3:43-45.
    [25]张大全,刘丽佳,辛志玲等.氧化镁湿法烟气脱硫结垢性能的研究[J].电力环境保护,2007,23(6):20-22.
    [26]张永,葛介龙,李文勇等.半干法烟气脱硫中SO2排放控制研究[J].电力科技与环保,2010,2:29-30.
    [27] Yuegui Zhou, Xian Zhu, Jun Peng, et al. The effect of hydrogen peroxide solution on SO2removal in the semidry flue gas desulfurization process[J]. Journal of Hazardous Materials,2009,170(1):436-442.
    [28]郭斌,卞京凤,任爱玲等.烧结烟气半干法脱硫灰理化特性[J].中南大学学报(自然科学版).2010,1:387-392.
    [29]李少辉,赵澜,包先成等.粉煤灰的特性及其资源化综合利用[J].混凝土,2010,4:76-78.
    [30] R. P yki, H. R nkk m ki, H. Nurmesniemi, et al. Chemical and physical properties ofcyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipaldistrict heating plant (6MW)[J]. Journal of Hazardous Materials,2009,162(2-3):1059-1064.
    [31] Devi Prasad Mishra, Samir Kumar Das. A study of physico-chemical and mineralogicalproperties of Talcher coal fly ash for stowing in underground coal mines[J]. MaterialsCharacterization,2010,61(11):1252-1259.
    [32] S.B. Mishra, S.P. Langwenya, B.B. Mamba, et al. Study on surface morphology andphysicochemical properties of raw and activated South African coal and coal fly ash[J].Physics and Chemistry of the Earth, Parts A/B/C,2010,35(13-14):811-814.
    [33]何宏舟,过伟丽.循环流化床锅炉炉内脱硫灰渣的水化特性研究[J].煤炭转化,2010,3:72-75.
    [34]金婷,朱廷钰,叶猛等.循环流化床烧结烟气脱硫灰理化性能研究[J].北京化工大学学报(自然科学版),2010,6:35-40.
    [35] Ioanna Kourti, Christopher R. Cheeseman. Properties and microstructure of lightweightaggregate produced from lignite coal fly ash and recycled glass[J]. Conservation andRecycling,2010,54(11):769-775.
    [36] F. Goodarzi. Morphology and chemistry of the particles emitted from a Canadian coal-firedpower plant[J]. Fuel,2006,(85):273-280.
    [37] Osvalda Senneca. Burning and physicochemical characteristics of carbon in ash from a coalfired power plant[J]. Fuel,2007,87(7):1207-1216.
    [38] A. Sarkara, Ruma Rano, K.K. Mishra. Particle size distribution profile of some Indian flyash-a comparative study to assess their possible uses[J]. Fuel Processing Technology2005,(86):1221-1238.
    [39] Sligar NJ. Enhanced flue gas control using fabric flters[J]. Paper in coal in the environment.World coal institute conferece, London,3–5April;1991.9.
    [40] Clarke LB. In: Swaine DJ, Goodarzi F, editors. Environmental aspects of trace elements incoal. Dordrecht[J], The Netherlands: Kluwer Academic Publishers;1995.128-45.
    [41] Meg M. Iannacone, James W. Castle, John H. Rodgers Jr. Characterization of flue gasdesulfurization particulates in equalization basins[J]. Fuel,2009,88(9):1580-1587.
    [42]刘锦子,高英力,周士琼.粉煤灰的粒度分形评价及颗粒特征分析[J].国外建材科技.2007,28(4):33-36.
    [43] Alper Baba, Gulbin Gurdal, Fatma Sengunalp, Ozgur Oza. Effects of leachant temperatureand pH on leachability of metals from fly ash[J]. A case study: Can thermal power plant,province of Canakkale, Turkey. Environ Monit Assess,2007.
    [44] Akhmad Zaeni, Sri Bandyopadhyay, Aibing Yu, et al. Colour control in fly ash as acombined function of particle size and chemical composition[J]. Fuel,2010,89(2):399-404.
    [45] Adriana Medina, Prócoro Gamero, Xavier Querol, et al. Fly ash from a Mexican mineral coalI: Mineralogical and chemical characterization[J]. Journal of Hazardous Materials,2010,181(1):82-90.
    [46]许绿薇,薄以匀,李培省.电厂粉煤灰理化性质的测定及利用途径[J].环境科学研究.2000,13(3):51-54.
    [47] G. Kostakis. Characterization of the fly ashes from the lignite burning power plants ofnorthern Greece based on their quantitative mineralogical composition[J]. Journal ofHazardous Materials,2009,166(2-3):972-977.
    [48] Predrag S. Polic, Marina R. Ilic, Aleksandar R. Popovic. Environmental Impact Assessmentof Lignite Fly Ash and Its Utilization Products as Recycled Hazardous Wastes on Surfaceand Ground Water Quality[J]. Handb Environ Chem.2005,5:61-110.
    [49] Stanislav V. Vassilev, Christina G. Vassileva. A new approach for the classification of coalfly ashes based on their origin, composition, properties, and behaviour[J]. Fuel,2007,86(11):1490-1512.
    [50] E.álvarez-Ayuso, X.Querol, F.Plana, et al. Environmental, physical and structuralcharacterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes[J].Journal of Hazardous Materials,2008,154(1-3):175-183.
    [51] M. Erol, S. Ku¨cu¨kbayrak, A. Ersoy-Mericboyu. Characterization of coal fly ash for possibleutilization in glass production[J]. Fuel,2007,86:706-714.
    [52]徐夕仁,马春元,归柯庭等.烟气循环流化床脱硫灰特性研究[J].热能动力工程,2010,2:211-215.
    [53]姚志通,夏枚生,叶瑛等.循环流化床锅炉脱硫灰和普通粉煤灰的特性研究[J].粉煤灰综合利用,2010,1:6-8.
    [54] Fariborz Goodarzi. Characteristics and composition of fly ash from Canadian coal-firedpower plants[J]. Fuel.2006,85:1418-1427.
    [55] George Skodras, Panagiotis Grammelis, Maria Prokopidou,et al. Chemical, leaching andtoxicity characteristics of CFB combustion residues[J]. Fuel,2007.
    [56] Stanislav V. Vassilev, Greta M. Eskenazy, Christina G. Vassileva. Behaviour of elements andminerals during preparation and combustion of the Pernik coal, Bulgaria[J]. Fuel ProcessingTechnology,2001,(72):103-129.
    [57]明芳,王倩. ICP-AES法测定粉煤灰中的微量锗[J].轻金属.2006,(11):33-36.
    [58]铁丽云黄可知. ICP-AES法测定粉煤灰中元素[J].粉煤灰综合利用.2000,(2):66-67.
    [59]郭宝珠. ICP-AES法测定粉煤灰中13种元素[J].辽宁化工.2000,29(5):304-305.
    [60]祝建国,毛振才,毛恺霞等.原子荧光光谱法快速测定粉煤灰中砷与汞[J].分析测试技术与仪器.2007,13(3):219-221.
    [61]张战军,孙俊民,赫英,等.高铝粉煤灰中部分主微量元素的分布规律研究[J].地球化学,2006,35(6):660-666.
    [62] Akira Iwashita, Tsunenori Nakajima, Hirokazu Takanashi, et al. Determination of traceelements in coal and coal fly ash by joint-use of ICP-AES and atomic absorptionspectrometry[J]. Talanta,2007,71(1):251-257.
    [63] H. Papaefthymiou. Elemental deposition in the vicinity of a lignite power plant in SouthernGreece[J]. Journal of Radioanalytical and Nuclear Chemistry,2007,1-7.
    [64] Shifeng Dai, Lei Zhao, Suping Peng, et al. Abundances and distribution of minerals andelements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China[J].International Journal of Coal Geology,2010,81(4):320-332.
    [65] Clarke, L. B., Sloss, L. L.. Trace elements. London: IEA Coal Research.1992.
    [66] Mohammad Zandi·Nigel V. Russell. Design of a leaching test framework for coal fly ashaccounting for environmental conditions[J]. Environ Monit Assess,2007,131:509-526.
    [67] Jones, D. R.. The leaching of major and trace elements from coal ash[J]. In D. J. Swaine&F.Goodarzi (Eds.), Environmental aspects of trace elements in coal, Netherland: Kluwer.1995:221.
    [68] Bushell, A. J. The occurrence of trace elements in UK coals and their fate on gasification anddisposal of residues[D]. Department of Materials. London: Imperial College,1997.
    [69]余其俊,成立,赵三银等.水泥和粉煤灰中重金属和有毒离子的溶出问题及思考[J].水泥,2003,(1):8-15.
    [70]余其俊,白瑞英,曾小星等.水泥、粉煤灰及其硬化体中Cr(VI)溶出条件与其影响因素[J].硅酸盐学报,2007,35(8):1115-1124.
    [71] Md Sazzad Bin-Shafique. Leaching of heavy metals from fly ash stabilized soils[D]. Madison,WI:University of Wisconsin-Madison,2002.
    [72] J.F. Llorens, J.L. Fernández-Turiel, X. Querol. The fate of trace elements in a large coal-firedpower plant[J]. Environmental Geology,2001,40(4-5):409-416.
    [73]宋党育,秦勇,张军营等.煤及其燃烧产物中有害痕量元素的淋滤恃性研究[J].环境科学学报,2005,25(9):1195-1201.
    [74]王运泉,任德贻,尹金双,等.煤及其燃烧产物中微量元素的淋滤试验研究[J].环境科学,1996,17(1):16-19.
    [75] Lal C. Ram, Nishant K. Srivastava, Ramesh C. Tripathi, et al. Leaching behavior of lignitefly ash with shake and column tests[J]. Environ Geol2007,(51):1119-1132.
    [76] T. Praharaj, M.A. Powell, B.R. Hart, et al. Leachability of elements from sub-bituminous coalfly ash from India. Environment International,2002,(27):609-615.
    [77] Sidhartha Bhattacharyya, Rona J. Donahoe, Dan Patel. Experimental study of chemicaltreatment of coal fly ash to reduce the mobility of priority trace elements[J]. Fuel,2009,88(7):1173-1184.
    [78] M. Ahmaruzzaman. A review on the utilization of fly ash[J]. Progress in Energy andCombustion Science,2010,36(3):327-363.
    [79]张金安,邹宏霞,李青山.粉煤灰与废旧塑料的综合利用[M].北京:国防工业出版社,2005.1-22.
    [80] O.M. Sharonova, L.A. Solovyov, N.A. Oreshkina, et al. Composition of high-calcium fly ashmiddlings selectively sampled from ash collection facility and prospect of their utilization ascomponent of cementing materials[J]. Fuel Processing Technology,2010,91(6):573-581.
    [81]李顺凯,屠柳青,张国志.粉煤灰混凝土在桥梁工程中的应用[J].粉煤灰综合利用,2006,(5):44-45.
    [82]张顺成,王胜春,曾武.我国粉煤灰高值应用及研究进展[J].粉煤灰,2010,5:42-44.
    [83]陈祥荣,王明智,席北斗等.粉煤灰的资源化利用与循环经济[J].再生资源与循环经济2009,11:34-38.
    [84] Vimal Chandra Pandey, P.C. Abhilash, Raj Narayan Upadhyay, et al. Application of fly ashon the growth performance and translocation of toxic heavy metals within Cajanus cajan L.:Implication for safe utilization of fly ash for agricultural production[J]. Journal of HazardousMaterials,2009,166(1):255-259.
    [85] V. Manoharan, I.A.M. Yunusa, P. Loganathan, et al. Assessments of Class F fly ashes foramelioration of soil acidity and their influence on growth and uptake of Mo and Se bycanola[J]. Fuel,2010,89(11):3498-3504.
    [86] N. Mike Jackson, Scott Schultz, Paul Sander, et al. Beneficial use of CFB ash in pavementconstruction applications[J].Fuel,2009,88(7):1210-1215.
    [87]孙克刚.粉煤灰磁化复合肥对一些经济作物的增产效应研究[J].干旱地区农业研究,2000,18(4):36-40.
    [88]王敦球,张学洪,龙腾锐等.利用城市固体废弃物生产有机复合肥施用效果研究[J].给水排水,2003,(5):34-36.
    [89]李长春,孙翠玲.粉煤灰在水污染防治中的应用[J].环境工程,1994,24(4):47-49.
    [90]周珊,杜新年.粉煤灰处理冶金含油废水[J].冶金能源,2003,22(6):49-51.
    [91]张竹青.粉煤灰对有机活性染料脱色效果的研究[J].吉林农业大学学报,2003,25(4):416-418.
    [92]孙淑波.改性粉煤灰-SBR法处理洗涤剂废水的研究[J].环境工程,2010, S1:1-3.
    [93]郭常颖,杨爽,赵鹏程.粉煤灰-SBR和SBR处理染料废水对比研究[J].环境科学与管理,2010,1:106-108.
    [94]徐国想,潘碌亭,刘吉堂等.粉煤灰沸石处理含铜废水的研究[J].中国矿业,2007,8:68-70.
    [95]赵艳锋,胡亚楠,宿伟.粉煤灰处理含铬废水的研究[J].粉煤灰综合利用.2010,1:40-42.
    [96]张顺成,郎建峰,曾武.粉煤灰陶粒在处理含铬废水中的应用研究[J].粉煤灰,2010,6:32-35.
    [97]刘晓伟.粉煤灰吸附含氟废水试验研究[J].粉煤灰综合利用,2010,4:31-32.
    [98]袁春华.粉煤灰精细利用-多种元素提取方法的研究[J].粉煤灰综合利用,2010,1:46-48.
    [99] Young Jun Park. Stabilization of a chlorine-rich fly ash by colloidal silica solution[J]. Journalof Hazardous Materials,2009,162(2-3):819-822.
    [100] Y. Luna Galiano, C. Fernández Pereira, J. Vale. Stabilization/solidification of amunicipal solid waste incineration residue using fly ash-based geopolymers[J]. Journal ofHazardous Materials,2011,185(1):373-381.
    [101] Margarida J. Quina, Joao C.M. Bordado, Rosa M. Quinta-Ferreira. Chemicalstabilization of air pollution control residues from municipal solid waste incineration[J].Journal of Hazardous Materials,2010,179(1-3):382-392.
    [102] G.R. Qian, J. Shi, Y.L. Cao, et al. Properties of MSW fly ash–calcium sulfoaluminatecement matrix and stabilization/solidification on heavy metals[J]. Journal of HazardousMaterials,2008,152(1):196-203.
    [103] Jiang Jianguo, Chen Maozhe, Zhang Yan, et al. Pb stabilization in fresh fly ash frommunicipal solid waste incinerator using accelerated carbonation technology[J]. Journal ofHazardous Materials,2009,161(2-3):1046-1051.
    [104]李仕文,宁寻安,邓忠良等.造纸污泥固化/稳定化处理技术研究[J].环境工程学报,2010,8:1911-1915.
    [105] Sidhartha Bhattacharyya, Rona J. Donahoe, Dan Patel. Experimental study of chemicaltreatment of coal fly ash to reduce the mobility of priority trace elements[J]. Fuel,2009,88(7):1173-1184.
    [106] Blandine Bournonville, Ange Nzihou, Patrick Sharrock, et al. Stabilisation of heavymetal containing dusts by reaction with phosphoric acid: study of the reactivity of fly ash[J].Journal of Hazardous Materials,2004,116(1-2):65-74.
    [107]沈正,董祥,何培玲.固化剂JNS-1固化粉煤灰抗压强度特性试验研究[J].南京林业大学学报(自然科学版),2010,6:100-104.
    [108]沈正;黄晓明;董祥等.粉煤灰掺入固化剂JNS-1的工程试验研究[J].扬州大学学报(自然科学版),2010,4:65-70.
    [109] Sukandar, Tri Padmi, Masaru Tanaka, et al. Chemical stabilisation of medical waste flyash using chelating agent and phosphates: Heavy metals and ecotoxicity evaluation[J]. Wastemanagement,2009,(29):2065-2070.
    [110] Bradley S. Crannell, T. Taylor Eighmy, James E. Krzanowski, et al. Heavy metalstabilisation in municipal solid waste combustion bottom ash using soluble phosphate[J].Waste management,2000,(20):135-148.
    [111] Shaohua HU. Stabilisation of heavy metals in municipal solid waste incineration ashusing mixed ferrous/ferric sulfate solution[J]. Journal of hazardous materials,2005,(B123):158-164.
    [112] G. Traina, S. Ferro, A. De Battisti. Electrokinetic stabilisation as a reclamation tool forwaste materials polluted by both salts and heavy metals[J]. Chemosphere,2009,(75):819-824.
    [113] D. Dermatas, X. Meng, Utilization of fly ash for stabilisation/solidification of heavymetal contaminated soils[J], Eng. Geol.2003(70)377–394.
    [114] Lucy Mar Camacho Chico. Modeling the leaching behavior of fly ashsolidified-stabilized wastes[D]. New Mexico: New Mexico State University:2000.
    [115] J.Villermaux. Genie de la reaction chimique-conception et fonctionnement des reacteurs.Lavoisier, Tec et Doc, Paris,2e edition,revue et augmentee,1998.
    [116] P.Trambouze, H.Van Landeghem, J.P.Wauquier. Les reacteurs chimiques-conception/calcul/mise en oeuvre. Editions technip-publication de l’institut francais du petrole,1984.
    [117] J.Horak, J.Pasek. Conception des reacteurs chimiques industriels sur la base des donneesde laboratoire. Eyrolles, Paris,1981.
    [118] J.C.Dechaux, L.Delfosse, A.Perche, et al. Probleme de cinetique chimique avecsolutions detaillees et rappels de cours. Masson,1980.
    [119] O.Levenspiel. Chemical reaction engineering. Wiley,1972.
    [120] F.Gioia, G.Mura, A.Vioia. Analysis, simulation, and optimization of the hemihydratesprocess for the production of phosphoric acid from calcareous phosphorites. Ind.Eng.Chem.,Process Des. Dev.,1977,16(3):390-399.
    [121] N.S.Tavare, J.Garside. Simulation of reactive precipitation in a semi-batch crystallizer.Trans IChemE,1990,68(Part A):115-122.
    [122] A. Sarkara, Ruma Rano, K.K. Mishra, et al. Particle size distribution profile of someIndian fly ash-a comparative study to assess their possible uses[J]. Fuel ProcessingTechnology,2005,86(11):1221-1238.
    [123] U. Blaha, B. Sapkota, E. Appel, et al. Micro-scale grain-size analysis and magneticproperties of coal-fired power plant fly ash and its relevance for environmental magneticpollution studies[J]. Atmospheric Environment,2008,42(36):8359-8370.
    [124] Olli Dahl, Hannu Nurmesniemi, Risto P yki, et al. Comparison of the characteristics ofbottom ash and fly ash from a medium-size (32MW) municipal district heating plantincinerating forest residues and peat in a fluidized-bed boiler[J]. Fuel Processing Technology,2009,90(7-8):871-878.
    [125]谭桂蓉,吴秀俊. CFB脱硫灰渣的性能及应用研究[J].粉煤灰综合利用,2009,4:37-40.
    [126] Grigorios Itskos, Socrates Itskos, Nikolaos Koukouzas Size fraction characterization ofhighly-calcareous fly ash[J]. Fuel Processing Technology,2010,91(11):1558-1563.
    [127] A.D. Bhanarkar, A.G. Gavane, D.S. Tajne, et al. Composition and size distribution ofparticules emissions from a coal-fired power plant in India[J]. Fuel,2008,87(10-11):2095-2101.
    [128] Nigel Russell, Lily B. Mendez, Fraser Wigley. Ash deposition of a Spanish anthracite:effects of included and excluded mineral matter [J]. Fuel,2002,81(5):657-663.
    [129] Yuan Zhi Chen,Naresh Shah, Frank E. Transmission electron microscopy investigationof ultra fine coal fly ash particles [J]. Environ. Sci. Technol.,2005,39(2):1144-1151.
    [130] Tomeczek J, Palugniok H. Kinetics of mineral matter transformation during coalcombustion[J].Fuel,2002,81(10):1251-1258.
    [131]黄亚继,金保升,仲兆平等.痕量元素在气化产物中分布规律的研究[J].中国电机工程学报,2004,24(11):208-212.
    [132]兰泽全,曹欣玉,周俊虎等.炉内灰渣沉积物中矿物元素分布的电子探针分析[J].中国电机工程学报,2005,25(2):114-118.
    [133] Yoshihiko Ninomiya,Lian Zhang,Atsushi Sato.Influence of coal particle size onparticulate matter emission and its chemical species produced during coal combustion[J].Fuel Processing Technology,2004,85(8-10):1065-1088.
    [134] Lian Zhang, Yoshihiko Ninomiya, Atsushi Sato. Combustibility of dried sewage sludgeand its mineral transformation at different oxygen content in drop tube furnace[J]. FuelProcessing Technology,2004,85(8-10):983-1011.
    [135]许绿丝,程俊峰,曾汉才.煤燃烧过程中痕量元素As、Cd、Cr释放特性实验研究[J].热能动力工程,2004,19(5):478-482.
    [136]孙俊民,韩德馨.粉煤灰的形成和特性及其应用前景[J].煤炭转化,1999,22(1):10-14.
    [137] Zhang Chengfeng, Yao Qiang, Sun Junming. Characteristics of particulate matter fromemissions of four typical coal-fired power plants in China[J]. Fuel Processing Technology2005,86(7):757–768.
    [138] Xiaoru Fu, Qin Li, Jianping Zhai, et al. The physical–chemical characterization ofmechanically-treated CFBC fly ash[J]. Cement and Concrete Composites,2008,30(3):220-226.
    [139]杨赞中,刘玉金,杨赞国等.热电厂粉煤灰漂珠的物化性能及应用[J].建材技术与应用,2002,(6):13-15.
    [140]徐风广.漂珠的物性研究及与原始粉煤灰的比较[J].煤炭科学技术,2009,30(9):49-52.
    [141]杨久俊,张磊,王文娟等.粉煤灰微珠在功能材料中的研究利用进展[J].功能材料信息,2007,5:60.
    [142]仇满德,姚子华,翟永清等.粉煤灰的SEM及X射线能谱微分析研究[J].电子显微学报,2008,2:112-116.
    [143]周栋.燃煤电厂脱硫灰渣理化特性及污染物释放特征研究[D].徐州:中国矿业大学图书馆,2008.
    [144]李辉,商博明,冯绍航等.粉煤灰理化性质及微观颗粒形貌研究[J].粉煤灰,2006,5:18-20.
    [145]薛群虎,杨源,袁广亮.粉煤灰理化性质及形态学研究[J].粉煤灰综合利用,2008,3:3-6.
    [146]刘豪,邱建荣,熊全军等.燃煤固体产物中含钙矿物的迁移与多相反应[J].中国电机工程学报,2005,25(11):72-78.
    [147]李帆,周英彪,郑瑛等.钙剂脱硫过程矿物质对结渣影响的实验研究[J].华中科技大学学报(自然科学版),2005,33(7):71-73.
    [148] Nabajyoti Saikia, Shigeru Kato, Toshinori Kojima. Compositions and leachingbehaviours of combustion residues[J]. Fuel,2006,85(2):264-271.
    [149] Nikolaos Koukouzas, Colin R. Ward, Dimitra Papanikolaou, et al. Quantitativeevaluation of minerals in fly ashes of biomass, coal and biomass–coal mixture derived fromcirculating fluidised bed combustion technology[J]. Journal of Hazardous Materials,2009,169(1):100-107.
    [150] Nikolaos Koukouzas, Jouni H m l inen, Dimitra Papanikolaou, et al. Mineralogical andelemental composition of fly ash from pilot scale fluidised bed combustion of lignite,bituminous coal, wood chips and their blends[J]. Fuel,2007,86(14):2186-2193.
    [151] O. Font, N. Moreno, X. Querol, et al. X-ray powder diffraction-based method for thedetermination of the glass content and mineralogy of coal (co)-combustion fly ashes[J]. Fuel,2010,89(10):2971-2976.
    [152] Yangsheng Liu, Liting Zheng, Xiaodong Li, et al. SEM/EDS and XRD characterizationof raw and washed MSWI fly ash sintered at different temperatures[J]. Journal of HazardousMaterials,2009,162(1):161-173.
    [153]王启民,杨海瑞,吕俊复等.煤中矿物组分在流化床燃烧过程中的转化[J].煤炭转化,2006,29(1):85-88.
    [154]裴亚利.循环流化床粉煤灰的特征及其综合利用研究[D].长春:吉林大学材料科学与工程学院:2006.
    [155]郝吉明,段雷,易红宏等.燃烧源可吸入颗粒物的物理化学特征[M].北京:科学出版社,2008,223-224.
    [156] Zhang Haiying, Zhao Youcai, Qi Jingyu. Characterization of heavy metals in fly ashfrom municipal solid waste incinerators in Shanghai[J]. Process Safety and EnvironmentalProtection,2010,88(2):114-124.
    [157] Devi Prasad Mishra, Samir Kumar Das. A study of physico-chemical and mineralogicalproperties of Talcher coal fly ash for stowing in underground coal mines[J]. MaterialsCharacterization,2010,61(11):1252-1259.
    [158] K. Karlfeldt Fedje, S. Rauch, P. Cho, et al. Element associations in ash from wastecombustion in fluidized bed[J]. Waste Management,2010,30(7):1273-1279.
    [159] Julieta Marrero, Griselda Polla, Raúl Jiménez Rebagliati, et al. Characterization anddetermination of28elements in fly ashes collected in a thermal power plant in Argentinausing different instrumental techniques[J]. Spectrochimica Acta Part B: Atomic Spectroscopy,2007,62(2):101-108.
    [160]彭敏,周亚民,阮湘元.粉煤灰形貌元素组成的SEM/EDS分析[J].广东化学,2009,5:16-17.
    [161]傅晓茹,邹继兴.脱硫灰中有毒、有害元素含量及使用安全性评价[J].河北理工学院学报,2004,26(1):156-160.
    [162]童军武,孙培梅,徐红艳.粉煤灰中有价元素的提取[J].湖南有色金属,2006,22(5):46-50.
    [163] Nikolaos Koukouzas, Chrisovalantis Ketikidis, Grigorios Itskos. Heavy metalcharacterization of CFB-derived coal fly ash[J]. Fuel Processing Technology,2011,92(3):441-446.
    [164] Morawska L, Zhang J F. Combustion sources of particles: health relevance and sourcesignatures[J]. Chemosphere,2002,49:1045-1058.
    [165] F. Goodarzi. Morphology and chemistry of fine particles emitted from a Canadiancoal-fired power plant[J]. Fuel,2006,85(3):273-280.
    [166] Adriana Medina, Prócoro Gamero, Xavier Querol, et al. Fly ash from a Mexican mineralcoal I: Mineralogical and chemical characterization[J]. Journal of Hazardous Materials,2010,81(1-3):82-90.
    [167] Olli Dahl, Hannu Nurmesniemi, Risto P yki, et al. Comparison of the characteristics ofbottom ash and fly ash from a medium-size (32MW) municipal district heating plantincinerating forest residues and peat in a fluidized-bed boiler[J]. Fuel Processing Technology,2009,90(7-8):871-878.
    [168] Meij R. Trace element behaviors in coal fired power plants. Fuel processing technology,1994,39:199-217.
    [169]王文峰,秦勇,宋党育.燃煤电厂中微量元素迁移释放研究[J].环境科学学报,2003,23(6):748-752.
    [170] Xu M H, Yan R, Zheng C G, et al. Status of trace element emission in a coal combustionprocess: a review. Fuel processing technology,2003,85:215-237.
    [171]唐修义,赵继尧,黄文辉.中国煤中的九种重金属元素[J].中国煤田地质,2002,14(S1):43-54.
    [172] S.G. Lu, Y.Y. Chen, H.D. Shan, et al. Mineralogy and heavy metal leachability ofmagnetic fractions separated from some Chinese coal fly ashes[J]. Journal of HazardousMaterials,2009,169(1-3):246-255.
    [173] Yan ZHANG, Jianguo JIANG, Maozhe CHEN. MINTEQ modeling for evaluating theleaching behavior of heavy metals in MSWI fly ash[J]. Journal of Environmental Sciences,2008,20(11):1398-1402.
    [174] Huisheng Shi, Lili Kan Leaching behavior of heavy metals from municipal solid wastesincineration (MSWI) fly ash used in concrete[J]. Journal of Hazardous Materials,2009,164(2-3):750-754.
    [175] Alper Baba, Gulbin Gurdal, Fatma Sengunalp. Leaching characteristics of fly ash fromfluidized bed combustion thermal power plant: Case study: an (anakkale-Turkey)[J]. FuelProcessing Technology,2010,91(9):1073-1080.
    [176] N. Moreno, X. Querol, J.M. Andrés, et al. Physico-chemical characteristics of Europeanpulverized coal combustion fly ashes[J]. Fuel,2005,84(11):1351-1363.
    [177] Colin R. Ward, David French, Jerzy Jankowski, et al. Element mobility from fresh andlong-stored acidic fly ashes associated with an Australian power station[J]. InternationalJournal of Coal Geology,2009,80(3):224-236
    [178] Binay K. Dutta, Swapan Khanra, Durjoy Mallick. Leaching of elements from coal flyash: Assessment of its potential for use in filling abandoned coal mines[J]. Fuel,2009,88(7):1314-1323.
    [179] Jerzy Jankowski, Colin R. Ward, David French, et al. Mobility of trace elements fromselected Australian fly ashes and its potential impact on aquatic ecosystems[J]. Fuel,2006,85(2):243-256.
    [180]陈魁,向兰.硫酸钙溶解行为初探[J].盐业与化工,2007,36(2):1-3.
    [181]赵峰华.煤中有害微量元素分布赋存机制及燃煤产物淋滤实验研究研[D].北京:中国矿业大学(北京):1997.
    [182] G. Jegadeesan, Souhail R. Al-Abed, Patricio Pinto. Influence of trace metal distributionon its leachability from coal fly ash[J]. Fuel,2008,87(10-11):1887-1893.
    [183] Mohammad Zandi, Nigel V. Russell.Design of a Leaching Test Framework for Coal FlyAsh Accounting for Environmental Conditions[J].Environ Monit Assess2007,(131):509–526.
    [184]王晓东.粉煤灰在高速公路中的应用[J].黑龙江交通科技,2008,(12):54,57.
    [185] G. Jegadeesan, Souhail R. Al-Abed, Patricio Pinto. Influence of trace metal distributionon its leachability from coal fly ash[J]. Fuel,2008,87(10-11):1887-1893.
    [186] C.A. Papadimitriou, I. Haritou, P. Samaras, et al. Evaluation of leaching andecotoxicological properties of sewage sludge–fly ash mixtures[J]. Environmental Research,2008,106(3):340-348.
    [187]胡二邦.环境风险评价实用技术和方法.北京:中国环境科学出版社,2000,163-164.
    [188]陈炼钢.土壤地下水污染治理健康风险分析系统研究[D].北京:清华大学:2005.
    [189] Yu Bon Man, Xiao Lin Sun, Yin Ge Zhao, et al. Health risk assessment of abandonedagricultural soils based on heavy metal contents in Hong Kong, the world's most populatedcity[J]. Environment international,2010,36:570-576.
    [190] US EPA (United States Environmental Protection Agency). Exposure factors handbook.EPA/600/P-95/002F. Washington, DC: Environmental Protection Agency, Office ofResearchand Development;1997.
    [191] US EPA (United States Environmental Protection Agency). Risk assessment guidancefor superfund, Vol. I: Human Health Evaluation Manual. EPA/540/1–89/002. Washington,D.C: Office of Soild Waste and Emergency Response;1989.
    [192] US EPA (United States Environmental Protection Agency). Supplemental guidance fordeveloping soil screening levels for Superfund sites. OSWER9355.4-24. Washington, D.C:Office of Solid Waste and Emergency Response;2001.
    [193] US EPA (United States Environmental Protection Agency). Risk assessment for noncancer effects;2007.
    [194]国家环境保护总局. HJ/T25-1999.工业企业土壤环境质量风险评价基准.1999.
    [195] US EPA (United States Environmental Protection Agency). Guidelines for the health riskassessment of chemical mixtures.51Federal Register34014. Washington, D.C;1986.
    [196] Sidhartha Bhattacharyya, Rona J. Donahoe, Dan Patel. Experimental study of chemicaltreatment of coal fly ash to reduce the mobility of priority trace elements[J]. Fuel,2009,88(&):1173-1184.
    [197] Blandine BOURNONVILLE. Heavy metals stabilization from incinerator flyash-rheological behavior, phosphate reaction kinetics and process assessment[D]. France:Perpignan University:2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700