顺磁弛豫增强技术用于泛素动态结构和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泛素(Ub:ubiquitin)是真核细胞中非常重要的一类调控蛋白,它几乎参与了.所有的生理过程。Ub通过保守的作用界面、以不同的构象结合不同的靶蛋白,调控细胞内一系列的下游信号传递过程。那么泛素是如何通过这样一个保守的作用界面实现与诸多不同靶蛋白的相互作用,从而行使它复杂而又多样的生理功能的呢?目前为止,答案还不确定。
     此外,Ub在参与多样的生理过程中,其重点和复杂性还在于它可以形成多聚体。Ub的碳端(distal亚基)可以共价的链接到另外一个Ub的氮端或者赖氨酸残基(Lys)的侧链氨基(proximal亚基)上面,形成以异肽键链接的二聚体。其中K63位链接的Ub二聚体K63-diUb被认为是最“经典”的多聚形式,它与DNA的损伤修复以及先天性细胞免疫相关。目前为止,已被报道的K63-diUb的四级结构都是打开的构象,其闭合态的结构还未得到解析。K63-diUb是否存同时存在打开态与闭合态,两者之间是否能够动态的相互转换,它与靶蛋白的相互作用机制如何?这些问题都还有待进一步的研究。
     顺磁弛豫增强核磁共振技术(PRE:paramagnetic relaxation enhancement)可以提供长程距离信息用于蛋白质结构的研究。由于PRE对距离的变化非常敏感,它可以独特的用来研究和表征蛋白质低分布的瞬态结构以及弱的相互作用,揭示蛋白质不同构象之间的相互转化过程。因此,PRE技术被越来越广泛的应用于蛋白质动态结构和功能的研究。
     因此,本论文应用基于PRE的研究方法对Ub,以及Ub二聚体K63-diUb四级结构的动态变化和功能进行了系统的研究;为了描述Ub更精细的动态结构和功能,我们发展了一种刚性标记的PRE探针;此外,我们运用PRE的研究手段进一步的对其它重要蛋白质的动态结构和功能进行了初步研究。
     我们的研究首次发现,Ub存在低分布的非共价二聚体,KD~5mM,其作用界面分布在Ub的β-折叠区域。该界面和Ub与诸多靶蛋白相互作用的保守界面重叠,因此我们推测,Ub可以通过自身单体-二聚体的平衡来调控它与靶蛋白的相互作用。依据PRE的距离约束,我们解析了Ub非共价二聚体系综结构,这些分布广泛的空间构象涵盖了多种已经解析的Ub共价二聚体的结构。我们的研究表明,Ub非共价的二聚相互作用广泛的存在于Ub共价二聚体中,后者亚基间的相互作用调控Ub共价二聚体的四级结构,使得Ub共价二聚体呈现丰富的空间构象。
     基于Ub单体动态结构的研究基础,我们进一步的研究了K63-diUb四级结构的动态变化,及其与靶蛋白相互作用的分子机制。采用PRE的研究手段,我们表征了K63-diUb分子内亚基间的相互作用,说明它同时存在闭合态与打开态,其比例分别是80%和20%;首次报道了K63-diUb闭合态的系综结构,结合PCA的分析我们发现闭合态有两种:C1和C2,其比例分别为60%和20%;K63-diUb的三个态之间能够相互转换,它与靶蛋白的结合强度与相应态的比例正相关。因此,K63-diUb可以通过这种态之间的动态转换,以构象选择的结合机制识别不同的靶蛋白,从而调控不同的细胞泛素信号通路,参与不同的生理过程。
     本论文发展了一种刚性标记的PRE探针diHis-Cu2+-cap用于Ub和其它蛋白质更精细的动态结构的研究。我们发现,Ub残基52-53和55-56所在loop存在低分布的瞬态结构,该loop以残基54为中心前后扭动,其扭动幅度很小,大约2A。此外,采用这种刚性探针标记的PRE,我们发现,holo态的谷氨酰胺结合蛋白(holo QBP) F13残基所在loop也存在细微运动,平均运动幅度只有0.6A,但是它的运动参与配体谷氨酰胺的解离,该loop背离谷氨酰胺的细微运动使得后者的解离成为可能。
     最后,我们进一步的运用PRE的研究手段对另一类重要蛋白质:谷氨酸受体(GluA2)的脱敏机制进行了初步的研究。初步结果表明,GluA2的脱敏速率与其配体结合结构域(LBD)的二聚相互作用强度相关:二聚相互作用越强,脱敏越慢;二聚相互作用越弱,则脱敏越快。
     综上所述,本论文通过对Ub,以及Ub二聚体K63-diUb动态结构和功能的系统性研究,从分子层次的水平上阐述了它们四级结构之间的相互转换过程,揭示了它们参与细胞泛素信号传递的分子机制,为实现细胞泛素信号通路的控制提供了结构基础和数据参考。就PRE的方法学而言,我们发展的刚性顺磁探针拓宽了PRE的研究内容,在后续的研究过程中,PRE将解答更多的生物学问题。
Ubiquitin (Ub) is a significant regulatory protein in eukaryote cells, and is involved in almost every physiological process. Ub interacts with myriad partner proteins to fulfill diversely functions; however, the interactions invariably involve a hydrophobic patch surrounding residue144. So how does Ub recognize a specific partner protein through such a conserved binding interface to regulate different cell signaling pathway?
     Furthermore, the complexity of Ub involved in physiological process is that Ub functions mostly as poly-ubiquitin chains. Two or more Ub molecules can be covalently linked via an isopeptide bond between the C-terminal carboxyl group of one Ub (dsital unit) and a primary amine of a lysine residue or N-teminal methionine in another one(distal unit). Lys63-lingked dimmer Ub (K63-diUb) is considered as a "typical" dimmer that is involved in cellular events like DNA damage response and innate cell immunity upon binding to a specific partner protein. Open conformation of ligand-free K63-diUb(apo K63-diUb) was characterized by many biophysical techniques; however, no closed conformation has been captured yet. Does apo K63-diUb exist in both open and closed states and whether there is a dynamic equilibrium between different states? Do these different conformational states could be interconverted? How does K63-diUb recognize and bind to a specific partner protein? Much more detailed descriptions of K63-diUb dynamics and conformational apace are highly deserved, and the connection between conformational dynamics and targets biding events should be addressed.
     Paramagnetic relaxation enhancement (PRE) affording long-range distance restraints favor protein structure determination. PRE is very sensitively to a distance change because of distance-dependence between paramagnetic center and protein nuclei, on a magnitude. As a result, PRE could be used especially to characterize lowly-populated transient protein structures and ultra-weak protein-protein interactions.
     Here, we integrate PRE and other biophysical techniques and analysis methods to characterize the quaternary dynamics of Ub and K63-diUb. A rigid paramagnetic probe for PRE measurement is engineered to visualize subtle dynamics of Ub or other protein system. Preliminary dynamics and functional investigation of another important protein is also studied.
     In this study, we show that Ub dimerizes noncovalently through an interface around the β-sheet region with a KD of about5mM. The noncovalent dimmer interface overlaps with the conserved binding interface of Ub to target protein. Thus, the binding events between Ub and target protein probably could be regulated through the Ub monomer-dimmer dynamic equilibrium. The ensemble structures of Ub noncovalent dimmer adopt a wide range of relative subunit orientations, and some conformers are compatible with certain covalent linkage dimmer. As such, the covalent linkage in an Ub dimier may further promote noncovalent Ub-Ub interactions and favor a subset of the ensemble conformation, which would then tailor the interactions with a specific target protein.
     Based on the dynamics information of mono Ub, we resort to conjoined use of PRE and principal component analysis (PCA) to visualize conformational space of K63-diUb involved in target recognition. We show that K63-diUb adopts three conformational states, comprising one open state and two closed states, namely Cl and C2, with characteristic Boltzmann distribution—20%in open state,60%in Cl, and20%in C2. The three conformational states exist in dynamic equilibrium and can be readily interconverted. Importantly, each conformational state encompasses fhe known structures of K63-diUb with a particular ligand bound, and the respective binding affinity is weighted by the population of the preexisting conformational state. Thus, K63-diUb could recognize specific target protein through conformational selection mechanism based on the dynamics equilibrium and population shift between mutiple conformational states to regulate cell signaling and involved in different physiological process.
     In order to reveal subtler dynamics of Ub or other protein system, a rigid paramagnetic probe—diHis-Cu2+-cap is engineered. Attached with this rigid paramagnetic probe, PRE reveals that a flexible loop of Ub undergoes a collective pincer-like movement about2A on average, comprising residues52-53and55-56wobbled around residue54. In another protein system, holo glutamine binding protein (holo QBP), subtle dynamics (about0.6A on average) is also revealed with the rigid paramagnetic probe. This loop, comprising residue F13, packs against the glutamine ligand in the holo QBP. As such, the loop movement away from the ligand may facilitate the ligand dissociation.
     Last, PRE is also applied to reveal the desensitization mechanism of glutamate acceptor A2(GluA2). Preliminary results show that the desensitization rate is coupled with the dimeric strength of the ligand binding domain (LBD). Dimeric interactions stronger, GluA2desensitize slower; dimeric interactions weaker, then faster desensitization.
     In summary, this thesis work mainly characterize the dynamics of Ub and K63-diUb at quaternary level, and offer more understanding of protein function by detailed description of protein conformational space and protein dynamic equilibrium. Rigid paramagnetic labeling strategy and probe broaden the research content of PRE, and PRE will offer much more information in biological issues.
引文
[1]Henzler-Wildman, K.,Kern, D. Dynamic personalities of proteins[J]. Nature.2007,450(7172):964-72.
    [2]Dyson, H.J.,Wright, P.E. Unfolded proteins and protein folding studied by NMR[J]. Chemical Reviews.2004,104(8):3607-22.
    [3]Mittag, T.,Forman-Kay, J.D. Atomic-level characterization of disordered protein ensembles[J]. Current Opinion in Structural Biology.2007,17(1):3-14.
    [4]Dunker, A.K., Brown, C.J., Lawson, J.D., Iakoucheva, L.M.,Obradovic, Z. Intrinsic disorder and protein function[J]. Biochemistry.2002,41(21):6573-82.
    [5]Emsley, J. W.,Feeney, J. Forty years of Progress in Nuclear Magnetic Resonance Spectroscopy[J]. Progress in Nuclear Magnetic Resonance Spectroscopy.2007,50(4):179-98.
    [6]Fernandez, C, Wider, G. TROSY in NMR studies of the structure and function of large biological macromolecules[J]. Current Opinion in Structural Biology.2003,13(5):570-80.
    [7]Pervushin, K., Riek, R., Wider, G.,Wuthrich, K. Attenuated T-2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution[J]. Proceedings of the National Academy of Sciences of the United States of America.1997,94(23):12366-71.
    [8]Kainosho, M., Torizawa, T., Iwashita, Y., Terauchi, T., Ono, A.M.,Guntert, P. Optimal isotope labelling for NMR protein structure determinations[J]. Nature.2006,440(7080):52-57.
    [9]Goto, N.K.,Kay, L.E. New developments in isotope labeling strategies for protein solution NMR spectroscopy[J]. Current Opinion in Structural Biology.2000,10(5):585-92.
    [10]Ohki, S.Y.,Kainosho, M. Stable isotope labeling methods for protein NMR spectroscopy[J]. Progress in Nuclear Magnetic Resonance Spectroscopy.2008,53(4):208-26.
    [11]Tugarinov, V., Hwang, P.M.,Kay, L.E. Nuclear magnetic resonance spectroscopy of high-molecular-weight proteins[J]. Annual Review of Biochemistry.2004,73:107-46.
    [12]Tugarinov, V., Choy, W.Y., Orekhov, V.Y.,Kay, L.E. Solution NMR-derived global fold of a monomeric 82-kDa enzyme[J]. Proceedings of the National Academy of Sciences of the United States of America.2005,102(3):622-27.
    [13]Cavanagh, J. Protein NMR spectroscopy:principles and practice[M].2nd ed. Academic Press: Amsterdam; Boston.2007.
    [14]Levitt, M.H. Spin dynamics:basics of nuclear magnetic resonance[M].2nd ed. John Wiley & Sons:Chichester, England; Hoboken, NJ.2008.
    [15]Oldfield, E.; Chemical-Shifts and 3-Dimensional Protein Structures. In Journal of Biomolecular NMR,1995; Vol.5, pp 217-25.
    [16]Wishart, D.S., Sykes, B.D.,Richards, F.M. Relationship between Nuclear-Magnetic-Resonance Chemical-Shift and Protein Secondary Structure[J]. Journal of Molecular Biology.1991,222(2): 311-33.
    [17]Dayie, K.T., Wagner, G.,Lefevre, J.F. Theory and practice of nuclear spin relaxation in proteins[J]. Annual Review of Physical Chemistry.1996,47:243-82.
    [18]Palmer, A.G. NMR characterization of the dynamics of biomacromolecules[J]. Chemical Reviews. 2004,104(8):3623-40.
    [19]Ishima, R.,Torchia, D.A. Protein dynamics from NMR[J]. Nature Structural Biology.2000,7(9): 740-43.
    [20]Kleckner, I.R.,Foster, M.P. An introduction to NMR-based approaches for measuring protein dynamics[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics.2011,1814(8):942-68.
    [21]Solomon, I. Relaxation Processes in a System of 2 Spins[J]. Physical Review.1955,99(2):559-65.
    [22]Bloembergen, N. Proton Relaxation Times in Paramagnetic Solutions[J]. Journal of Chemical Physics.1957,27(2):572-73.
    [23]Clore, G.M., Tang, C.,Iwahara, J. Elucidating transient macromolecular interactions using paramagnetic relaxation enhancement J]. Current Opinion in Structural Biology.2007,17(5): 603-16.
    [24]Iwahara, J., Tang, C.,Clore, G.M. Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules[J]. Journal of Magnetic Resonance.2007,184(2): 185-95.
    [25]Clore, G.M.,Iwahara, J. Theory, Practice, and Applications of Paramagnetic Relaxation Enhancement for the Characterization of Transient Low-Population States of Biological Macromolecules and Their Complexes[J]. Chemical Reviews.2009,109(9):4108-39.
    [26]Iwahara, J., Schwieters, C.D.,Clore, G.M. Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. J Am Chem Soc.2004,126(18):5879-96.
    [27]Su, X.C.,Otting, G. Paramagnetic labelling of proteins and oligonucleotides for NMR[J]. Journal of Biomolecular NMR.2010,46(1):101-12.
    [28]Berliner, L.J., Grunwald, J., Hankovszky, H.O.,Hideg, K. A Novel Reversible Thiol-Specific Spin Label-Papain Active-Site Labeling and Inhibition[J]. Analytical Biochemistry.1982,119(2): 450-55.
    [29]Ebright, Y.W., Chen, Y., Pendergrast, P.S.,Ebright, R.H. Incorporation of an Edta-Metal Complex at a Rationally Selected Site within a Protein-Application to Edta-Iron DNA Affinity Cleaving with Catabolite Gene Activator Protein (Cap) and Cro[J]. Biochemistry.1992,31(44):10664-70.
    [30]Ikegami, T., Verdier, L., Sakhaii, P., Grimme, S., Pescatore, B., Saxena, K., Fiebig, K.M.,Griesinger, C. Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions[J]. Journal of Biomolecular NMR 2004,29(3):339-49.
    [31]Kruck, T.P.A., Lau, S.,Sarkar, B. Molecular design to mimic the copper(Ⅱ) transport site of human albumin:studies of equilibria between copper(Ⅱ) and glycylglycyl-L-histidine-N-methyl amide and comparison with human albumin[J]. Can J Chem.1976,54:1300-08.
    [32]Donaldson, L.W., Skrynnikov, N.R., Choy, W.Y., Muhandiram, D.R., Sarkar, B., Forman-Kay, J.D.,Kay, L.E. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy[J]. J Am Chem Soc.2001,123(40): 9843-47.
    [33]Mal, T.K., Ikura, M.,Kay, L.E. The ATCUN domain as a probe of intermolecular interactions: application to calmodulin-peptide complexes[J]. J Am Chem Soc.2002,124(47):14002-03.
    [34]Nitz, M., Sherawat, M., Franz, K.J., Peisach, E., Allen, K.N.,Imperiali, B. Structural origin of the high affinity of a chemically evolved lanthanide-binding peptide[J]. Angew Chem Int Ed Engl. 2004,43(28):3682-85.
    [35]Barthelmes, K., Reynolds, A.M., Peisach, E., Jonker, H.R., DeNunzio, N.J., Allen, K.N., Imperiali, B.,Schwalbe, H. Engineering encodable lanthanide-binding tags into loop regions of proteins[J]. J Am Chem Soc.2011,133(4):808-19.
    [36]Battiste, J.L.,Wagner, G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data[J]. Biochemistry.2000,39(18):5355-65.
    [37]Gaponenko, V., Howarth, J.W., Columbus, L., Gasmi-Seabrook, G., Yuan, J., Hubbell, W.L.,Rosevear, P.R. Protein global fold determination using site-directed spin and isotope labeling[J]. Protein Sci.2000,9(2):302-09.
    [38]Dvoretsky, A., Abusamhadneh, E.M., Howarth, J.W.,Rosevear, P.R. Solution structure of calcium-saturated cardiac troponin C bound to cardiac troponin I[J]. JBiol Chem.2002,277(41):38565-70.
    [39]Liang, B.Y., Bushweller, J.H.,Tamm, L.K. Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR speetroscopy[J]. Journal of the American Chemical Society.2006,128(13):4389-97.
    [40]Gillespie, J.R.,Shortle, D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels[J]. J Mol Biol.1997,268(1):158-69.
    [41]Gillespie, J.R.,Shortle, D. Characterization of long-range structure in the denatured state of staphylococcal nuclease.1. Paramagnetic relaxation enhancement by nitroxide spin labels[J]. Journal of Molecular Biology.1997,268(1):158-69.
    [42]Salmon, L., Nodet, G., Ozenne, V., Yin, G.W., Jensen, M.R., Zweckstetter, M.,Blackledge, M. NMR Characterization of Long-Range Order in Intrinsically Disordered Proteins[J]. Journal of the American Chemical Society.2010,132(24):8407-18.
    [43]Iwahara, J.,Clore, G.M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR[J]. Nature.2006,440(7088):1227-30.
    [44]Tang, C., Iwahara, J.,Clore, G.M. Visualization of transient encounter complexes in protein-protein association[J]. Nature.2006,444(7117):383-86.
    [45]Tang, C., Schwieters, C.D.,Clore, G.M. Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR[J]. Nature.2007,449(7165):1078-82.
    [46]Tang, C., Louis, J.M., Aniana, A., Suh, J.Y.,Clore, G.M. Visualizing transient events in amino-terminal autoprocessing of HTV-1 protease[J]. Nature.2008,455(7213):693-96.
    [47]Yu, D.M., Volkov, A.N.,Tang, C. Characterizing Dynamic Protein-Protein Interactions Using Differentially Scaled Paramagnetic Relaxation Enhancement[J]. Journal of the American Chemical Society.2009,131(47):17291-97.
    [48]Komander, D. The emerging complexity of protein ubiquitination[J]. Biochemical Society Transactions.2009,37:937-53.
    [49]Komander, D.,Rape, M. The Ubiquitin Code[J]. Annual Review of Biochemistry, Vol 81.2012,81: 203-29.
    [50]Dikic, I., Wakatsuki, S.,Walters, K.J. Ubiquitin-binding domains-from structures to functions[J]. Nature Reviews Molecular Cell Biology.2009,10(10):659-71.
    [51]Lange, O.F., Lakomek, N.A., Fares, C., Schroder, G.F., Walter, K.F.A., Becker, S., Meiler, J., Grubmuller, H., Griesinger, C.,de Groot, B.L. Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution[J]. Science.2008,320(5882):1471-75.
    [52]Wlodarski, T.,Zagrovic, B. Conformational selection and induced fit mechanism underlie specificity in noncovalent Interactions with ubiquitin[J]. Proceedings of the National Academy of Sciences of the United States of America.2009,106(46):19346-51.
    [53]Long, D.,Bruschweiler, R. In Silico Elucidation of the Recognition Dynamics of Ubiquitin[J]. Plos Computational Biology.2011,7(4).
    [54]Kulathu, Y.,Komander, D. Atypical ubiquitylation-the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages[J]. Nature Reviews Molecular Cell Biology.2012,13(8):508-23.
    [55]Chen, J.Q.,Chen, Z.J.J. Regulation of NF-kappa B by ubiquitination[J]. Current Opinion in Immunology.2013,25(1):4-12.
    [56]Cook, W.J., Jeffrey, L.C., Carson, M., Chen, Z.J.,Pickart, C.M. Structure of a Diubiquitin Conjugate and a Model for Interaction with Ubiquitin Conjugating Enzyme (E2)[J]. Journal of Biological Chemistry.1992,267(23):16467-71.
    [57]Cook, W.J., Jeffrey, L.C., Kasperek, E.,Pickart, C.M. Structure of Tetraubiquitin Shows How Multiubiquitin Chains Can Be Formed[J]. Journal of Molecular Biology.1994,236(2):601-09.
    [58]Phillips, C.L., Thrower, J., Pickart, C.M.,Hill, C.P. Structure of a new crystal form of tetraubiquitin[J]. Acta Crystallographica Section D-Biological Crystallography.2001,57:341-44.
    [59]Weeks, S.D., Grasty, K.C., Hernandez-Cuebas, L.,Loll, P.J. Crystal structures of Lys-63-linked tri-and di-ubiquitin reveal a highly extended chain architecture[J]. Proteins-Structure Function and Bioinformatics.2009,77(4):753-59.
    [60]Komander, D., Reyes-Turcu, F., Licchesi, J.D.F., Odenwaelder, P., Wilkinson, K.D.,Barford, D. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains (vol 10, pg 466,2009)[J]. Embo Reports.2009,10(6):662-62.
    [61]Datta, A.B., Hura, G.L.,Wolberger, C. The Structure and Conformation of Lys63-Linked Tetraubiquitin[J]. Journal of Molecular Biology.2009,392(5):1117-24.
    [62]Virdee, S., Ye, Y., Nguyen, D.P., Komander, D.,Chin, J.W. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase[J]. Nature Chemical Biology.2010, 6(10):750-57.
    [63]Varadan, R., Walker, O., Pickart, C.Fushman, D. Structural properties of polyubiquitin chains in solution[J]. Journal of Molecular Biology.2002,324(4):637-47.
    [64]Eddins, M.J., Varadan, R., Flushman, D., Pickart, C.M.,Wolberger, C. Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH[J]. Journal of Molecular Biology.2007,367(1):204-11.
    [65]Hirano, T., Serve, O., Yagi-Utsumi, M., Takemoto, E., Hiromoto, T., Satoh, T., Mizushima, T.,Kato, K. Conformational Dynamics of Wild-type Lys-48-linked Diubiquitin in Solution[J]. Journal of Biological Chemistry.2011,286(43):37496-502.
    [66]Ye, Y., Blaser, G., Horrocks, M.H., Ruedas-Rama, M.J., Ibrahim, S., Zhukov, A.A., Orte, A., Klenerman, D., Jackson, S.E.,Komander, D. Ubiquitin chain conformation regulates recognition and activity of interacting proteins[J]. Nature.2012,492(7428):266-70.
    [67]Kulathu, Y., Akutsu, M., Bremm, A., Hofmann, K.,Komander, D. Two-sided ubiquitin binding explains specificity of the TAB2 NZF domain[J]. Nature Structural & Molecular Biology.2009, 16(12):1328-30.
    [68]Sato, Y., Yoshikawa, A., Yamashita, M., Yamagata, A.J Fukai, S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3[J]. Embo Journal.2009,28(24):3903-09.
    [69]Newton, K., Matsumoto, M.L., Wertz, I.E., Kirkpatrick, D.S., Lill, J.R., Tan, J., Dugger, D., Gordon, N., Sidhu, S.S., Fellouse, F.A., Komuves, L., French, D.M., Ferrando, R.E., Lam, C., Compaan, D., Yu, C, Bosanac, I., Hymowitz, S.G., Kelley, R.F.,Dixit, V.M. Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies[J]. Cell.2008,134(4):668-78.
    [70]Ha, T. Single-molecule fluorescence resonance energy transfer[J]. Methods.2001,25(1):78-86.
    [71]Roy, R., Hohng, S.,Ha, T. A practical guide to single-molecule FRET[J]. Nature Methods.2008, 5(6):507-16.
    [72]Pickart, C.M.,Raasi, S. Controlled synthesis of polyubiquitin chains[J]. Ubiquitin and Protein Degradation, Pi B.2005,399:21-36.
    [73]Sekiyama, N., Jee, J., Isogai, S., Akagi, K., Huang, T.H., Ariyoshi, M., Tochio, H.,Shirakawa, M. NMR analysis of Lys63-linked polyubiquitin recognition by the tandem ubiquitin-interacting motifs of Rap80[J]. Journal of Biomolecular NMR.2012,52(4):339-50.
    [74]Kay, L.E., Torchia, D.A.,Bax, A. Backbone Dynamics of Proteins as Studied by N-15 Inverse Detected Heteronuclear NMR-Spectroscopy-Application to Staphylococcal Nuclease[J]. Biochemistry.1989,28(23):8972-79.
    [75]Chen, J.S.,Shirts, R.B. Iterative Determination of the NMR Monomer Shift and Dimerization Constant in a Self-Associating System[J]. Journal of Physical Chemistry.1985,89(9):1643-46.
    [76]Vijaykumar, S., Bugg, C.E.,Cook, W.J. Structure of Ubiquitin Refined at 1.8 a Resolution[J]. Journal of Molecular Biology.1987,194(3):531-44.
    [77]Suh, J.Y., Tang, C.,Clore, G.M. Role of electrostatic interactions in transient encounter complexes in protein-protein association investigated by paramagnetic relaxation enhancement[J]. Journal of the American Chemical Society.2007,129(43):12954-55.
    [78]Fawzi, N.L., Doucleff, M., Suh, J.Y.,Clore, G.M. Mechanistic details of a protein-protein association pathway revealed by paramagnetic relaxation enhancement titration measurements[J]. Proceedings of the National Academy of Sciences of the United States of America.2010,107(4): 1379-84.
    [79]Schwieters, C.D., Kuszewski, J.J., Tjandra, N.,Clore, G.M. The Xplor-NIH NMR molecular structure determination package[J]. Journal of Magnetic Resonance.2003,160(1):65-73.
    [80]Schwieters, C.D., Kuszewski, J.J.,Clore, G.M. Using Xplor-NIH for NMR molecular structure determination[J]. Progress in Nuclear Magnetic Resonance Spectroscopy.2006,48(1):47-62.
    [81]Tang, C., Ghirlando, R.,Clore, G.M. Visualization of transient ultra-weak protein self-association in solution using paramagnetic relaxation enhancement[J]. Journal of the American Chemical Society.2008,130(12):4048-56.
    [82]Tang, C.,Clore, G.M. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints[J]. Journal of Biomolecular NMR. 2006,36(1):37-44.
    [83]Schwieters, C.D.,Clore, G.M. Reweighted atomic densities to represent ensembles of NMR structures[J]. Journal of Biomolecular NMR.2002,23(3):221-25.
    [84]Iwahara, J., Schwieters, C.D.,Clore, G.M. Ensemble approach for NMR structure refinement against H-1 paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule[J]. Journal of the American Chemical Society.2004,126(18):5879-96.
    [85]Sato, Y., Yoshikawa, A., Mimura, H., Yamashita, M., Yamagata, A.,Fukai, S. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80[J]. Embo Journal.2009,28(16):2461-68.
    [86]Yoshikawa, A., Sato, Y., Yamashita, M., Mimura, H., Yamagata, A.,Fukai, S. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin[J]. Febs Letters. 2009,583(20):3317-22.
    [87]Sato, Y., Yoshikawa, A., Yamagata, A., Mimura, H., Yamashita, M., Ookata, K., Nureki, O., Iwai, K., Komada, M.,Fukai, S. Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains (vol 455, pg 358,2008)[J]. Nature.2008,456(7219):274-74.
    [88]Amadei, A., Linssen, A.B.M.,Berendsen, H.J.C. Essential Dynamics of Proteins[J]. Proteins-Structure Function and Genetics.1993,17(4):412-25.
    [89]Balsera, M.A., Wriggers, W., Oono, Y.,Schulten, K. Principal component analysis and long time protein dynamics[J]. Journal of Physical Chemistry.1996,100(7):2567-72.
    [90]Skjaerven, L., Martinez, A.,Reuter, N. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit[J]. Proteins-Structure Function and Bioinformatics.2011,79(1):232-43.
    [91]Varadan, R., Assfalg, M., Haririnia, A., Raasi, S., Pickart, C.,Fushman, D. Solution conformation of Lys(63)-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling[J]. Journal of Biological Chemistry.2004,279(8):7055-63.
    [92]Tjandra, N.J Bax, A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium (vol 278, pg 1111,1997)[J]. Science.1997,278(5344):1697-97.
    [93]Lindorff-Larsen, K., Best, R.B., DePristo, M.A., Dobson, C.M.,Vendruscolo, M. Simultaneous determination of protein structure and dynamics[J]. Nature.2005,433(7022):128-32.
    [94]Nucci, N.V., Pometun, M.S.,Wand, A.J. Site-resolved measurement of water-protein interactions by solution NMR[J]. Nature Structural & Molecular Biology.2011,18(2):245-49.
    [95]Hu, M., Li, P.W., Song, L., Jeffrey, P.D., Chernova, T.A., Wilkinson, K.D., Cohen, R.E.,Shi, Y.G. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14[J]. Embo Journal.2005,24(21):3747-56.
    [96]Lee, S., Tsai, Y.C., Mattera, R., Smith, W.J., Kostelansky, M.S., Weissman, A.M., Bonifacino, J.S.,Hurley, J.H. Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5[J]. Nature Structural & Molecular Biology.2006,13(3):264-71.
    [97]Renatus, M., Parrado, S.G., D'Arcy, A., Eidhoff, U., Gerhartz, B., Hassiepen, U., Pierrat, B., Riedl, R., Vinzenz, D., Worpenberg, S.,Kroemer, M. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2[J]. Structure.2006,14(8):1293-302.
    [98]Peschard, P., Kozlov, G., Lin, T., Mirza, A., Berghuis, A.M., Lipkowitz, S., Park, M.,Gehring, K. Structural basis for ubiquitin-mediated dimerization and activation of the ubiquitin protein ligase Cbl-b[J]. Molecular Cell.2007,27(3):474-85.
    [99]Hicke, L., Schubert, H.L.,Hill, C.P. Ubiquitin-binding domains[J]. Nature Reviews Molecular Cell Biology.2005,6(8):610-21.
    [100]Boehr, D.D., Nussinov, R.,Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition (vol 5, pg 789,2009)[J]. Nature Chemical Biology.2009,5(12):954-54.
    [101]Csermely, P., Palotai, R.,Nussinov, R. Induced fit, conformational selection and independent dynamic segments:an extended view of binding events[J]. Trends in Biochemical Sciences.2010, 35(10):539-46.
    [102]Columbus, L., Kalai, T., Jeko, J., Hideg, K.,Hubbell, W.L. Molecular motion of spin labeled side chains in alpha-helices:Analysis by variation of side chain structure[J]. Biochemistry.2001, 40(13):3828-46.
    [103]Fawzi, N.L., Fleissner, M.R., Anthis, N.J., Kalai, T., Hideg, K., Hubbell, W.L.,Clore, G.M. A rigid disulfide-linked nitroxide side chain simplifies the quantitative analysis of PRE data[J]. Journal of Biomolecular NMR.2011,51(1-2):105-14.
    [104]Su, X.C., Man, B., Beeren, S., Liang, H., Simonsen, S., Schmitz, C., Huber, T., Messerle, B.A.,Otting, G. A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy[J]. Journal of the American Chemical Society.2008,130(32):10486-87.
    [105]Keizers, P.H.J., Desreux, J.F., Overhand, M.,Ubbink, M. Increased paramagnetic effect of a lanthanide protein probe by two-point attachment[J]. Journal of the American Chemical Society. 2007,129(30):9292-93.
    [106]Keizers, P.H.J., Saragliadis, A., Hiruma, Y., Overhand, M.,Ubbink, M. Design, Synthesis, and Evaluation of a Lanthanide Chelating Protein Probe:CLaNP-5 Yields Predictable Paramagnetic Effects Independent of Environment[J]. Journal of the American Chemical Society.2008, 130(44):14802-12.
    [107]Saio, T., Ogura, K., Yokochi, M., Kobashigawa, Y.,Inagaki, F. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect[J]. Journal of Biomolecular NMR.2009,44(3):157-66.
    [108]Hass, M.A.S., Keizers, P.H.J., Blok, A., Hiruma, Y.,Ubbink, M. Validation of a Lanthanide Tag for the Analysis of Protein Dynamics by Paramagnetic NMR Spectroscopy[J]. Journal of the American Chemical Society.2010,132(29):9952-53.
    [109]Ruckert, M.,Otting, G. Alignment of biological macromolecules in novel nonionic liquid crystalline media for NMR experiments[J]. Journal of the American Chemical Society.2000, 122(32):7793-97.
    [110]Long, D., Liu, M.L.,Yang, D.W. Accurately Probing Slow Motions on Millisecond Timescales with a Robust NMR Relaxation Experiment (vol 130, pg 2432,2008)[J]. Journal of the American Chemical Society.2008,130(51):17629-29.
    [111]Sun, Y.J., Rose, J., Wang, B.C.Hsiao, C.D. The structure of glutamine-binding protein complexed with glutamine at 1.94 angstrom resolution:Comparisons with other amino acid binding proteins[J]. Journal of Molecular Biology.1998,278(1):219-29.
    [112]Loncharich, R.J., Brooks, B.R.,Pastor, R.W. Langevin Dynamics of Peptides-the Frictional Dependence of Isomerization Rates of N-Acetylalanyl-N'-Methylamide[J]. Biopolymers.1992, 32(5):523-35.
    [113]Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H.,Pedersen, L.G. A Smooth Particle MeshEwald Method[J]. Journal of Chemical Physics.1995,103(19):8577-93.
    [114]Anderegg, G., Arnaud-Neu, F., Delgado, R., Felcman, J.,Popov, K. Critical Evaluation of Stability Constants of Metal Complexes of Complexones for Biomedical and Environmental Applications (Iupac Technical Report)[J]. Pure and Applied Chemistry.2005,77(8):1445-95.
    [115]Salgado, E.N., Ambroggio, X.I., Brodin, J.D., Lewis, R.A., Kuhlman, B.,Tezcan, F.A. Metal templated design of protein interfaces[J]. Proceedings of the National Academy of Sciences of the United States of America.2010,107(5):1827-32.
    [116]Cuff, M.E., Miller, K.I., van Holde, K.E.,Hendrickson, W.A. Crystal structure of a functional unit from Octopus hemocyanin[J]. Journal of Molecular Biology.1998,278(4):855-70.
    [117]Arnold, F.H.,Haymore, B.L. Engineered Metal-Binding Proteins-Purification to Protein Folding[J]. Science.1991,252(5014):1796-97.
    [118]Wilson, T.D., Savelieff, M.G., Nilges, M.J., Marshall, N.M.,Lu, Y. Kinetics of Copper Incorporation into a Biosynthetic Purple Cu-A Azurin:Characterization of Red, Blue, and a New Intermediate Species[J]. Journal of the American Chemical Society.2011,133(51):20778-92.
    [119]Lovell, S.C., Word, J.M., Richardson, J.S.J Richardson, D.C. The penultimate rotamer library[J]. Proteins-Structure Function and Genetics.2000,40(3):389-408.
    [120]Kuszewski, J., Gronenborn, A.M.,Clore, G.M. Improving the quality of NMR and crystal lographic protein structures by means of a conformational database potential derived from structure databases[J]. Protein Science.1996,5(6):1067-80.
    [121]Hu, J.S.,Bax, A. chi(1) angle information from a simple two-dimensional NMR experiment that identifies trans (3)J(NC)gamma couplings in isotopically enriched proteins[J]. Journal of Biomolecular NMR.1997,9(3):323-28.
    [122]Tam, R.,Saier, M.H. Structural, Functional, and Evolutionary Relationships among Extracellular Solute-Binding Receptors of Bacteria[J]. Microbiological Reviews.1993,57(2):320-46.
    [123]Dwyer, M.A.,Hellinga, H.W. Periplasmic binding proteins:a versatile superfamily for protein engineering[J]. Current Opinion in Structural Biology.2004,14(4):495-504.
    [124]Hsiao, C.D., Sun, Y.J., Rose, J.,Wang, B.C. The crystal structure of glutamine-binding protein from Escherichia coli[J]. Journal of Molecular Biology.1996,262(2):225-42.
    [125]Bax, A. Weak alignment offers new NMR opportunities to study protein structure and dynamics[J]. Protein Science.2003,12(1):1-16.
    [126]Simon, K., Xu, J., Kim, C.Skrynnikov, N. Estimating the accuracy of protein structures using residual dipolar couplings[J]. Journal of Biomolecular NMR.2005,33(2):83-93.
    [127]Mittermaier, A.,Kay, L.E. Review-New tools provide new insights in NMR studies of protein dynamics[J]. Science.2006,312(5771):224-28.
    [128]Duan, X.Q.,Quiocho, F.A. Structural evidence for a dominant role of nonpolar interactions in the binding of a transport/chemosensory receptor to its highly polar ligands[J]. Biochemistry.2002, 41(3):706-12.
    [129]Millet,O., Hudson, R.P.,Kay, L.E. The energetic cost of domain reorientation in maltose-binding protein as studied by NMR and fluorescence spectroscopy[J]. Proceedings of the National Academy of Sciences of the United States of America.2003,100(22):12700-05.
    [130]Bermejo, G.A., Strub, M.P., Ho, C.,Tjandra, N. Determination of the Solution-Bound Conformation of an Amino Acid Binding Protein by NMR Paramagnetic Relaxation Enhancement:Use of a Single Flexible Paramagnetic Probe with Improved Estimation of Its Sampling Space[J]. Journal of the American Chemical Society.2009,131(27):9532-37.
    [131]Bermejo, G.A., Strub, M.P., Ho, C.Tjandra, N. Ligand-Free Open-Closed Transitions of Periplasmic Binding Proteins:The Case of Glutamine-Binding Protein[J]. Biochemistry.2010, 49(9):1893-902.
    [132]Sommer, B., Keinanen, K., Verdoorn, T.A., Wisden, W., Burnashev, N., Herb, A., Kohler, M., Operated Channels of the Cns[J]. Science.1990,249(4976):1580-85.
    [133]Sommer, B., Kohler, M., Sprengel, R.,Seeburg, P.H. Rna Editing in Brain Controls a Determinant of Ion Flow in Glutamate-Gated Channels[J]. Cell.1991,67(1):11-19.
    [134]Puchalski, R.B., Louis, J.C., Brose, N., Traynelis, S.F., Egebjerg, J., Kukekov, V., Wenthold, R.J., Rogers, S.W., Lin, F., Moran, T., Morrison, J.H.,Heinemann, S.F. Selective Rna Editing and Subunit Assembly of Native Glutamate Receptors[J]. Neuron.1994,13(1):131-47.
    [135]Sun, Y., Olson, R., Horning, M., Armstrong, N., Mayer, M.,Gouaux, E. Mechanism of glutamate receptor desensitization[J]. Nature.2002,417(6886):245-53.
    [136]Sobolevsky, A.I., Rosconi, M.P.,Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor[J]. Nature.2009,462(7274):745-56.
    [137]Armstrong, N.,Gouaux, E. Mechanisms for activation and antagonism of an AMPA-Sensitive glutamate receptor:Crystal structures of the GIuR2 ligand binding core[J]. Neuron.2000,28(1): 165-81.
    [138]Armstrong, N., Jasti, J., Beich-Frandsen, M.,Gouaux, E. Measurement of conformational changes accompanying desensitization in an ionotropic glutamate receptor[J]. Cell.2006,127(1):85-97.
    [139]Stern-Bach, Y., Russo, S., Neuman, M.,Rosenmund, C. A point mutation in the glutamate binding site blocks desensitization of AMPA receptors[J]. Neuron.1998,21(4):907-18.
    [140]Patneau, D.K., Vyklicky, L.,Mayer, M.L. Hippocampal-Neurons Exhibit Cyclothiazide-Sensitive Rapidly Desensitizing Responses to Kainate[J]. Journal ofNeuroscience.1993,13(8):3496-509.
    [141]Mosbacher, J., Schoepfer, R., Monyer, H., Burnashev, N., Seeburg, P.H.,Ruppersberg, J.P. A Molecular Determinant for Submillisecond Desensitization in Glutamate Receptors[J]. Science. 1994,266(5187):1059-62.
    [142]Harms, J.E., Benveniste, M., Maclean, J.K.F., Partin, K.M.,Jamieson, C. Functional analysis of a novel positive allosteric modulator of AMPA receptors derived from a structure-based drug design strategy[J]. Neuropharmacology.2013,64:45-52.
    [143]Chen, G.Q., Sun, Y., Jin, R.S.,Gouaux, E. Probing the ligand binding domain of the GluR2 receptor by proteolysis and deletion mutagenesis defines domain boundaries and yields a crystallizable construct[J]. Protein Science.1998,7(12):2623-30.
    [144]Armstrong, N., Sun, Y., Chen, G.Q.,Gouaux, E. Structure of a glutamate-receptor Hgand-binding core in complex with kainate[J]. Nature.1998,395(6705):913-17.
    [145]Grzesiek, S.,Bax, A. Improved 3d Triple-Resonance NMR Techniques Applied to a 31-Kda Protein[J]. Journal of Magnetic Resonance.1992,96(2):432-40.
    [146]Schleucher, J., Sattler, M.,Griesinger, C. Coherence Selection by Gradients without Signal Attenuation-Application to the 3-Dimensional Hnco Experiment[J]. Angewandte Chemie-Intemational Edition in English.1993,32(10):1489-91.
    [147]Kay, L.E., Xu, G.Y.,Yamazaki, T. Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2o Saturation[J]. Journal of Magnetic Resonance Series A.1994,109(1):129-33.
    [148]Wittekind, M.,Mueller, L. Hncacb, a High-Sensitivity 3d NMR Experiment to Correlate Amide-Proton and Nitrogen Resonances with the Alpha-Carbon and Beta-Carbon Resonances in Proteins[J]. Journal of Magnetic Resonance Series B.1993,101(2):201-05.
    [149]Muhandiram, D.R.,Kay, L.E. Gradient-Enhanced Triple-Resonance 3-Dimensional NMR Experiments with Improved Sensitivity [J]. Journal of Magnetic Resonance Series B.1994, 103(3):203-16.
    [150]Wang, T.,Duan, Y. Ligand Entry and Exit Pathways in the beta(2)-Adrenergic Receptor[J]. Journal of Molecular Biology.2009,392(4):1102-15.
    [151]Kunze, M.B.A., Wright, D.W., Werbeck, N.D., Kirkpatrick, J., Coveney, P.V.,Hansen, D.F. Loop Interactions and Dynamics Tune the Enzymatic Activity of the Human Histone Deacetylase 8[J]. Journal of the American Chemical Society.2013,135(47):17862-68.
    [152]Zhuang, T.D., Chisholm, C., Chen, M.,Tamm, L.K. NMR-Based Conformational Ensembles Explain pH-Gated Opening and Closing of OmpG Channel[J]. Journal of the American Chemical Society.2013,135(40):15101-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700