ScPDCD5蛋白溶液结构、主链动力学及其功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人PDCD5是一个新发现的促细胞凋亡因子,尽管其参与程序性细胞死亡调控的作用机制尚未十分清楚。新近的研究显示其参与Tip60-p53介导的细胞凋亡通路。人PDCD5的Ν?末端螺旋区和核心螺旋区的NMR结构已被两个不同研究小组分开解析,截至我们文章发表时尚无PDCD5家族蛋白完整结构被报道。PDCD5是一个进化保守的基因。
     本论文由三章组成。第一章综述了常用的顺磁探针、顺磁弛豫增强(PRE)理论及其在鉴定瞬态的、低丰度的生物大分子及其复合物中的应用。
     酿酒酵母YMR074c编码一个PDCD5同源蛋白Ymr074cp。在第二章中,我们采用多维异核NMR技术研究Ymr074cp在溶液状态下的结构和主链动力学,发现Ymr074cp有一个相对刚性的核心结构区(aa 43? 105),其独立折叠成一个拓展的3股螺旋束;核心结构两端各存在一个无结构区段。鉴于Ymr074cp第8-116 aa被预测为一个dsDNA结合结构域,我们最终选择1? 116aa (Ν1 16)和36 ? 116aa (Δ81Δ)用于结构测定及其主链动力学分析。
     Δ81Δ核心区折叠成一个拓展的三股螺旋束,在α4与α5之间有一段6个氨基酸残基的“可变动的”loop;核心的两端为柔性尾巴。通过测定Δ81Δ主链15N弛豫参数,并进行reduced spectral density mapping (约化谱密度映射)和旋转扩散张量分析,我们发现它的overall tumbling有明确的相关时间(τm≈8.2ns),在溶液状态下,Δ81Δ表现出轻微的旋转扩散各向异性。Model-free动力学参数揭示:在Δ81Δ中,核心螺旋构架了一个“相对刚体”,侧翼螺旋可以进行微调;与核心螺旋不同,在“可变动的”loop (α4/α5)和末端均表现出相对较大的主链柔性。
     通过测定N116主链15N弛豫速率并结合约化谱密度映射和Lipari-Szabo映射,我们发现谱密度函数勾画了N116二级结构元件的频谱,核心螺旋的运动动力汇聚于低频,非结构区的运动动力则向高频散开。Ν1 16( 1?42)为一个相当柔性的区段,尽管如此,多个证据(CSI、中短程特征NOEs和弛豫数据)均揭示出3 ? 15aa形成一段α?螺旋,并且它可能经历着不同于核心结构区的overall tumbling运动。由此可见,在N116中存在3种较为典型的状态:(1)以核心螺旋为代表的“相对刚体”;(2)以Ν1 16( 18?40)为代表的高度无序状态;(3)以Ν1 16( 4?15;α1)为代表的第三种状态。
     Ν1 16( 1?42)与核心结构没有直接接触,因为在它们之间观察不到明显的分子内NOE。有鉴于此,我们通过位点特异性自旋标记技术(SDSL)分别在A7C和A11C引入自旋标记,结合PRE技术来映射N116中长程相互作用,结果观察到了较为明显的长程相互作用。顺磁中心与某个主链氨基质子的距离约束(dR)被诠释成一个经r ?6权重的、时间和系综平均距离,以半定量方式约束dR,但取的边界相对宽松(±4 ?),最后得到一个NMR结构系综。因为计算的结构整合了多种构象的特征,并且它比溶液状态下的真实状态要显得紧凑些,因此我们用一个NMR结构系综来描述N116在溶液中的状态。从NMR滴定实验也获得一点启示:N116核心结构内“可变动的”loop可能介导N116与dsDNA结合,但结合能力很弱。同源结构比较揭示出PDCD5核心结构区在进化中、尤其是从酵母到人的进化中相对保守,其Ν?末端残基则经历从高度无序到相对有序的转变过程。
     在第三章我们初步探讨了YMR074c过表达的促酵母凋亡样死亡效应。我们通过研究发现:YMR074c过表达没有引发、但是明显促进Η2Ο2引发的酵母凋亡样死亡,并且Yca1p metacaspase部分介导了这一过程;同时还发现酵母其它caspase-like蛋白酶也介导YMR074c过表达的促凋亡效应。过表达Ν?末端缺失突变体蛋白大大削弱Ymr074cp的促细胞凋亡效应。这些结果表明Ymr074cp参与Η2Ο2引发的酵母凋亡样死亡过程,尽管具体作用机制尚未明了。再结合第二章的同源结构比较数据,我们有理由认为PDCD5的结构、功能在真核生物中是保守的,于是我们正式将S. cerevisiae Ymr074cp命名为ScPDCD5 (基因ScPDCD5)。
Human PDCD5 protein is a novel programmed cell death (PCD)-promoting molecule, although the mechanism by which PDCD5 participates in the regulation of PCD is not very clear. Recently, it has been reported that human PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and is involved in the Tip60-p53 apoptotic pathway induced by DNA damage. The NMR structures of the N-terminal helix and the helical core have been separately determined by two groups, however, the global structural features of such an important protein family has not been reported yet. Although PDCD5 is an evolutionary conserved gene, the function of Ymr074cp, a single S. cerevisiae homologue of hPDCD5, is still unknown. Up to now, in the Saccharomyces genome database, this protein has been described as an uncharacterized protein of unknown function.
     The paper consists of three chapters. In the chapter one, we reviewed the theory and applications of paramagnetic relaxation enhancement (PRE) for the characterization of transient low-population states of biological macromolecules and their complexes. We also summarized some paramagnetic probes attached to proteins and nucleic acids, and several paramagnetic cosolutes for probing molecular surfaces, usually employed in the studies of the structure and dynamics of macromolecules. Additionally, we introduced several pulse sequences for the measurement of PRE 1ΗΝ?Γ2 rates. Finally, two examples of the applications of PRE were given.
     In the chapter two, the heteronuclear NMR methods were used to determine the solution structure of the N-terminal 116-residue fragment (N116), a predicted dsDNA-binding domain, and that of the core residues (36-116,Δ81Δ) of Ymr074cp protein. The solution structure ofΔ81Δis stabilized by hydrophobic interactions and adopts a well-defined fold of extended triple-helix bundle flanked by two disordered tails. The helical core has a“variable loop”of six residues. The NMR relaxation H experiments were employed to investigate the backbone dynamics ofΔ81Δ. By a reduced spectral density mapping and a rotational diffusion analysis of the backbone 15N relaxation parameters, we found that theΔ81Δprotein has a slightly anisotropic rotational diffusion tensor with a well-defined correlation time of about 8.2 ns for its overall tumbling in solution. The model-free dynamic parameters indicate that the core helices constitute the“relatively rigid body”of theΔ81Δprotein but the two flanking helices are permitted to undergo slight internal motions. In contrast with the core helices, the“variable loop”and the two tails are much more flexible.
     The 15N relaxation parameters, a reduced spectral density mapping and a Lipari-Szabo mapping based on the relaxation rates were also used to interpret the backbone dynamics of the N116 protein. The spectral density functions delineate the spectrum of frequencies available to the secondary structural elements of the N116 protein. The power of the motion given by the intensity of the spectral density function is gathered toward low frequencies in the core helices of the protein, while it is more spread toward high frequencies in the unstructured parts, especially in the highly flexible linker. It has been indicated that the N-terminal helix might undergo a faster overall tumbling motion than the helical core. Taken together, there are three typical states in the N116 protein: (1) the“relatively rigid body”represented by the core helices; (2) the highly disordered regionΝ1 16( 18?40); (3) the third state represented byΝ1 16( 4?15;α1), a much more flexible helix than the core helices.
     We failed to characterize any long-range (|i ? j|≥5) intramolecular NOE connecting the N-terminal helix and the helical core. By the nitroxide spin label, attached to the mutant cysteine residue at position 7 or 11, however, significant transient interactions were probed between the N-terminal helical portion and the core moiety plus several residues in the C-terminal tail. It has been indicated that the N-terminal helical structure has a unique electrostatic potential character and such transient interactions may take place via electrostatic interactions between the N-terminal helical portion and the core moiety. Because of the r?6 averaging effects, caused by the flexibility of the N-terminal helix and that of the nitroxide side chain, the distance restraint dR is interpreted as an r?6-weighted, time and ensemble-averaged distance between the spin label and an amide proton. The spirit of a semiquantitative restraint is used in the structural interpretation of the PBE data, but with relatively loose (±4 ?) bounds. Clearly, calculated structures will combine structural features that may not necessarily be present simultaneously in any one conformation and will inevitably be more compact than the true ensemble. The fact that a flexibly folded protein is most likely to be a heterogeneous ensemble makes more sense to interpret the calculated structures as an ensemble rather than as individual or average structures. A comparison of the solution structures of PDCD5-related proteins indicates that the structure of the triple-helix bundle is significantly conserved during evolution, especially in the evolution from yeast to man, while the N-terminal part transits from a high disorder to a relative order.
     In the third chapter, we are the first to demonstrate that YMR074c overexpression promotes H2O2-induced apoptosis in yeast, not only in a metacaspase Yca1p-dependent manner but also in an Yca1p-independent manner and that deletion of the N-terminal helical portion greatly attenuates the apoptosis-promoting activity of this protein. Based on the data on the structure and function of S. cerevisiae Ymr074cp, we conclude that Ymr074cp indeed functions as a bona fide apoptosis-promoting molecule in yeast and propose the name ScPDCD5 (gene ScPDCD5).
引文
1 Onuchic, J. N., Luthey-Schulten, Z. and Wolynes, P. G. (1997) Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem. 48, 545-600
    2 Benkovic, S. J., Hammes, G. G. and Hammes-Schiffer, S. (2008) Free-energy landscape of enzyme catalysis. Biochemistry. 47, 3317-3321
    3 Miyashita, O., Onuchic, J. N. and Wolynes, P. G. (2003) Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci U S A. 100, 12570-12575
    4 Iwahara, J. and Clore, G. M. (2006) Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature. 440, 1227-1230
    5 Iwahara, J. and Clore, G. M. (2006) Direct observation of enhanced translocation of a homeodomain between DNA cognate sites by NMR exchange spectroscopy. J Am Chem Soc. 128, 404-405
    6 Iwahara, J., Zweckstetter, M. and Clore, G. M. (2006) NMR structural and kinetic characterization of a homeodomain diffusing and hopping on nonspecific DNA. Proc Natl Acad Sci U S A. 103, 15062-15067
    7 Wüthrich, K. (1986) NMR of Proteins and Nucleic Acids. John Wiley & Sons: New York
    8 Clore, G. M. and Gronenborn, A. M. (1991) Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science. 252, 1390-1399
    9 Clore, G. M. and Gronenborn, A. M. (1991) Two-, three-, and four-dimensional NMR methods for obtaining larger and more precise three-dimensional structures of proteins in solution. Annu Rev Biophys Biophys Chem. 20, 29-63
    10 Clore, G. M., Wingfield, P. T. and Gronenborn, A. M. (1991) High-resolution three-dimensional structure of interleukin 1 beta in solution by three- and four-dimensional nuclear magnetic resonance spectroscopy. Biochemistry. 30, 2315-2323
    11 Clore, G. M., Kay, L. E., Bax, A. and Gronenborn, A. M. (1991) Four-dimensional 13C/13C-edited nuclear Overhauser enhancement spectroscopy of a protein in solution: application to interleukin 1 beta. Biochemistry. 30, 12-18
    12 Garrett, D. S., Seok, Y. J., Liao, D. I., Peterkofsky, A., Gronenborn, A. M. and Clore, G. M. (1997)Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry. 36, 2517-2530
    13 Salzmann, M., Pervushin, K., Wider, G., Senn, H. and Wuthrich, K. (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci U S A. 95, 13585-13590
    14 Tugarinov, V., Muhandiram, R., Ayed, A. and Kay, L. E. (2002) Four-dimensional NMR spectroscopy of a 723-residue protein: chemical shift assignments and secondary structure of malate synthase g. J Am Chem Soc. 124, 10025-10035
    15 Tugarinov, V. and Kay, L. E. (2004) Stereospecific NMR assignments of prochiral methyls, rotameric states and dynamics of valine residues in malate synthase G. J Am Chem Soc. 126, 9827-9836
    16 Caffrey, M., Cai, M., Kaufman, J., Stahl, S. J., Wingfield, P. T., Covell, D. G., Gronenborn, A. M. and Clore, G. M. (1998) Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 17, 4572-4584
    17 Tugarinov, V., Choy, W. Y., Orekhov, V. Y. and Kay, L. E. (2005) Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proc Natl Acad Sci U S A. 102, 622-627
    18 Garrett, D. S., Seok, Y. J., Peterkofsky, A., Gronenborn, A. M. and Clore, G. M. (1999) Solution structure of the 40,000 Mr phosphoryl transfer complex between the N-terminal domain of enzyme I and HPr. Nat Struct Biol. 6, 166-173
    19 Williams, D. C., Jr., Cai, M., Suh, J. Y., Peterkofsky, A. and Clore, G. M. (2005) Solution NMR structure of the 48-kDa IIAMannose-HPr complex of the Escherichia coli mannose phosphotransferase system. J Biol Chem. 280, 20775-20784
    20 Suh, J. Y., Tang, C. and Clore, G. M. (2007) Role of electrostatic interactions in transient encounter complexes in protein-protein association investigated by paramagnetic relaxation enhancement. J Am Chem Soc. 129, 12954-12955
    21 Clore, G. M., Gronenborn, A. M. and Bax, A. (1998) A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J Magn Reson. 133, 216-221
    22 Zweckstetter, M. and Bax, A. (2000) Prediction of sterically induced alignment in a dilute liquidcrystalline phase: aid to protein structure determination by NMR. J. Am. Chem. Soc. 122, 3791-3792
    23 Zweckstetter, M. (2008) NMR: prediction of molecular alignment from structure using the PALES software. Nat Protoc. 3, 679-690
    24 Losonczi, J. A., Andrec, M., Fischer, M. W. and Prestegard, J. H. (1999) Order matrix analysis of residual dipolar couplings using singular value decomposition. J Magn Reson. 138, 334-342
    25 Meiler, J., Blomberg, N., Nilges, M. and Griesinger, C. (2000) A new approach for applying residual dipolar couplings as restraints in structure elucidation. J Biomol NMR. 16, 245-252
    26 Al-Hashimi, H. M., Valafar, H., Terrell, M., Zartler, E. R., Eidsness, M. K. and Prestegard, J. H. (2000) Variation of molecular alignment as a means of resolving orientational ambiguities in protein structures from dipolar couplings. J Magn Reson. 143, 402-406
    27 Clore, G. M. and Gronenborn, A. M. (1998) New methods of structure refinement for macromolecular structure determination by NMR. Proc Natl Acad Sci U S A. 95, 5891-5898
    28 McCallum, S. A. and Pardi, A. (2003) Refined solution structure of the iron-responsive element RNA using residual dipolar couplings. J Mol Biol. 326, 1037-1050
    29 Skrynnikov, N. R., Goto, N. K., Yang, D., Choy, W. Y., Tolman, J. R., Mueller, G. A. and Kay, L. E. (2000) Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with beta-cyclodextrin. J Mol Biol. 295, 1265-1273
    30 Evenas, J., Tugarinov, V., Skrynnikov, N. R., Goto, N. K., Muhandiram, R. and Kay, L. E. (2001) Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J Mol Biol. 309, 961-974
    31 Goto, N. K., Skrynnikov, N. R., Dahlquist, F. W. and Kay, L. E. (2001) What is the average conformation of bacteriophage T4 lysozyme in solution? A domain orientation study using dipolar couplings measured by solution NMR. J Mol Biol. 308, 745-764
    32 Dosset, P., Hus, J. C., Marion, D. and Blackledge, M. (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. J Biomol NMR. 20, 223-231
    33 Bolon, P. J., Al-Hashimi, H. M. and Prestegard, J. H. (1999) Residual dipolar coupling derived orientational constraints on ligand geometry in a 53 kDa protein-ligand complex. J Mol Biol. 293, 107-115
    34 Fushman, D., Varadan, R., Assfalg, M. and Walker, O. (2004) Determining domain orientation in macromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog. Nucl. Magn. Reson. Spectrosc. 44, 189-214
    35 Valafar, H. and Prestegard, J. H. (2004) REDCAT: a residual dipolar coupling analysis tool. J Magn Reson. 167, 228-241
    36 Jain, N. U., Noble, S. and Prestegard, J. H. (2003) Structural characterization of a mannose-binding protein-trimannoside complex using residual dipolar couplings. J Mol Biol. 328, 451-462
    37 Al-Hashimi, H. M., Tolman, J. R., Majumdar, A., Gorin, A. and Patel, D. J. (2001) Determining stoichiometry in homomultimeric nucleic acid complexes using magnetic field induced residual dipolar couplings. J Am Chem Soc. 123, 5806-5807
    38 Lukin, J. A., Kontaxis, G., Simplaceanu, V., Yuan, Y., Bax, A. and Ho, C. (2003) Quaternary structure of hemoglobin in solution. Proc Natl Acad Sci U S A. 100, 517-520
    39 Williams, D. C., Jr., Cai, M. and Clore, G. M. (2004) Molecular basis for synergistic transcriptional activation by Oct1 and Sox2 revealed from the solution structure of the 42-kDa Oct1.Sox2.Hoxb1-DNA ternary transcription factor complex. J Biol Chem. 279, 1449-1457
    40 Mueller, G. A., Choy, W. Y., Yang, D., Forman-Kay, J. D., Venters, R. A. and Kay, L. E. (2000) Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol. 300, 197-212
    41 Hus, J. C., Marion, D. and Blackledge, M. (2000) De novo determination of protein structure by NMR using orientational and long-range order restraints. J Mol Biol. 298, 927-936
    42 Prestegard, J. H., Bougault, C. M. and Kishore, A. I. (2004) Residual dipolar couplings in structure determination of biomolecules. Chem Rev. 104, 3519-3540
    43 Dosset, P., Hus, J. C., Blackledge, M. and Marion, D. (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR. 16, 23-28
    44 Walker, O., Varadan, R. and Fushman, D. (2004) Efficient and accurate determination of the overall rotational diffusion tensor of a molecule from (15)N relaxation data using computer program ROTDIF. J Magn Reson. 168, 336-345
    45 Bruschweiler, R., Liao, X. and Wright, P. E. (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 268, 886-889
    46 Copie, V., Tomita, Y., Akiyama, S. K., Aota, S., Yamada, K. M., Venable, R. M., Pastor, R. W., Krueger, S. and Torchia, D. A. (1998) Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure. J Mol Biol. 277, 663-682
    47 Fushman, D., Xu, R. and Cowburn, D. (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Biochemistry. 38, 10225-10230
    48 Ghose, R., Fushman, D. and Cowburn, D. (2001) Determination of the rotational diffusion tensor of macromolecules in solution from nmr relaxation data with a combination of exact and approximate methods--application to the determination of interdomain orientation in multidomain proteins. J Magn Reson. 149, 204-217
    49 Varadan, R., Walker, O., Pickart, C. and Fushman, D. (2002) Structural properties of polyubiquitin chains in solution. J Mol Biol. 324, 637-647
    50 Cook, W. J., Jeffrey, L. C., Carson, M., Chen, Z. and Pickart, C. M. (1992) Structure of a diubiquitin conjugate and a model for interaction with ubiquitin conjugating enzyme (E2). J Biol Chem. 267, 16467-16471
    51 Kosen, P. A. (1989) Spin labeling of proteins. Methods Enzymol. 177, 86-121
    52 Battiste, J. L. and Wagner, G. (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry. 39, 5355-5365
    53 Gaponenko, V., Howarth, J. W., Columbus, L., Gasmi-Seabrook, G., Yuan, J., Hubbell, W. L. and Rosevear, P. R. (2000) Protein global fold determination using site-directed spin and isotope labeling. Protein Sci. 9, 302-309
    54 Donaldson, L. W., Skrynnikov, N. R., Choy, W. Y., Muhandiram, D. R., Sarkar, B., Forman-Kay, J. D. and Kay, L. E. (2001) Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc. 123, 9843-9847
    55 Dvoretsky, A., Gaponenko, V. and Rosevear, P. R. (2002) Derivation of structural restraints using a thiol-reactive chelator. FEBS Lett. 528, 189-192
    56 Gillespie, J. R. and Shortle, D. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. JMol Biol. 268, 158-169
    57 Gillespie, J. R. and Shortle, D. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol. 268, 170-184
    58 Bertoncini, C. W., Jung, Y. S., Fernandez, C. O., Hoyer, W., Griesinger, C., Jovin, T. M. and Zweckstetter, M. (2005) Release of long-range tertiary interactions potentiates aggregation of natively unstructured alpha-synuclein. Proc Natl Acad Sci U S A. 102, 1430-1435
    59 Dedmon, M. M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M. and Dobson, C. M. (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc. 127, 476-477
    60 Kristjansdottir, S., Lindorff-Larsen, K., Fieber, W., Dobson, C. M., Vendruscolo, M. and Poulsen, F. M. (2005) Formation of native and non-native interactions in ensembles of denatured ACBP molecules from paramagnetic relaxation enhancement studies. J Mol Biol. 347, 1053-1062
    61 Vise, P., Baral, B., Stancik, A., Lowry, D. F. and Daughdrill, G. W. (2007) Identifying long-range structure in the intrinsically unstructured transactivation domain of p53. Proteins. 67, 526-530
    62 Hong, J., Zhang, J., Liu, Z., Qin, S., Wu, J. and Shi, Y. (2009) Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast. Biochemistry. 48, 6824-6834
    63 Mal, T. K., Ikura, M. and Kay, L. E. (2002) The ATCUN domain as a probe of intermolecular interactions: application to calmodulin-peptide complexes. J Am Chem Soc. 124, 14002-14003
    64 Gross, J. D., Moerke, N. J., von der Haar, T., Lugovskoy, A. A., Sachs, A. B., McCarthy, J. E. and Wagner, G. (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell. 115, 739-750
    65 Card, P. B., Erbel, P. J. and Gardner, K. H. (2005) Structural basis of ARNT PAS-B dimerization: use of a common beta-sheet interface for hetero- and homodimerization. J Mol Biol. 353, 664-677
    66 Johnson, P. E., Brun, E., MacKenzie, L. F., Withers, S. G. and McIntosh, L. P. (1999) The cellulose-binding domains from Cellulomonas fimi beta-1, 4-glucanase CenC bind nitroxide spin-labeled cellooligosaccharides in multiple orientations. J Mol Biol. 287, 609-625
    67 Jain, N. U., Venot, A., Umemoto, K., Leffler, H. and Prestegard, J. H. (2001) Distance mapping of protein-binding sites using spin-labeled oligosaccharide ligands. Protein Sci. 10, 2393-2400
    68 Macnaughtan, M. A., Kamar, M., Alvarez-Manilla, G., Venot, A., Glushka, J., Pierce, J. M. and Prestegard, J. H. (2007) NMR structural characterization of substrates bound to N-acetylglucosaminyltransferase V. J Mol Biol. 366, 1266-1281
    69 Iwahara, J., Anderson, D. E., Murphy, E. C. and Clore, G. M. (2003) EDTA-derivatized deoxythymidine as a tool for rapid determination of protein binding polarity to DNA by intermolecular paramagnetic relaxation enhancement. J Am Chem Soc. 125, 6634-6635
    70 Iwahara, J., Schwieters, C. D. and Clore, G. M. (2004) Ensemble approach for NMR structure refinement against (1)H paramagnetic relaxation enhancement data arising from a flexible paramagnetic group attached to a macromolecule. J Am Chem Soc. 126, 5879-5896
    71 Ueda, T., Kato, A., Ogawa, Y., Torizawa, T., Kuramitsu, S., Iwai, S., Terasawa, H. and Shimada, I. (2004) NMR study of repair mechanism of DNA photolyase by FAD-induced paramagnetic relaxation enhancement. J Biol Chem. 279, 52574-52579
    72 Roosild, T. P., Greenwald, J., Vega, M., Castronovo, S., Riek, R. and Choe, S. (2005) NMR structure of Mistic, a membrane-integrating protein for membrane protein expression. Science. 307, 1317-1321
    73 Liang, B., Bushweller, J. H. and Tamm, L. K. (2006) Site-directed parallel spin-labeling and paramagnetic relaxation enhancement in structure determination of membrane proteins by solution NMR spectroscopy. J Am Chem Soc. 128, 4389-4397
    74 Hansen, D. F., Hass, M. A., Christensen, H. M., Ulstrup, J. and Led, J. J. (2003) Detection of short-lived transient protein-protein interactions by intermolecular nuclear paramagnetic relaxation: plastocyanin from Anabaena variabilis. J Am Chem Soc. 125, 6858-6859
    75 Tang, C., Iwahara, J. and Clore, G. M. (2006) Visualization of transient encounter complexes in protein-protein association. Nature. 444, 383-386
    76 Volkov, A. N., Worrall, J. A., Holtzmann, E. and Ubbink, M. (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci U S A. 103, 18945-18950
    77 Lietzow, M. A., Jamin, M., Jane Dyson, H. J. and Wright, P. E. (2002) Mapping long-range contacts in a highly unfolded protein. J Mol Biol. 322, 655-662
    78 Tang, C., Schwieters, C. D. and Clore, G. M. (2007) Open-to-closed transition in apo maltose-binding protein observed by paramagnetic NMR. Nature. 449, 1078-1082
    79 Ikegami, T., Verdier, L., Sakhaii, P., Grimme, S., Pescatore, B., Saxena, K., Fiebig, K. M. and Griesinger, C. (2004) Novel techniques for weak alignment of proteins in solution using chemical tags coordinating lanthanide ions. J Biomol NMR. 29, 339-349
    80 Keizers, P. H., Desreux, J. F., Overhand, M. and Ubbink, M. (2007) Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc. 129, 9292-9293
    81 Keizers, P. H., Saragliadis, A., Hiruma, Y., Overhand, M. and Ubbink, M. (2008) Design, synthesis, and evaluation of a lanthanide chelating protein probe: CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc. 130, 14802-14812
    82 Iwahara, J., Tang, C. and Marius Clore, G. (2007) Practical aspects of (1)H transverse paramagnetic relaxation enhancement measurements on macromolecules. J Magn Reson. 184, 185-195
    83 Ermacora, M. R., Delfino, J. M., Cuenoud, B., Schepartz, A. and Fox, R. O. (1992) Conformation-dependent cleavage of staphylococcal nuclease with a disulfide-linked iron chelate. Proc Natl Acad Sci U S A. 89, 6383-6387
    84 Ebright, Y. W., Chen, Y., Pendergrast, P. S. and Ebright, R. H. (1992) Incorporation of an EDTA-metal complex at a rationally selected site within a protein: application to EDTA-iron DNA affinity cleaving with catabolite gene activator protein (CAP) and Cro. Biochemistry. 31, 10664-10670
    85 Iwahara, J., Schwieters, C. D. and Clore, G. M. (2004) Characterization of nonspecific protein-DNA interactions by 1H paramagnetic relaxation enhancement. J Am Chem Soc. 126, 12800-12808
    86 Chirivino, E., Giordano, C., Faini, S., Cellai, L. and Fragai, M. (2007) Tuning sensitivity in paramagnetic NMR detection of ligand-DNA interactions. ChemMedChem. 2, 1153-1156
    87 Qin, P. Z., Hideg, K., Feigon, J. and Hubbell, W. L. (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry. 42, 6772-6783
    88 Solomon, I. (1955) Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565
    89 Bloembergen, N. and Morgan, L. (1961) Proton relaxation times in paramagnetic solutions: effects of electron spin relaxation. J. Chem. Phys. 34, 842–850
    90 Gueron, M. (1975) Nuclear relaxation in macromolecules by paramagnetic ions: a novel mechanism. J. Magn. Reson. 19, 58-66
    91 Bertini, I., Luchinat, C. and Parigi, G. (2002) Prog. Nucl. Magn. Reson. Spectrosc. 40, 249
    92 Barbieri, R., Bertini, I., Lee, Y. M., Luchinat, C. and Velders, A. H. (2002) Structure-independentcross-validation between residual dipolar couplings originating from internal and external orienting media. J Biomol NMR. 22, 365-368
    93 Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546-4559
    94 Cai, S., Zhu, L., Zhang, Z. and Chen, Y. (2007) Determination of the three-dimensional structure of the Mrf2-DNA complex using paramagnetic spin labeling. Biochemistry. 46, 4943-4950
    95 Halford, S. E. and Marko, J. F. (2004) How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 32, 3040-3052
    96 Givaty, O. and Levy, Y. (2009) Protein sliding along DNA: dynamics and structural characterization. J Mol Biol. 385, 1087-1097
    97 Fraenkel, E. and Pabo, C. O. (1998) Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. Nat Struct Biol. 5, 692-697
    98 Affolter, M., Percival-Smith, A., Muller, M., Leupin, W. and Gehring, W. J. (1990) DNA binding properties of the purified Antennapedia homeodomain. Proc Natl Acad Sci U S A. 87, 4093-4097
    99 Catron, K. M., Iler, N. and Abate, C. (1993) Nucleotides flanking a conserved TAAT core dictate the DNA binding specificity of three murine homeodomain proteins. Mol Cell Biol. 13, 2354-2365
    100 Pelletier, H. and Kraut, J. (1992) Crystal structure of a complex between electron transfer partners, cytochrome c peroxidase and cytochrome c. Science. 258, 1748-1755
    101 Northrup, S. H., Boles, J. O. and Reynolds, J. C. (1988) Brownian dynamics of cytochrome c and cytochrome c peroxidase association. Science. 241, 67-70
    102 Northrup, S. H., Luton, J. A., Boles, J. O. and Reynolds, J. C. (1988) Brownian dynamics simulation of protein association. J Comput Aided Mol Des. 1, 291-311
    103 Hoffman, B. M., Celis, L. M., Cull, D. A., Patel, A. D., Seifert, J. L., Wheeler, K. E., Wang, J., Yao, J., Kurnikov, I. V. and Nocek, J. M. (2005) Differential influence of dynamic processes on forward and reverse electron transfer across a protein-protein interface. Proc Natl Acad Sci U S A. 102, 3564-3569
    1 Liu, H., Wang, Y., Zhang, Y., Song, Q., Di, C., Chen, G., Tang, J. and Ma, D. (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis of some tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun. 254, 203-210
    2 Xu, M., Cheng, N., Gui, L., Lai, M., Wang, Y., Xia, D., Rui, M., Zhang, Y. and Ma, D. (2004) The 5'-upstream region of human programmed cell death 5 gene contains a highly active TATA-less promoter that is up-regulated by etoposide. Gene. 329, 39-49
    3 Dunn, I. F., Geha, R. S. and Tsitsikov, E. N. (1999) Structure of the murine TRAF1 gene. Mol Immunol. 36, 611-617
    4 Li, F. and Altieri, D. C. (1999) Transcriptional analysis of human survivin gene expression. Biochem J. 344 Pt 2, 305-311
    5 Gu, L., Yao, W., Yan, Z., Xie, L., Sun, D., Li, D., Zeng, Z. and Wen, Z. (2003) Effects of TFAR19 gene on the growth and biorheological properties of mouse erythroleukemia cell line MEL. Sci China C Life Sci. 46, 293-301
    6 Gu, L., Tang, Z., He, D., Ka, W., Sun, D. and Wen, Z. (2007) Effects of TFAR19 gene on the in vivo biorheological properties and pathogenicity of mouse erythroleukemia cell line MEL. Sci China C Life Sci. 50, 111-119
    7 Rui, M., Chen, Y., Zhang, Y. and Ma, D. (2002) Transfer of anti-TFAR19 monoclonal antibody into HeLa cells by in situ electroporation can inhibit the apoptosis. Life Sci. 71, 1771-1778
    8 Chen, L. N., Wang, Y., Ma, D. L. and Chen, Y. Y. (2006) Short interfering RNA against the PDCD5 attenuates cell apoptosis and caspase-3 activity induced by Bax overexpression. Apoptosis. 11, 101-111
    9 Wang, Y., Li, X., Wang, L., Ding, P., Zhang, Y., Han, W. and Ma, D. (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci. 117, 1525-1532
    10 Chen, Y., Sun, R., Han, W., Zhang, Y., Song, Q., Di, C. and Ma, D. (2001) Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis? FEBS Lett. 509, 191-196
    11 Ruan, G. R., Qin, Y. Z., Chen, S. S., Li, J. L., Ma, X., Chang, Y., Wang, Y. Z., Fu, J. Y. and Liu, Y. R. (2006) Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloidleukemia. Leuk Res. 30, 1159-1165
    12 Spinola, M., Meyer, P., Kammerer, S., Falvella, F. S., Boettger, M. B., Hoyal, C. R., Pignatiello, C., Fischer, R., Roth, R. B., Pastorino, U., Haeussinger, K., Nelson, M. R., Dierkesmann, R., Dragani, T. A. and Braun, A. (2006) Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J Clin Oncol. 24, 1672-1678
    13 Yang, Y. H., Zhao, M., Li, W. M., Lu, Y. Y., Chen, Y. Y. and Kang, B. (2006) Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis. 11, 993-1001
    14 Li, H., Wang, Q., Gao, F., Zhu, F., Wang, X., Zhou, C., Liu, C., Chen, Y., Ma, C., Sun, W. and Zhang, L. (2008) Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas. Oncol Rep. 20, 573-579
    15 Lou, D. Y., Dominguez, I., Toselli, P., Landesman-Bollag, E., O'Brien, C. and Seldin, D. C. (2008) The alpha catalytic subunit of protein kinase CK2 is required for mouse embryonic development. Mol Cell Biol. 28, 131-139
    16 Salvi, M., Xu, D., Chen, Y., Cabrelle, A., Sarno, S. and Pinna, L. A. (2009) Programmed cell death protein 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells. Biochem Biophys Res Commun. 387, 606-610
    17 Xu, L., Chen, Y., Song, Q., Xu, D., Wang, Y. and Ma, D. (2009) PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia. 11, 345-354
    18 Sykes, S. M., Mellert, H. S., Holbert, M. A., Li, K., Marmorstein, R., Lane, W. S. and McMahon, S. B. (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell. 24, 841-851
    19 Tang, Y., Luo, J., Zhang, W. and Gu, W. (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell. 24, 827-839
    20 Kamine, J., Elangovan, B., Subramanian, T., Coleman, D. and Chinnadurai, G. (1996) Identification of a cellular protein that specifically interacts with the essential cysteine region of the HIV-1 Tat transactivator. Virology. 216, 357-366
    21 Gaughan, L., Logan, I. R., Cook, S., Neal, D. E. and Robson, C. N. (2002) Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of thereceptor. J Biol Chem. 277, 25904-25913
    22 Patel, J. H., Du, Y., Ard, P. G., Phillips, C., Carella, B., Chen, C. J., Rakowski, C., Chatterjee, C., Lieberman, P. M., Lane, W. S., Blobel, G. A. and McMahon, S. B. (2004) The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 24, 10826-10834
    23 Legube, G., Linares, L. K., Lemercier, C., Scheffner, M., Khochbin, S. and Trouche, D. (2002) Tip60 is targeted to proteasome-mediated degradation by Mdm2 and accumulates after UV irradiation. EMBO J. 21, 1704-1712
    24 Col, E., Caron, C., Chable-Bessia, C., Legube, G., Gazzeri, S., Komatsu, Y., Yoshida, M., Benkirane, M., Trouche, D. and Khochbin, S. (2005) HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. EMBO J. 24, 2634-2645
    25 Lemercier, C., Legube, G., Caron, C., Louwagie, M., Garin, J., Trouche, D. and Khochbin, S. (2003) Tip60 acetyltransferase activity is controlled by phosphorylation. J Biol Chem. 278, 4713-4718
    26 Yamamoto, T. and Horikoshi, M. (1997) Novel substrate specificity of the histone acetyltransferase activity of HIV-1-Tat interactive protein Tip60. J Biol Chem. 272, 30595-30598
    27 Kimura, A. and Horikoshi, M. (1998) Tip60 acetylates six lysines of a specific class in core histones in vitro. Genes Cells. 3, 789-800
    28 Sapountzi, V., Logan, I. R. and Robson, C. N. (2006) Cellular functions of TIP60. Int J Biochem Cell Biol. 38, 1496-1509
    29 Frank, S. R., Parisi, T., Taubert, S., Fernandez, P., Fuchs, M., Chan, H. M., Livingston, D. M. and Amati, B. (2003) MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575-580
    30 Halkidou, K., Logan, I. R., Cook, S., Neal, D. E. and Robson, C. N. (2004) Putative involvement of the histone acetyltransferase Tip60 in ribosomal gene transcription. Nucleic Acids Res. 32, 1654-1665
    31 Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., Scully, R., Qin, J. and Nakatani, Y. (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 102, 463-473
    32 Murr, R., Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q. and Herceg, Z. (2006) Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol. 8, 91-99
    33 Li, H., Cuenin, C., Murr, R., Wang, Z. Q. and Herceg, Z. (2004) HAT cofactor Trrap regulates the mitotic checkpoint by modulation of Mad1 and Mad2 expression. EMBO J. 23, 4824-4834
    34 Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 288, 1053-1058
    35 Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y. and Taya, Y. (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 102, 849-862
    36 Nakano, K. and Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 7, 683-694
    37 Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. and Vogelstein, B. (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 7, 673-682
    38 Willis, S. N. and Adams, J. M. (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol. 17, 617-625
    39 Vaseva, A. V. and Moll, U. M. (2009) The mitochondrial p53 pathway. Biochim Biophys Acta. 1787, 414-420
    40 Xu, Y. (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ. 10, 400-403
    41 Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., Stroedicke, M., Zenkner, M., Schoenherr, A., Koeppen, S., Timm, J., Mintzlaff, S., Abraham, C., Bock, N., Kietzmann, S., Goedde, A., Toksoz, E., Droege, A., Krobitsch, S., Korn, B., Birchmeier, W., Lehrach, H. and Wanker, E. E. (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell. 122, 957-968
    42 Allis, C. D., Berger, S. L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., Shilatifard, A., Workman, J. and Zhang, Y. (2007) New nomenclature for chromatin-modifying enzymes. Cell. 131, 633-636
    43 Smith, E. R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou, J., Cook, R. G., Lucchesi, J. C. and Allis, C. D. (1998) ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci U S A. 95, 3561-3565
    44 Clarke, A. S., Lowell, J. E., Jacobson, S. J. and Pillus, L. (1999) Esa1p is an essential histoneacetyltransferase required for cell cycle progression. Mol Cell Biol. 19, 2515-2526
    45 Allard, S., Utley, R. T., Savard, J., Clarke, A., Grant, P., Brandl, C. J., Pillus, L., Workman, J. L. and Cote, J. (1999) NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18, 5108-5119
    46 Doyon, Y., Selleck, W., Lane, W. S., Tan, S. and Cote, J. (2004) Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol. 24, 1884-1896
    47 Bird, A. W., Yu, D. Y., Pray-Grant, M. G., Qiu, Q., Harmon, K. E., Megee, P. C., Grant, P. A., Smith, M. M. and Christman, M. F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature. 419, 411-415
    48 Utley, R. T. and Cote, J. (2003) The MYST family of histone acetyltransferases. Curr Top Microbiol Immunol. 274, 203-236
    49 Downs, J. A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S. J., Jackson, S. P. and Cote, J. (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell. 16, 979-990
    50 Clarke, A. S., Samal, E. and Pillus, L. (2006) Distinct roles for the essential MYST family HAT Esa1p in transcriptional silencing. Mol Biol Cell. 17, 1744-1757
    51 Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. and O'Shea, E. K. (2003) Global analysis of protein localization in budding yeast. Nature. 425, 686-691
    52 Sopko, R., Huang, D., Preston, N., Chua, G., Papp, B., Kafadar, K., Snyder, M., Oliver, S. G., Cyert, M., Hughes, T. R., Boone, C. and Andrews, B. (2006) Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell. 21, 319-330
    53 Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., Andre, B., Arkin, A. P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K. D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kotter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhai-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C. Y.,Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W. and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature. 418, 387-391
    54 Hong, J., Zhang, J., Liu, Z., Qin, S., Wu, J. and Shi, Y. (2009) Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast. Biochemistry. 48, 6824-6834
    55 Xie, M. W., Jin, F., Hwang, H., Hwang, S., Anand, V., Duncan, M. C. and Huang, J. (2005) Insights into TOR function and rapamycin response: chemical genomic profiling by using a high-density cell array method. Proc Natl Acad Sci U S A. 102, 7215-7220
    56 Fillingham, J., Recht, J., Silva, A. C., Suter, B., Emili, A., Stagljar, I., Krogan, N. J., Allis, C. D., Keogh, M. C. and Greenblatt, J. F. (2008) Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol. 28, 4342-4353
    57 Schneider, J., Bajwa, P., Johnson, F. C., Bhaumik, S. R. and Shilatifard, A. (2006) Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J Biol Chem. 281, 37270-37274
    58 Driscoll, R., Hudson, A. and Jackson, S. P. (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science. 315, 649-652
    59 Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R. M. and Zhang, Z. (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science. 315, 653-655
    60 Han, J., Zhou, H., Li, Z., Xu, R. M. and Zhang, Z. (2007) The Rtt109-Vps75 histone acetyltransferase complex acetylates non-nucleosomal histone H3. J Biol Chem. 282, 14158-14164
    61 Han, J., Zhou, H., Li, Z., Xu, R. M. and Zhang, Z. (2007) Acetylation of lysine 56 of histone H3 catalyzed by RTT109 and regulated by ASF1 is required for replisome integrity. J Biol Chem. 282, 28587-28596
    62 Yamaki, M., Umehara, T., Chimura, T. and Horikoshi, M. (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells. 6, 1043-1054
    63 Liu, D., Yao, H., Chen, Y., Feng, Y. and Wang, J. (2005) The N-terminal 26-residue fragment of human programmed cell death 5 protein can form a stable alpha-helix having unique electrostatic potential character. Biochem J. 392, 47-54
    64 Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory Press
    65 Schuck, P. (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 78, 1606-1619
    66 Schuck, P., Perugini, M. A., Gonzales, N. R., Howlett, G. J. and Schubert, D. (2002) Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J. 82, 1096-1111
    67 Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J. and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 6, 277-293
    68 Goddard, T. D. and Kneller, D. G. (2006) SPARKY 3, University of California, San Francisco, CA.
    69 Wishart, D. S., Sykes, B. D. and Richards, F. M. (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 222, 311-333
    70 Johnson, B. A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278, 313-352
    71 Wishart, D. S., Sykes, B. D. and Richards, F. M. (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 31, 1647-1651
    72 Wishart, D. S. and Sykes, B. D. (1994) The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR. 4, 171-180
    73 Wishart, D. S. and Sykes, B. D. (1994) Chemical shifts as a tool for structure determination. Methods Enzymol. 239, 363-392
    74 Kosen, P. A. (1989) Spin labeling of proteins. Methods Enzymol. 177, 86-121
    75 Battiste, J. L. and Wagner, G. (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry. 39, 5355-5365
    76 Volkov, A. N., Worrall, J. A., Holtzmann, E. and Ubbink, M. (2006) Solution structure and dynamics of the complex between cytochrome c and cytochrome c peroxidase determined by paramagnetic NMR. Proc Natl Acad Sci U S A. 103, 18945-18950
    77 Cai, S., Zhu, L., Zhang, Z. and Chen, Y. (2007) Determination of the three-dimensional structureof the Mrf2-DNA complex using paramagnetic spin labeling. Biochemistry. 46, 4943-4950
    78 Cornilescu, G., Delaglio, F. and Bax, A. (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR. 13, 289-302
    79 Schwieters, C. D., Kuszewski, J. J. and Clore, G. M. (2006) Using Xplor-NIH for NMR molecular structure determination. Prog. Nucl. Magn. Reson. Spectrosc. 48, 47-62
    80 Brunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J. S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. and Warren, G. L. (1998) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr. 54, 905-921
    81 Koradi, R., Billeter, M. and Wuthrich, K. (1996) MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 14, 51-55, 29-32
    82 Liu, Y., Wang, X. Q., Zhang, J. H., Huang, H. D., Ding, B., Wu, J. H. and Shi, Y. Y. (2008) Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry. 47, 6403-6417
    83 Farrow, N. A., Muhandiram, R., Singer, A. U., Pascal, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D. and Kay, L. E. (1994) Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 33, 5984-6003
    84 Peng, J. W. and Wagner, G. (1992) Mapping of the spectral densities of N-H bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry. 31, 8571-8586
    85 Farrow, N. A., Zhang, O., Forman-Kay, J. D. and Kay, L. E. (1995) Comparison of the backbone dynamics of a folded and an unfolded SH3 domain existing in equilibrium in aqueous buffer. Biochemistry. 34, 868-878
    86 Bracken, C., Carr, P. A., Cavanagh, J. and Palmer, A. G., 3rd. (1999) Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA. J Mol Biol. 285, 2133-2146
    87 Barthe, P., Chiche, L., Declerck, N., Delsuc, M. A., Lefevre, J. F., Malliavin, T., Mispelter, J., Stern, M. H., Lhoste, J. M. and Roumestand, C. (1999) Refined solution structure and backbone dynamics of 15N-labeled C12A-p8MTCP1 studied by NMR relaxation. J Biomol NMR. 15, 271-288
    88 Fushman, D., Varadan, R., Assfalg, M. and Walker, O. (2004) Determining domain orientation inmacromolecules by using spin-relaxation and residual dipolar coupling measurements. Prog. Nucl. Magn. Reson. Spectrosc. 44, 189-214
    89 Fushman, D. and Cowburn, D. (1998) Studying protein dynamics with NMR relaxation, in: R. Sarma, M. Sarma (Eds.), Structure, Motion,Interaction and Expression of Biological Macromolecules, Adenine Press, Albany, NY. pp. 63-77
    90 Tjandra, N., Feller, S. E., Pastor, R. W. and Bax, A. (1995) J. Am. Chem. Soc. 117, 12562-12566
    91 Lee, L. K., Rance, M., Chazin, W. J. and Palmer, A. G., 3rd. (1997) Rotational diffusion anisotropy of proteins from simultaneous analysis of 15N and 13C alpha nuclear spin relaxation. J Biomol NMR. 9, 287-298
    92 Fushman, D., Xu, R. and Cowburn, D. (1999) Direct determination of changes of interdomain orientation on ligation: use of the orientational dependence of 15N NMR relaxation in Abl SH(32). Biochemistry. 38, 10225-10230
    93 Dosset, P., Hus, J. C., Blackledge, M. and Marion, D. (2000) Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J Biomol NMR. 16, 23-28
    94 Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546-4559
    95 Lipari, G. and Szabo, A. (1982) Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 104, 4559-4570
    96 Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C. and Gronenborn, A. M. (1990) Deviation from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 112, 4989-4991
    97 Fischer, M. W. F., Majumdar, A. and Zuiderweg, E. R. P. (1998) Prog. NMR Spectrosc. 33, 207-272
    98 Schwarzinger, S., Kroon, G. J., Foss, T. R., Wright, P. E. and Dyson, H. J. (2000) Random coil chemical shifts in acidic 8 M urea: implementation of random coil shift data in NMRView. J Biomol NMR. 18, 43-48
    99 Solomon, I. (1955) Relaxation processes in a system of two spins. Phys. Rev. 99, 559–565
    100 Bloembergen, N. and Morgan, L. (1961) Proton relaxation times in paramagnetic solutions:effects of electron spin relaxation. J. Chem. Phys. 34, 842–850
    101 Gillespie, J. R. and Shortle, D. (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol. 268, 170-184
    102 Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26, 283-291
    103 Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680
    104 Gouet, P., Courcelle, E., Stuart, D. I. and Metoz, F. (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics. 15, 305-308
    105 Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko, A., Cort, J. R., Booth, V., Mackereth, C. D., Saridakis, V., Ekiel, I., Kozlov, G., Maxwell, K. L., Wu, N., McIntosh, L. P., Gehring, K., Kennedy, M. A., Davidson, A. R., Pai, E. F., Gerstein, M., Edwards, A. M. and Arrowsmith, C. H. (2000) Structural proteomics of an archaeon. Nat Struct Biol. 7, 903-909
    106 Shindyalov, I. N. and Bourne, P. E. (1998) Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739-747
    107 Maguire, M. L., Guler-Gane, G., Nietlispach, D., Raine, A. R., Zorn, A. M., Standart, N. and Broadhurst, R. W. (2005) Solution structure and backbone dynamics of the KH-QUA2 region of the Xenopus STAR/GSG quaking protein. J Mol Biol. 348, 265-279
    108 Ebersole, T. A., Chen, Q., Justice, M. J. and Artzt, K. (1996) The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Nat Genet. 12, 260-265
    109 Vernet, C. and Artzt, K. (1997) STAR, a gene family involved in signal transduction and activation of RNA. Trends Genet. 13, 479-484
    110 Farrow, N. A., Zhang, O. W., Szabo, A., Torchia, D. A. and Kay, L. E. (1995) Spectral Density-Function Mapping Using N-15 Relaxation Data Exclusively. Journal of Biomolecular Nmr. 6, 153-162
    111 Peng, J. W. and Wagner, G. (1995) Frequency spectrum of NH bonds in eglin c from spectral density mapping at multiple fields. Biochemistry. 34, 16733-16752
    112 Ishima, R. and Nagayama, K. (1995) Quasi-spectral-density function analysis for nitrogen-15 nuclei in proteins. J. Magn. Reson. ser. B. 108, 73-76
    113 Lefevre, J. F., Dayie, K. T., Peng, J. W. and Wagner, G. (1996) Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions. Biochemistry. 35, 2674-2686
    114 Kay, L. E., Torchia, D. A. and Bax, A. (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry. 28, 8972-8979
    115 Andrec, M., Montelione, G. T. and Levy, R. M. (2000) Lipari-Szabo mapping: A graphical approach to Lipari-Szabo analysis of NMR relaxation data using reduced spectral density mapping. J Biomol NMR. 18, 83-100
    116 Viles, J. H., Donne, D., Kroon, G., Prusiner, S. B., Cohen, F. E., Dyson, H. J. and Wright, P. E. (2001) Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry. 40, 2743-2753
    117 Fushman, D., Ghose, R. and Cowburn, D. (2000) J. Am. Chem. Soc. 122, 10640-10649
    118 Cordier, F., Caffrey, M., Brutscher, B., Cusanovich, M. A., Marion, D. and Blackledge, M. (1998) Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2. J Mol Biol. 281, 341-361
    119 Bruschweiler, R., Liao, X. and Wright, P. E. (1995) Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. Science. 268, 886-889
    120 Mandel, A. M., Akke, M. and Palmer, A. G., 3rd. (1995) Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol. 246, 144-163
    1 Madeo, F., Frohlich, E., Ligr, M., Grey, M., Sigrist, S. J., Wolf, D. H. and Frohlich, K. U. (1999) Oxygen stress: a regulator of apoptosis in yeast. In J Cell Biol ed.)^eds.). pp. 757-767
    2 Ludovico, P., Sousa, M. J., Silva, M. T., Leao, C. and Corte-Real, M. (2001) Saccharomyces cerevisiae commits to a programmed cell death process in response to acetic acid. Microbiology. 147, 2409-2415
    3 Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., Fehr, M., Lauber, K., Sigrist, S. J., Wesselborg, S. and Frohlich, K. U. (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell. 9, 911-917
    4 Fannjiang, Y., Cheng, W. C., Lee, S. J., Qi, B., Pevsner, J., McCaffery, J. M., Hill, R. B., Basanez, G. and Hardwick, J. M. (2004) Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 18, 2785-2797
    5 Ludovico, P., Rodrigues, F., Almeida, A., Silva, M. T., Barrientos, A. and Corte-Real, M. (2002) Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell. 13, 2598-2606
    6 Severin, F. F. and Hyman, A. A. (2002) Pheromone induces programmed cell death in S. cerevisiae. Curr Biol. 12, R233-235
    7 Wadskog, I., Maldener, C., Proksch, A., Madeo, F. and Adler, L. (2004) Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol Biol Cell. 15, 1436-1444
    8 Silva, R. D., Sotoca, R., Johansson, B., Ludovico, P., Sansonetty, F., Silva, M. T., Peinado, J. M. and Corte-Real, M. (2005) Hyperosmotic stress induces metacaspase- and mitochondria-dependent apoptosis in Saccharomyces cerevisiae. Mol Microbiol. 58, 824-834
    9 Kitagaki, H., Araki, Y., Funato, K. and Shimoi, H. (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 581, 2935-2942
    10 Madeo, F., Frohlich, E. and Frohlich, K. U. (1997) A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol. 139, 729-734
    11 Braun, R. J., Zischka, H., Madeo, F., Eisenberg, T., Wissing, S., Buttner, S., Engelhardt, S. M., Buringer, D. and Ueffing, M. (2006) Crucial mitochondrial impairment upon CDC48 mutation inapoptotic yeast. J Biol Chem. 281, 25757-25767
    12 Bettiga, M., Calzari, L., Orlandi, I., Alberghina, L. and Vai, M. (2004) Involvement of the yeast metacaspase Yca1 in ubp10Delta-programmed cell death. FEMS Yeast Res. 5, 141-147
    13 Mazzoni, C., Herker, E., Palermo, V., Jungwirth, H., Eisenberg, T., Madeo, F. and Falcone, C. (2005) Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep. 6, 1076-1081
    14 Herker, E., Jungwirth, H., Lehmann, K. A., Maldener, C., Frohlich, K. U., Wissing, S., Buttner, S., Fehr, M., Sigrist, S. and Madeo, F. (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol. 164, 501-507
    15 Reiter, J., Herker, E., Madeo, F. and Schmitt, M. J. (2005) Viral killer toxins induce caspase-mediated apoptosis in yeast. J Cell Biol. 168, 353-358
    16 Ivanovska, I. and Hardwick, J. M. (2005) Viruses activate a genetically conserved cell death pathway in a unicellular organism. J Cell Biol. 170, 391-399
    17 Fahrenkrog, B., Sauder, U. and Aebi, U. (2004) The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci. 117, 115-126
    18 Wissing, S., Ludovico, P., Herker, E., Buttner, S., Engelhardt, S. M., Decker, T., Link, A., Proksch, A., Rodrigues, F., Corte-Real, M., Frohlich, K. U., Manns, J., Cande, C., Sigrist, S. J., Kroemer, G. and Madeo, F. (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol. 166, 969-974
    19 Walter, D., Wissing, S., Madeo, F. and Fahrenkrog, B. (2006) The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci. 119, 1843-1851
    20 Buttner, S., Eisenberg, T., Carmona-Gutierrez, D., Ruli, D., Knauer, H., Ruckenstuhl, C., Sigrist, C., Wissing, S., Kollroser, M., Frohlich, K. U., Sigrist, S. and Madeo, F. (2007) Endonuclease G regulates budding yeast life and death. Mol Cell. 25, 233-246
    21 Yang, H., Ren, Q. and Zhang, Z. (2008) Cleavage of Mcd1 by caspase-like protease Esp1 promotes apoptosis in budding yeast. Mol Biol Cell. 19, 2127-2134
    22 Madeo, F., Engelhardt, S., Herker, E., Lehmann, N., Maldener, C., Proksch, A., Wissing, S. and Frohlich, K. U. (2002) Apoptosis in yeast: a new model system with applications in cell biology and medicine. Curr Genet. 41, 208-216
    23 Madeo, F., Herker, E., Wissing, S., Jungwirth, H., Eisenberg, T. and Frohlich, K. U. (2004) Apoptosis in yeast. Curr Opin Microbiol. 7, 655-660
    24 Eisenberg, T., Buttner, S., Kroemer, G. and Madeo, F. (2007) The mitochondrial pathway in yeast apoptosis. Apoptosis. 12, 1011-1023
    25 Pereira, C., Silva, R. D., Saraiva, L., Johansson, B., Sousa, M. J. and Corte-Real, M. (2008) Mitochondria-dependent apoptosis in yeast. Biochim Biophys Acta. 1783, 1286-1302
    26 Mazzoni, C. and Falcone, C. (2008) Caspase-dependent apoptosis in yeast. Biochim Biophys Acta. 1783, 1320-1327
    27 Owsianowski, E., Walter, D. and Fahrenkrog, B. (2008) Negative regulation of apoptosis in yeast. Biochim Biophys Acta. 1783, 1303-1310
    28 Green, D. R. and Kroemer, G. (2004) The pathophysiology of mitochondrial cell death. Science. 305, 626-629
    29 Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. 102, 33-42
    30 Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 102, 43-53
    31 Chai, J., Du, C., Wu, J. W., Kyin, S., Wang, X. and Shi, Y. (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature. 406, 855-862
    32 Wu, G., Chai, J., Suber, T. L., Wu, J. W., Du, C., Wang, X. and Shi, Y. (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature. 408, 1008-1012
    33 Martins, L. M., Iaccarino, I., Tenev, T., Gschmeissner, S., Totty, N. F., Lemoine, N. R., Savopoulos, J., Gray, C. W., Creasy, C. L., Dingwall, C. and Downward, J. (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem. 277, 439-444
    34 Martins, L. M. (2002) The serine protease Omi/HtrA2: a second mammalian protein with a Reaper-like function. Cell Death Differ. 9, 699-701
    35 Yang, Q. H., Church-Hajduk, R., Ren, J., Newton, M. L. and Du, C. (2003) Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 17, 1487-1496
    36 Lorenzo, H. K., Susin, S. A., Penninger, J. and Kroemer, G. (1999) Apoptosis inducing factor (AIF): a phylogenetically old, caspase-independent effector of cell death. Cell Death Differ. 6, 516-524
    37 Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M. and Kroemer, G. (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397, 441-446
    38 Li, L. Y., Luo, X. and Wang, X. (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 412, 95-99
    39 Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 90, 405-413
    40 Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S. and Wang, X. (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 91, 479-489
    41 Li, K., Li, Y., Shelton, J. M., Richardson, J. A., Spencer, E., Chen, Z. J., Wang, X. and Williams, R. S. (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell. 101, 389-399
    42 Pereira, C., Camougrand, N., Manon, S., Sousa, M. J. and Corte-Real, M. (2007) ADP/ATP carrier is required for mitochondrial outer membrane permeabilization and cytochrome c release in yeast apoptosis. Mol Microbiol. 66, 571-582
    43 Lee, R. E., Puente, L. G., Kaern, M. and Megeney, L. A. (2008) A non-death role of the yeast metacaspase: Yca1p alters cell cycle dynamics. PLoS One. 3, e2956
    44 Drees, B. L., Sundin, B., Brazeau, E., Caviston, J. P., Chen, G. C., Guo, W., Kozminski, K. G., Lau, M. W., Moskow, J. J., Tong, A., Schenkman, L. R., McKenzie, A., 3rd, Brennwald, P., Longtine, M., Bi, E., Chan, C., Novick, P., Boone, C., Pringle, J. R., Davis, T. N., Fields, S. and Drubin, D. G. (2001) A protein interaction map for cell polarity development. J Cell Biol. 154, 549-571
    45 Tong, A. H., Drees, B., Nardelli, G., Bader, G. D., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A., Hogue, C. W., Fields, S., Boone, C. and Cesareni, G. (2002) A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science. 295, 321-324
    46 Yu, H., Braun, P., Yildirim, M. A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J. F., Dricot, A., Vazquez, A., Murray, R. R., Simon,C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A. S., Motyl, A., Hudson, M. E., Park, J., Xin, X., Cusick, M. E., Moore, T., Boone, C., Snyder, M., Roth, F. P., Barabasi, A. L., Tavernier, J., Hill, D. E. and Vidal, M. (2008) High-quality binary protein interaction map of the yeast interactome network. Science. 322, 104-110
    47 Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol. 21, 921-926
    48 Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A. P., Punna, T., Peregrin-Alvarez, J. M., Shales, M., Zhang, X., Davey, M., Robinson, M. D., Paccanaro, A., Bray, J. E., Sheung, A., Beattie, B., Richards, D. P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M. M., Vlasblom, J., Wu, S., Orsi, C., Collins, S. R., Chandran, S., Haw, R., Rilstone, J. J., Gandi, K., Thompson, N. J., Musso, G., St Onge, P., Ghanny, S., Lam, M. H., Butland, G., Altaf-Ul, A. M., Kanaya, S., Shilatifard, A., O'Shea, E., Weissman, J. S., Ingles, C. J., Hughes, T. R., Parkinson, J., Gerstein, M., Wodak, S. J., Emili, A. and Greenblatt, J. F. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature. 440, 637-643
    49 Larsson, K., Bohl, F., Sjostrom, I., Akhtar, N., Strand, D., Mechler, B. M., Grabowski, R. and Adler, L. (1998) The Saccharomyces cerevisiae SOP1 and SOP2 genes, which act in cation homeostasis, can be functionally substituted by the Drosophila lethal(2)giant larvae tumor suppressor gene. J Biol Chem. 273, 33610-33618
    50 Derkatch, I. L., Bradley, M. E., Hong, J. Y. and Liebman, S. W. (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell. 106, 171-182
    51 Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M. and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J. 15, 5437-5448
    52 Simos, G., Sauer, A., Fasiolo, F. and Hurt, E. C. (1998) A conserved domain within Arc1p delivers tRNA to aminoacyl-tRNA synthetases. Mol Cell. 1, 235-242
    53 Galani, K., Grosshans, H., Deinert, K., Hurt, E. C. and Simos, G. (2001) The intracellular location of two aminoacyl-tRNA synthetases depends on complex formation with Arc1p. EMBO J. 20, 6889-6898
    54 Deinert, K., Fasiolo, F., Hurt, E. C. and Simos, G. (2001) Arc1p organizes the yeastaminoacyl-tRNA synthetase complex and stabilizes its interaction with the cognate tRNAs. J Biol Chem. 276, 6000-6008
    55 Christendat, D., Yee, A., Dharamsi, A., Kluger, Y., Savchenko, A., Cort, J. R., Booth, V., Mackereth, C. D., Saridakis, V., Ekiel, I., Kozlov, G., Maxwell, K. L., Wu, N., McIntosh, L. P., Gehring, K., Kennedy, M. A., Davidson, A. R., Pai, E. F., Gerstein, M., Edwards, A. M. and Arrowsmith, C. H. (2000) Structural proteomics of an archaeon. Nat Struct Biol. 7, 903-909
    56 Liu, D., Yao, H., Chen, Y., Feng, Y. and Wang, J. (2005) The N-terminal 26-residue fragment of human programmed cell death 5 protein can form a stable alpha-helix having unique electrostatic potential character. Biochem J. 392, 47-54
    57 Hong, J., Zhang, J., Liu, Z., Qin, S., Wu, J. and Shi, Y. (2009) Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast. Biochemistry. 48, 6824-6834
    58 Gietz, R. D. and Schiestl, R. H. (1995) Transforming yeast with DNA. Methods Mol. Cell. Biol. 5, 255-269
    59 Kushnirov, V. V. (2000) Rapid and reliable protein extraction from yeast. Yeast. 16, 857-860
    60 Carré, V. and Guilloton, M. (1997) DNA fragmentation attested by TUNEL in Saccharomyces cerevisiae subjected to photodynamic treatment. Journal of Microbiological Methods. 29, 185-190
    61 Guaragnella, N., Pereira, C., Sousa, M. J., Antonacci, L., Passarella, S., Corte-Real, M., Marra, E. and Giannattasio, S. (2006) YCA1 participates in the acetic acid induced yeast programmed cell death also in a manner unrelated to its caspase-like activity. FEBS Lett. 580, 6880-6884
    62 Lehman, K., Rossi, G., Adamo, J. E. and Brennwald, P. (1999) Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9. J Cell Biol. 146, 125-140
    63 Gavrieli, Y., Sherman, Y. and Ben-Sasson, S. A. (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 119, 493-501
    64 Gorczyca, W., Traganos, F., Jesionowska, H. and Darzynkiewicz, Z. (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 207, 202-205
    65 Liu, H., Wang, Y., Zhang, Y., Song, Q., Di, C., Chen, G., Tang, J. and Ma, D. (1999) TFAR19, a novel apoptosis-related gene cloned from human leukemia cell line TF-1, could enhance apoptosis ofsome tumor cells induced by growth factor withdrawal. Biochem Biophys Res Commun. 254, 203-210
    66 Rui, M., Chen, Y., Zhang, Y. and Ma, D. (2002) Transfer of anti-TFAR19 monoclonal antibody into HeLa cells by in situ electroporation can inhibit the apoptosis. Life Sci. 71, 1771-1778
    67 Gu, L., Yao, W., Yan, Z., Xie, L., Sun, D., Li, D., Zeng, Z. and Wen, Z. (2003) Effects of TFAR19 gene on the growth and biorheological properties of mouse erythroleukemia cell line MEL. Sci China C Life Sci. 46, 293-301
    68 Chen, L. N., Wang, Y., Ma, D. L. and Chen, Y. Y. (2006) Short interfering RNA against the PDCD5 attenuates cell apoptosis and caspase-3 activity induced by Bax overexpression. Apoptosis. 11, 101-111
    69 Xu, L., Chen, Y., Song, Q., Xu, D., Wang, Y. and Ma, D. (2009) PDCD5 interacts with Tip60 and functions as a cooperator in acetyltransferase activity and DNA damage-induced apoptosis. Neoplasia. 11, 345-354
    70 Sykes, S. M., Mellert, H. S., Holbert, M. A., Li, K., Marmorstein, R., Lane, W. S. and McMahon, S. B. (2006) Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell. 24, 841-851
    71 Tang, Y., Luo, J., Zhang, W. and Gu, W. (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell. 24, 827-839
    72 Ruan, G. R., Qin, Y. Z., Chen, S. S., Li, J. L., Ma, X., Chang, Y., Wang, Y. Z., Fu, J. Y. and Liu, Y. R. (2006) Abnormal expression of the programmed cell death 5 gene in acute and chronic myeloid leukemia. Leuk Res. 30, 1159-1165
    73 Spinola, M., Meyer, P., Kammerer, S., Falvella, F. S., Boettger, M. B., Hoyal, C. R., Pignatiello, C., Fischer, R., Roth, R. B., Pastorino, U., Haeussinger, K., Nelson, M. R., Dierkesmann, R., Dragani, T. A. and Braun, A. (2006) Association of the PDCD5 locus with lung cancer risk and prognosis in smokers. J Clin Oncol. 24, 1672-1678
    74 Yang, Y. H., Zhao, M., Li, W. M., Lu, Y. Y., Chen, Y. Y. and Kang, B. (2006) Expression of programmed cell death 5 gene involves in regulation of apoptosis in gastric tumor cells. Apoptosis. 11, 993-1001
    75 Li, H., Wang, Q., Gao, F., Zhu, F., Wang, X., Zhou, C., Liu, C., Chen, Y., Ma, C., Sun, W. and Zhang, L. (2008) Reduced expression of PDCD5 is associated with high-grade astrocytic gliomas. Oncol Rep. 20, 573-579
    76 Wright, P. E. and Dyson, H. J. (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol. 293, 321-331
    77 Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M. and Obradovic, Z. (2002) Intrinsic disorder and protein function. Biochemistry. 41, 6573-6582
    78 Dyson, H. J. and Wright, P. E. (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol. 6, 197-208
    79 Sickmeier, M., Hamilton, J. A., LeGall, T., Vacic, V., Cortese, M. S., Tantos, A., Szabo, B., Tompa, P., Chen, J., Uversky, V. N., Obradovic, Z. and Dunker, A. K. (2007) DisProt: the Database of Disordered Proteins. Nucleic Acids Res. 35, D786-793
    80 Uversky, V. N. (2002) What does it mean to be natively unfolded? Eur J Biochem. 269, 2-12
    81 Fink, A. L. (2005) Natively unfolded proteins. Curr Opin Struct Biol. 15, 35-41
    82 Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell. 94, 481-490
    83 Li, H., Zhu, H., Xu, C. J. and Yuan, J. (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell. 94, 491-501
    1 Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P. and Moll, U. M. (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 11, 577-590
    2 Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., Droin, N. M., Newmeyer, D. D., Schuler, M. and Green, D. R. (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. 303, 1010-1014
    3 Erster, S., Mihara, M., Kim, R. H., Petrenko, O. and Moll, U. M. (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol. 24, 6728-6741
    4 Leu, J. I., Dumont, P., Hafey, M., Murphy, M. E. and George, D. L. (2004) Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol. 6, 443-450
    5 Vaseva, A. V. and Moll, U. M. (2009) The mitochondrial p53 pathway. Biochim Biophys Acta. 1787, 414-420
    6 Oda, E., Ohki, R., Murasawa, H., Nemoto, J., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science. 288, 1053-1058
    7 Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y. and Taya, Y. (2000) p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell. 102, 849-862
    8 Nakano, K. and Vousden, K. H. (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell. 7, 683-694
    9 Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. and Vogelstein, B. (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell. 7, 673-682
    10 Willis, S. N. and Adams, J. M. (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol. 17, 617-625
    11 Kuwana, T. and Newmeyer, D. D. (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol. 15, 691-699

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700