纳米磁性液体黏性和流体润滑力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于纳米颗粒具有尺寸小、比表面积大、表面键形态不同于颗粒内部、表面原子配位不全及表面活性强等特性,在高技术新材料领域具有重要的研究和应用价值。正因如此,针对纳米微粒摩擦学性能的研究受到了广泛关注。业已发现,纳米颗粒作为润滑油添加剂通常表现出良好的抗磨性能、优异的极压性能和一定的减摩性能;此外,纳米材料在磨损表面的沉积可能对磨损表面起一定的修复作用。
     纳米磁性颗粒具有磁性材料的特性,将其作为润滑油的添加剂,具有良好的摩擦学性能,可以提高基础油的抗磨和承载能力,并且具备普通润滑剂不具备的一系列优点:如在磁场作用下良好的自密封性能,不发生泄漏,不产生污染等,有非常好的应用前景。
     目前针对磁性液体润滑的研究很少涉及磁场作用下纳米磁性液体润滑性能的研究,而关于变磁感应强度下磁性液体润滑性能的研究则更少,因此本文通过对MS-800四球试验机油杯的改进,在测试区域内产生可调磁场;利用改进后的油杯在四球机上测定了磁场作用下和无磁场作下时添加锰锌铁氧纳米磁性颗粒润滑油的摩擦学性能。四球机试验表明,纳米磁性颗粒可以明显改善基础油的摩擦学性能;另外通过对传统的旋转黏度计进行改进,测定了不同磁感应强度下纳米磁性液体的黏度,由于在磁场作用下磁粒将沿磁力线运动,这种运动会使悬浮粒子流动阻力增大,从而表现为黏度的增大,呈现了非牛顿特性;磁性液体黏度值随磁感应强度的增强而增大,是提高添加锰锌铁氧磁性颗粒润滑油的综合磨损值的主要要原因之一,综合磨损值最大可达基础液的1.43倍;其次纳米磁性颗粒中的Zn元素充当了极压剂作用,使润滑油的最大无卡绞负荷PB值提高26%,烧结负荷PD值提高100%。研究表明在所测定的试样中,质量分数为6%磁性流体的摩擦学性能最佳,相对于基础液而言磨斑直径降低了18.2%,综合磨损值提高了40%;然后通过对质量分数为6%的纳米磁性液体在不同磁感应强度下摩擦学性能的研究表明,对于质量分数为6%的纳米磁性液体而言,22mT为最佳磁感应强度。
     通过对磨痕表面的SEM(扫描电镜)以及EDS(能量色散谱仪)分析,对添加纳米磁性颗粒在不同润滑状态下的减摩机理进行了讨论,认为纳米粒子对油品摩擦学性能改善主要是以下三个方面的原因:首先,由于吸附、微电磁场作用,导致纳米粒子在摩擦表面富集,使表面润滑膜的厚度和强度增加;其次,部分吸附在摩擦表面的纳米粒子发生摩擦化学反应,形成新的润滑膜;最后,纳米粒子可以对摩擦表面进行优化,如抛光、修复表面纳米级微坑和表面微损伤等。对于纳米磁性液体而言,在磁场作用下可以加速磁性颗粒在磨损表面的沉积,加速了润滑膜的形成和对表面纳米微坑和表面微损伤的修复,从而起到了良好的润滑效果。
     最后本文对磁性液体润滑的径向滑动轴承问题进行了理论和数值研究,推导出了纳米磁性液体润滑作用下的Reynolds方程,并可扩展到其他非牛顿流体润滑问题,为进行基于磁性液体的滑动轴承流体动力润滑分析提供了理论依据。根据所推导得到的基于磁性液体润滑的广义雷诺方程,利用有限差分法,对磁性液体润滑轴径轴承的静特性进行了数值模拟,研究了不同浓度、间隙和磁感应强度对磁性液体轴承润滑性能的影响。数值研究表明,无磁场作用时,随着纳米磁性颗粒添加量的增加,有助于提高轴承的无量纲承载能力,最大增加了24.54%;在外加磁场作用下的磁性液体润滑轴承和无磁场作用时相比,油膜压力有所提高,摩擦学性能得到进一步改善;偏心率越大,轴承承载能力增加的幅度也越大;并且如果合理设计磁场分布,则完全可以达到零泄漏,这是普通轴承无法实现的,显示了磁性液体润滑轴承的优越性。数值模拟的结果与试验结果基本一致。
The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules. When nanometer-sized particles mixed with lubricating oil, the nanometer particles can improve the lubricating oil’s abilities of extreme pressure, anti-wear, reduce frictional resistance and repair the friction surface. Research results show that the magnetic fluid is really a new kind of lubricant that is reliable and economical. And there is no leakage and pollution in the process of lubrication under the effect of magnetic field.
     However, few experimental investigations on the tribological properties of lubricating oils with nano-ferromagnetic particles have been performed under the effect of magntic field. In this paper a controllable and variable magnetic field was got by improving the oil cup of the MS-800 four-ball tester. By this improved four-ball tester, the load capacity of Mn_(0.78)Zn_(0.22)Fe_2O_4 magnetic fluid was tested with the magnetic field and without the magnetic field. The results show that, tribological characteristics of the lubricant adding Mn_(0.78)Zn_(0.22)Fe_2O_4 nanoparticles improve considerably with the effect of magnetic field. First, the viscosity of magnetic fluids increase with the increasing of magnetic field,the comprehensive load capacity is improved greatly, especially the composite wear value of Mn_(0.78)Zn_(0.22)Fe_2O_4 magnetic fluid is 1.43 times of the base oil. Then, Zn element contented in the Mn_(0.78)Zn_(0.22)Fe_2O_4 nanoparticles improve the load carrying capacity PB and PD of lubricant, and 26% increasing of PB, 100% increasing of PD is tested. Moreover, the 46# turbine oil doped with 6wt% Mn_(0.78)Zn_(0.22)Fe_2O_4 nanoparticles show the best tribological properties among the tested oil samples. When the mass percentage is 6wt%, it is found that 22mT magnetic induction is the optimum magnetic induction.
     In addition, more investigations were performed by using Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) to interpret the possible mechanisms of lubrication and wear with the nanoparticle. It was found that: First, at the effect of short force such as adsorption, faintness electron magnetism field. The thickness and intensity of oil films will be increased which will improve the tribological properties of magnetic fluid. Secondly, new oil film was built because of tribochemical reaction concerned with nanoparticles ernriched in surface under the effect of friction and wear. Thirdly, the worn surface was optimized by nanoparticles, for instance filling the tiny hole and crackle on the surface. Under the effect of magnetic field Mn_(0.78)Zn_(0.22)Fe_2O_4 particles are easily deposited and adsorbed on the worn surface, which then formed a protection film due to the shearing effect. This film can smooth and repair the wear scar then improve the wear resistance, load carrying capacity and antifriction ability of Mn_(0.78)Zn_(0.22)Fe_2O_4 magnetic fluid.
     At last, theoretical analysis and numerical study of the lubrication performance for magnetic fluid journal bearings are presented. A general Reynolds equation based on magnetic fluid model is obtained, which can be easily extended to other non-Newtonian fluids and this equation can provide theoretical basis for hydrodynamic analysis of magnetic fluid journal bearings. For the case of static loaded magnetic journal bearings, the influence of magnetic fluid effects on the lubrication performance is studied under various eccentricity ratios, magnetic intensity and concentration. The numerical results show that: with the increasing of concentration, the bearing capacity is obviously increased; the increase magnitude is larger when the eccentricity ratio is large. Under the effect of magnetic field, the bearing capacity increasing with the increasing of magnetic field intensity. When the eccentricity is small, the side leakage is highly decreased. It can be completely eliminate by appropriately designing the bearing geometry and the magnetic field which can’t be existed in normal journal bearings. Under the effect of magnetic field little change of the attitude angle is obtained.
引文
[1] Rosensweig RE. Magnetic fluids. Sci Am [J]. 1982, 247(4):124-132.
    [2]滕荣厚.浅谈磁性液体[J].粉末冶金工业,2001,11(5):48-49.
    [3]李德才.磁性液体理论及应用[M].北京:科学出版社,2003.
    [4]赵四海,尤福祯.磁流变液密封机制及结构设计[J].润滑与密封, 2006(3):144-146.
    [5]孔明礼,李德才,何新智等.磁性液体密封的磁场数值分析及优化设计[J].真空科学与技术学报, 2007,27(3):269-272.
    [6] Sama M S, Stahl P, Ward A. Magnetic field analysis of ferrofluid seals for optimum design [J]. J Appl Phys, 1984,55(6):2595-2597.
    [7] Zou J B. Numerical analysis on the action of centrifuge force in magnetic fluid rotation shaft seals [J]. JMMM, 2002(252):321-323.
    [8]葛仕福,吴金平,施明恒.离心风机轴端采用磁性液体密封的研究[J].流体机械, 2006, 34(2):19-21.
    [9]邹茜,孟永钢,温诗铸等.硬盘驱动器主轴系统的现状及发展[J].机械工程学报, 2002, 38(6):1-4.
    [10] Shinobu Y. Non-symmetrical three-lobe bearing spindle technology: a drive technology to increase aerial density [J]. IEEE Transactions on Magnetics, 1996, 32(3):1721-1726.
    [11]池长青.均匀磁场中磁性液体润滑的轴颈轴承[J].航空动力学报, 2000, 15(2):174-178.
    [12]王珉.磁性液体研磨加工机理[J].机械工程学报, 1992, 41(1):343-345.
    [13]刘佐民,李玉明.磁性液体研磨技术的国内外概况及其进展[J].武汉汽车工业大学学报, 2000, 22(1):26-29.
    [14] Childs T H C. Magnetic fluid grinding mechanics [J]. Wear, 1994, 75(9):189-198.
    [15] Zhang B, Arira N. Dynamics of magnetic fluid support grinding of Si3N4 ceramicballs for ultraprecision bearings and its improtancein spherical surface generaton [J]. Precision Engineering, 2003, 27:1-8.
    [16]韩喜英.磁性液体研磨的数学模型及工艺参数试验研究[J].中北大学学报, 2006, 27(6):467-470.
    [17]刘同冈,余久华,杨志伊.磁性液体矿物分选装置的研究[J].矿山机械,2000,10:28.
    [18]尹荔松,沈辉,张进修.磁性液体的特性及其在选矿中的应用[J].矿冶工程, 2002, 22(3):51-53.
    [19]任宝箭,高福祥,郑龙熙.选矿用磁性液体回收技术的研究现状及展望[J].有色矿冶,1994, 2:22-24.
    [20]孟宪瑛,王广义,吕国悦.超顺磁性纳米粒子在肿瘤诊断与治疗中的应用[J].吉林大学学报, 2007, 33(1):180-182.
    [21] Langer R, Cleland J L, Hanes J. New advances in microsphere based single-dose vaccines [J]. Adv Drug Delivery Rev, 1998, 28:97-119.
    [22] Pankhurst Q A. Application of magnetic nanoparticles in biomedicines [J]. Journal of Physics D: Applied Physics, 2003, 36:167-168.
    [23]王以真,胡秉奇.磁性液体在扬声器中的应用[J].扬声器与传声器, 2005,3:21-25.
    [24]邱永胜.扬声器温升的预防与消除[J].电声技术, 1999,9:22-23.
    [25]郑士杰,周福洪.磁性液体的特性及其应用[J].功能材料,1993, 24(3):261-268.
    [26]刘桂雄,曹东,程韬波.基于磁性液体独有特性的各种潜在传感器[J].功能材料,2006, 37(5):756-759.
    [27]汪建晓,孟光.磁流变液阻尼器-转子-滑动轴承系统稳定性实验研究[J].振动工程学报, 2003, 16(1):71-74.
    [28] Yang G, Spencer B F, Carlsonjd et al. Large scale MR fluid dampers: modeling and dynamic performance considerations [J]. Eng. Strcut., 2002, 24:309-323.
    [29] Berkovsky B M, Vislovich A N, Dynamics of magnetic fluids [J]. JMMM, 1983,39 :155-158.
    [30] Kazuyuki S, Takahiko T. A new complete set of basic equations for magnetic fluids with internal rotation [J]. Bulletin of JSME, 1985, 28(243):2878-2884.
    [31] Gogosov V V. Hydrodynamics of magnetic fluids [J]. JMMM, 1987, 65:301-306.
    [32] Tipei N. Theory of lubrication with Ferrofluids: application to short bearings [J]. ASME, 1982, 104:510-515.
    [33] Tipei N. Overall characteristics of bearings lubricated with Ferofluids [J]. ASME, 1983, 105:466-475.
    [34] Shukla J B, Kumar D. A theory for Ferromagnetic lubrication [J]. JMMM., 1987, 65:375-378.
    [35] Rajesh C S, Bhat M V. Ferrofuid squeeze film in long journal bearing [J]. Tribology international, 2004, 37:441-446.
    [36] Chang H S, Chi C Q, Zhao P Z. A theoretical and experimental study of Ferrofluid lubricated four-pocket journal bearings [J]. JMMM, 1987, 65:372-374.
    [37]赵丕智,王之珊.磁性液体润滑的轴颈轴承的研究[J].北京航空航天大学学报, 1992, 4:1-7.
    [38] Kumar D., Ferrofluid squeeze film for spherical and conical bearings[J]. Int. J. Engng. Sci., 1992, 30(5):645-656.
    [39] Kumar D. Ferrofluid lubrication of externally pressurized circular plates and conical bearings [J]. Int. J. Engng. Sci., 1993, 31(4):593-604.
    [40]池长青.均匀磁场中磁性液体润滑的平板滑块的性能[J].北京航天航空大学学报, 2001, 27(1):93-96.
    [41]池长青.均匀磁场中磁性液体润滑的轴颈轴承[J].航空动力学报, 2000, 15(2):174-178.
    [42]池长青.磁性液体润滑中的非牛顿流响应[J].北京航天航空大学学报, 2001, 27(1):88-92.
    [43] Rajesh C, Shah, Bhat M V. Ferrofluid lubrication in porous inclined slider bearing with velocity slip [J]. Mechanical Sciences, 2002, 44:2495-2502.
    [44] Rajesh C, Shah, Bhat M V. Anisotropic permeable porous facing and slip velocity on squeeze film in an axially undefined journal bearing with ferrofluid lubricant [J]. JMMM, 2004, 279:224-230.
    [45] Rajesh C, Shah, Bhat M V. Squeeze film based on magnetic fluid in curved porous rotating circular plates [J]. JMMM, 2000, 208:115-119.
    [46] Uhlmann E, Spur G, Bayat N, et al. Application of magnetic fluids in tribotechnical system [J]. JMMM, 2002, 252:336-340.
    [47] Sorge F. A numerical approach to finite journal bearings lubricated with ferrofluid [J]. ASME. J. Tribol, 1987, 109:77-82.
    [48] Zhang Y. Static characteristics of magnetized journal bearing lubricated with Ferrofluids [J]. ASME. J. Tribol., 1991, 113: 533-538.
    [49] Osman T A, Nada G S, Safar Z S. Static and dynamic characteristics of magnetized journal bearings lubricated with ferrofluid [J]. Tribology international, 2001, 34:369-380.
    [50]张松,虞烈.磁性液体自密封润滑滑动轴承特性的研究[J].清华大学学报(自然科学版),1996, 36(10):7-12
    [51]张松.铁磁性流体润滑及自密封润滑滑动轴承性能的研究[D].西安交通大学博士学位论文,1992.
    [52]张松,杨叔子,虞烈等.磁性液体润滑滑动轴承性能的计算和分析[J].华中理工大学学报, 1994, 22(7):102-105.
    [53] Bujurke N M, Kudenatti R B. MHD lubrication flow between rough rectangular plates [J]. Fluid dynamics research, 2007, 39:334-345.
    [54] Kuzhir P. Free boundary of lubricant film in ferrofluid journal bearings [J]. Tribology international, 2007, doi:10.1016 (article in press).
    [55]朱润生,张建斌.电场影响磁性液体摩擦系数的试验研究[J].北京航天航空大学学报, 1999, 25(5):581-584.
    [56]朱润生,张建斌.滑动摩擦主动控制的试验研究[J].摩擦学学报, 1999, 19(4):312-315.
    [57]李健,汤云峰.磁性液体用于滑动摩擦的润滑理论及实验研究[J].电工材料, 2004,3:29-34.
    [58]王利军,郭楚文,杨志伊等.磁场作用下Fe_3O_4磁性液体承载能力的试验研究[J].润滑与密封, 2006,5:22-24.
    [59]王利军,郭楚文,杨志伊等. Fe_3O_4磁性液体摩擦因数试验研究[J].润滑与密封, 2006, 7:142-144.
    [60]王利军,郭楚文,杨志伊.添加纳米Fe_3O_4润滑剂磨损性能试验研究[J].润滑与密封, 2006, 9:30-31.
    [61]王利军,郭楚文,杨志伊.磁场作用下锰锌铁氧磁性液体承载能力试验研究[J].中国矿业大学学报, 2007, 36(6):833-836.
    [62]贾鹏,王铁宝,董允等.纳米SiC颗粒作为润滑油添加剂的摩擦学性能研究[J].河北工业大学学报, 2005, 34(1): 52-56.
    [63]于伟,傅洵.含纳米银有机流体的制备及其摩擦学性能研究[J].摩擦学学报, 2004, 24(5): 425-428.
    [64]欧雪梅,葛长路,汪剑等.润滑油添加剂分散纳米铜的摩擦学性能[J].中国矿业大学学报,2005, 34(5): 640-643.
    [65]朱佳媚,刘维民,褚睿智等.桥联环三磷嗪用作润滑油添加剂的摩擦学特性[J].中国矿业大学学报, 2005, 34(6): 789-792.
    [66] Tarasov S, Kolubaev A., Belyaev S, et al. Study of friction reduction by nanocopper additives to motor oil [J]. WEAR, 2002, 252: 63-69.
    [67] Qiu S Q, Chen G X.. Preparation of Ni nanoparticles and evaluation of their tribological performance as potential additives in oils [J]. Journal of Tribology, 2001, 123: 441-443.
    [68]顾卓明,顾彩香,王仁兵等.含纳米碳酸钙粒子润滑油的摩擦学性能研究[J].材料科学与工程学报, 2005, 23(2): 269-272.
    [69] Lian Y F, Yu L G, Xue Q J. The antiwear and extreme pressure action mechanism of CeF3 in grease [J]. Lubrication Science, 1996, 8 (4): 379-388.
    [70]王晓勇,陈月珠.纳米材料在润滑技术中的应用[J].化工进展, 2001,2:27-30.
    [71] Rosensweig R E. Magnetic Fluids, International Science and Technology, July 1966.
    [72] The preparation of magnetic fluids, 9th International Conference on Magnetic Fluids, 2001.9.
    [73]叶荣昌.锰锌铁氧体磁性液体的研制及在磁场中磁性液体黏度测定的研究[D].中国矿业大学博士学位论文, 2001, 5.
    [74]刘同冈.磁性液体液体动密封结构的优化设计[D].中国矿业大学硕士学位文, 2001, 6.
    [75]江松.磁性液体粘度测试实验台的研制[D].中国矿业大学硕士学位论文,1999,6.
    [76]方先清.磁性液体密封[J].化工与通用机械. 1982,3:9-14.
    [77]梁志华,裴宁.磁性液体密封技术应用的现状与展望[J].密封与润滑.2000,1:60.
    [78] Berkovsky B M, Vislovich A N. Dynamics of Magnetic Fluids [J]. JMMM, 1983, 39:155-158.
    [79] Papell S S. Magnetic fluid, U. S. Patent 3215572, 1965.
    [80]叶容昌,刘书进,高宏.磁性液体制备技术的研究现状及其存在问题[J].机械工程材料. 2003, 27(3):33-35.
    [81] Hoon S R, Kilner M. Preparation and properties of nickel ferofluids [J]. JMMM, 1983,39:107-110.
    [82] Lmrnbfiek B, Mason N. The preparation of Co-Fe alloy fine particles from HfeCo3(C0)l2 [J]. IEEE B Trans on Mag., 1988, 24:1644.
    [83] Lambriek D, Mason N. Preparation and properties of Ni-Fe magnetic fluids [J]. JMMM,1987, 65:257.
    [84] Nakatani L, Furubayashi T, Takahask T. Preparation and properties of Ni-Fe magnetic fluids [J]. JMMM, 1987, 65:261.
    [85] Alekseen V A, Veprik I Y. Influence of microstructure on physical-mechanical properties of liquid-metal based magnetic colloids [J]. JMMM, 1990, 85:133.
    [86] Windle P L. The long term stability of mercury based ferromagnetic liquids [J]. IEEE. Trans on Ma g., 1975, 11:1367.
    [87] Popple W J. Aggregate formation in metallic ferromagnetic liquids [J]. IEEE Trans on Mag., 1980, 16:191.
    [88] Hoon S R, Dopplewell J. The resistivity of ferromagnetic liquids containing iron particles in mercury [J]. IEEE. Trans on Mag., 1978, 14:981.
    [89] Nakatani I, Furuhayashi T. Preparation of iron-nitride magnetic fluids [J]. JMMM, 1990, 85:11.
    [90]刘思林,于英仪,膝荣厚等.诸因素对制备氮化磁性液体的影响[J].金属学报,1998,34(11):1223-1226.
    [91]漆红兰.磁性微粒的制备方法和研究进展[J].生命的化学, 2002, 22(6):586-589.
    [92]王坤东,杨志伊,徐晓刚.纳米磁性液体制备及其磁性测量的研究[J].磁性材料及器件,2003, 30(1):20-22.
    [93]池长青,王之珊,赵丕智.磁性液体力学[M].北京:北京航空航天大学出版社, 1993, 127.
    [94] Mctague J P. Magnetoviscosity of magnetic colloids [J]. J. Chem.. Phys., 1969, 51:133-136.
    [95] Hall W F, Busenuerg S N. Viscosity of magnetic suspensions [J]. J. Chem .Phys., 1969, 51:137-144.
    [96]杨志伊,王坤东.磁场中磁性液体粘度测试系统的实现[J].机械工程材料,2003,27(5):22-25.
    [97]王利军,郭楚文,杨志伊.磁性液体黏度特性研究[J].润滑与密封,2006,8:46-48.
    [98] Wang L J, Guo C W, Yamane R. Experimental Research on Tribological Properties of Mn0.78Zn0.22Fe2O4 Magnetic Fluids [J]. Journal of tribology, 2008,130(3):0318011-03180115.
    [99]刘维民,薛群基,周静芳等.纳米颗粒的抗磨作用及作为磨损修复添加剂的应用研究[J].中国表面工程, 2001,3:21-29.
    [100]王九,陈波水.润滑油中CuS纳米粒子的摩擦学性能研究[J].润滑与密封,2001, 2:42-43.
    [101] Wang L J, Guo C W, Yamane R. Tribological properties of Mn-Zn-Fe Magnetic Fluids under manetic field [J]. Tribology International, (已录用)
    [102]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,159
    [103]刘洪涛,葛世荣.纳米颗粒团聚双峰分布机制研究[J].润滑与密封,2007, 12:1-4.
    [104]李祥明,戴振动,刘德浚等.摩擦作用下金属氧化反应的机理[J].南京航空航天大学学报,1999, 31(4):204-208.
    [105]刘谦,徐滨士,许一等.纳米Cu添加剂润滑摩擦表面分析[J].材料工程,2005,2:13-16.
    [106] Wen S Z. On thin film lubrication [J]. Proc. of 1st International Symp. on Trib. Oct.,Beijing, 1993, 19-23.
    [107]朱均,虞烈.流体润滑理论[M].西安交通大学润滑理论及轴承研究所, 1991.
    [108]马铁犹.计算流体动力学[M].北京航空航天大学出版社, 1986.
    [109]苏铭得,黄素逸.计算流体力学基础[M].北京清华大学出版社, 1997.
    [110] Rogers S E, Kwak D. Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations [J]. AIAA, 1990, 28:253-262.
    [111] Rogers S E, Kwak D, Kiris C. Steady and unsteady solutions of the incompressible Navier-stokes equations [J]. AIAA, 1991, 29:603-610.
    [112] Merkle C L, Althavale M. Times accurate unsteady incompressible algorithms based on artificial compressibility [J]. AIAA, 1987, 87:125-132.
    [113]朱自强等编著.应用计算流体力学[M].北京航空航天大学出版社,1998.
    [114]刘星,卞思荣,朱金福。非结构网格生成技术[M].南京航空航天大学学报,1999, 12,6:696-700.
    [115]温诗铸,黄平.摩擦学原理[M].北京清华大学出版社, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700