灌木收割切削性能与刀具参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌木是我国重要的森林资源,对我国西北部防风固沙起着重要的作用。随着大面积人工灌木林的成熟以及工业化生产的需要,为满足其平茬复壮的要求,研制出高效的收割设备。沙生灌木平茬技术的研究是十一五科技支撑项目之一,本课题是其中的一项任务,即对灌木活立木的切割性能和灌木收割机刀具进行研究,为设计高效率的切割器提供理论依据。
     灌木每3-4年需要收割(平茬)一次以保证其生长速度不会减慢。通过实地调查研究和统计分析适值收割的柠条等几种常见灌木的距地50 mm左右处的直径一般不超过15 mm,适宜收割期间(深秋和冬季)柠条含水率为55%左右,荆条含水率为55%左右,四倍体刺槐含水率为61%左右,扁担木含水率为50%左右。
     通过冲击和顺纹压缩实验测定了柠条、荆条、扁担木和四倍体刺槐的活立木冲击韧性和顺纹抗压强度及顺纹抗压弹性模量。柠条的冲击强度为6.07J/cm~2,顺纹抗压强度为23.67MPa,顺纹抗压弹性模量为1787.98MPa;荆条的冲击强度为11.78J/cm~2,顺纹抗压强度为48.06 MPa,顺纹抗压弹性模量为3544.36MPa;四倍体刺槐冲击强度为10.09 J/cm~2,顺纹抗压强度为40.78 MPa,顺纹抗压弹性模量为2304.87 MPa;扁担木的冲击强度为8.47J/cm~2,顺纹抗压强度为65.88MPa,顺纹抗压弹性模量为2523.88 MPa。四种灌木的冲击强度在国产木材范围之内(冲击强度数值为1.60-18.22 J/cm~2),顺纹抗压强度和抗压弹性模量与常见的木材相比偏小。
     建立了单根灌木活立木切割的力学模型,设计一套实验装置,实验测定不同楔角的刀具(30°,40°,45°,50°,60°,70°)剪切不同直径灌木的剪断力。结果表明,树种、灌木直径和刀具楔角对剪断力都有显著性影响,直径与楔角角度的交互作用对剪断力的影响较小(用50°刀剪切四倍体刺槐时例外)。按照树种剪断力F与直径d、刀具楔角β之间有二次线性关系,因此在设计切割器时需要调查灌木的种类和待切断处的直径范围。当用前角较大的刀具剪切直径较大的灌木时,断口处产生了严重的挤压,导致灌木萌发率降低。
     对北京林业大学研制的步进手扶式割灌机圆锯片进行模态分析,3种圆锯片采用不同的夹持直径(100mm,70mm,57mm),采用Br(?)el&Kjae系统进行了对3种圆锯片(装卡在机体上)进行实验研究发现前两阶频率值比ANSYS计算值大,其中一阶频率比较接近,大部分相比ANSYS计算值提高了8%左右,二阶频率提高较大,幅度达到了20%~55%,结果表明在安装在机体上圆锯片的稳定性有所提高。对圆锯片的临界转速进行分析,提出圆锯片的工作转速的合理区间,实际工作转速ω应大于临界切断速度ω_l而小于最大输出转速ω_(max)且不在临界转速区间[ω_p]内,从而为北京林业大学研制的步进手扶式割灌机圆锯片的合理选用和传动机构的优化设计提供了理论依据。
Shrub is an important kind of forest resource with great effect on breaking wind and stabilizing sand in northwest China. Reach on high efficiency equipment for rejuvenation of shrubs is the key with the maturity of large-scale forest plantation and the demand of industrialized production. Sandy-shrub harvesting technology is one of the programs of Science Research for the 11th Five-year Plan. As a task of the program, this study researched into mechanical properties of shrubs and cutting tools, and the results provide theory basis for the design of high-efficiency cutters.
     In order to keep growth, shrubs need be reaped every 3 to 4 years. The investigation results show that the shrubs diameter apart from root 50 mm mostly shall not exceed 15mm, such as Caragana Korshinskii Kom, Vitex, Fourfold Acacia, and Grewia biloba var.parviflora. The moisture content of the above shrubs is about 55%, 55%, 61% and 50% separately in late autumn and winter when they are reaped.
     Impact toughness, compressive strength and compression elastic modulus parallel to grain of these shrubs were researched by experiments. According to the order, the data of Caragana Korshinskii Kom is about 6.07 J/cm~2, 23.67 MPa, and 1787.98 MPa separately, and the data of Vitex is about 11.78 J/cm~2, 48.06 MPa and 3544.36 MPa separately. Additionally, the data of Fourfold Acacia is about 10.09 J/cm~2, 40.78 MPa and 2304.87 MPa , whereas the data of Grewia biloba var.parviflora is about 8.47 J/cm~2, 65.88MPa and 2523.88MPa respectively. The impact toughness four shrubs is in the bound of the data of wood in China, but the compressive strength and compression elastic modulus parallel to grain are some small than those of ordinary wood.
     Shearing mechanical model of single standing shrub was upbuilt, and a suit of experiment equipment was designed. The shearing forces of shrubs with different diameters by different cutters with variant front angles (30°, 40°, 45°, 50°, 60°, 70°) were tested. The results show that the species, diameter, and angle of the cutter have remarkable influence on shearing force, but the effect of interaction of diameter and angle is not very prominent (however, Fourfold Acacia is irregular occasionally). According to species, shearing force "F", diameter "d" and wedge angle of "β" is quadratic linear relationship. So the species and diameter of the shrub should be investigated before the design of reciprocating cutters. The shrub will be extruded when sheared by cutters with big wedge angles and the aftereffect is a lower germination rate.
     Modal analysis for a single circular saw with different clamp diameter (100mm, 70mm and 57mm) was carried out by ANSYS and Brüel & Kj(?)r system. The results show that the value of natural frequency by experiment is some higher than that by ANSYS. The values of fundamental natural frequency are mostly increased by 8%, and the values of second-order frequency have an increase range about 20%-55%. The comparison shows that the stability circular saws are improved when they are fixed on the Pedestrian Controlled Circular Saw Shrub-cutter designed by Beijing Forestry University. The proper range of working rotate speed of circular saws was ascertained after the analysis of criticalspeed. The relation working rotate speed "ω", critical cut-off speed "ω_l", the max output speedω_(max) and critical speed range [ω_p] isω_l <ω<ω_(max) , at the same time,ω(?) [ω_p]. So the researchprovided theory basis for appropriate use and optimum design of drive mechanism of the Circular Saw Shrub-cutter.
引文
1.安贞,杨永福.沙柳材端向切削特性的研究[J].林产工业,2007,34(1):27-30.
    2.保平.柠条的开发与利用[J].农村牧区机械化,2002,(1):18-19.
    3.蔡如藩.木材力学性质[M].台北:徐氏基金会,1985.
    4.陈玉香,周道玮,张玉芬.玉米茎剪断力研究[J].作物学报,2005,31(6)766-769.
    5.陈忠加,俞国胜.沙生灌木开发利用现状及收获中存在的问题[J].林业机械与木工设备,2008,36(1):13-14.
    6.成俊卿主编.木材学[M],北京:中国林业出版社,1985.
    7.程祥之主编.园林机械[M].北京:中国林业出版社,1995.
    8.单辉祖,谢传峰合编.工程力学(静力学与材料力学)[M].北京:高等教育出版社,2004.
    9.董金宝,李文彬.便携式割灌机U型手柄的人机工程学优化研究[J].北京林业大学学报,2008,30(3):144-146.
    10.恩和,毕玉革.沙生灌木平茬工艺及切割机理的分析[J].林业机械与木工设备,2004,32(8):50.
    11.方升佐,万劲,彭方仁.木本生物质能源的发展现状和对策[J].生物质化学工程,2006,(1):95-98.
    12.高志悦,郭爱龙.柠条特性与刨花板生产工艺的关系[J].木材加工机械,1998,(4):5-7.
    13.高志悦,杨文岭,吕悦孝.沙生灌木人造板的生产现状和发展趋势[J].林产工业,2001,28(6):3-6.
    14.宫彩霞.内蒙古生态灌木生物质能源开发战略[J].内蒙古林业科学,2006,32(4):42-45.
    15.管宁.11种针叶树材的切削厚度、刀具前角和木材含水率对切削阻力影响的研究[J].林业科学,1992,28(2):146-152.
    16.管宁.15种阔叶树材的切削厚度、刀具前角和木材含水率对切削阻力影响的研究[J].林业科学,1994,30(2):134-139.
    17.管宁.木材切削性质研究进展[J].木材工业,1989,2(2):27-29.
    18.国家林业局.第六次全国森林资源清查结果[R],2005.
    19.何平编著.数理统计与多元统计[M].成都:西南交通大学出版社,2004.
    20.胡珊珊.履带式小型甘蔗收割机虚拟样机仿真分析及实验研究[D].桂林:广西大学,2005.
    21.黄金田.沙生灌木资源与我区林业产业[J].林业实用技术,2005,(7):13-15.
    22.黄仁楚主编.营林机械理论与计算[M].北京,中国林业出版社,1995.
    23.蒋忠道.沙柳可作为一种造纸工业原料[J].造纸信息,2000,15(4):21.
    24.金维洙主编.木材切削与木工刀具[M].哈尔滨:东北林业大学出版社,2005.
    25.李宝筏主编.农业机械学[M].北京:中国农业出版社,2003
    26.李黎,习宝田,杨永福.圆锯片振动、动态稳定性及其控制技术的研究——圆锯片的振动分析和动态稳定性[J].木工机床,2002,(2):5-10.
    27.李黎,习宝田,杨永福.圆锯片上热应力及回转应力的分析[J].北京林业大学学报,2002,24(3):14-17.
    28.李黎,习宝田,杨永福.圆锯片振动、动态稳定性及其控制技术的研究——提高圆锯片 动态稳定性的技术方法[J].木工机床,2002,(3):1-6.
    29.李黎主编.木材切削原理与刀具[M].北京:中国林业出版社,2005.
    30.李宁,俞国胜,张建中.灌木的冲击强度实验研究[J].湖南农业科学,2009,(1):119-121.
    31.李宁,俞国胜,张建中等.柠条剪断力与刀具前角之间关系的研究[J].湖南农业科学,2009,(3):124-126.
    32.李宁,俞国胜.灌木收割机理及装备研究[J].安徽农业科学,2009,37(4):1862-1864.
    33.李瑞阳.21世纪的重要能源——生物质能源[J].世界科学,1999,(10):25-27.
    34.李源哲,柯病凡,张文庆.《木材物理力学实验方法总则》GBl928-91[S],北京:中国标准出版社,1991.
    35.梁桂清.我国割灌机的现状和发展前景[J].广西机械,2000,(1):24-25.
    36.林茂,杨坚,梁兆新等.双刀盘甘蔗切割器工作参数的实验优化研究[J].农机化研究.2006,(12):146-150.
    37.林茂等.双刀盘甘蔗切割器工作参数的实验优化研究[J].农机化研究.2006,(12):146-150.
    38.刘朝霞,张晓娟,贺振平等.内蒙古柠条产业化的现状与对策[J].林业科技管理,2004, (1): 42.
    39.刘大海,李宁,晁阳编著.SPSS 15.O统计分析从入门到精通[M].北京:清华大学出版社,2008.
    40.刘鸿文,吕荣坤编.材料力学实验[M].北京:高等教育出版社,1992.
    41.刘晋浩,王丹.谈国内外人工林抚育机械的现状及发展趋势[J].森林工程,2006,22(3):12-14.
    42.刘庆庭,区颖刚,卿上乐等.农作物茎秆的力学特性研究进展[J].农业机械学报,2007,37(7):172—176.
    43.吕文,王春峰,王国胜等.中国林木生物质能源发展潜力研究(1)[J].中国能源,2005,27(11):11-14.
    44.吕文,王春峰,王国胜等.中国林木生物质能源发展潜力研究(2)[J].中国能源,2005,27(12):21-26.
    45.马常耕,苏晓华.生物质能源概述[J].世界林业研究,2005,18(6):32-38.
    46.马旭.高等农业机械学[M].长春:吉林大学出版社,2006.
    47.牛西午著.柠条研究[M],北京:科学出版社,2003.
    48.朴永守,王平,佟晓平.中国主要工业用材的单位切削阻力[J].木工机床,1994,(3):21-25.
    49.卿上乐,颖刚华,刘庆庭.甘蔗收割机单圆盘切割器运动学分析[J].农业机械学报,2006,37(1):51-54.
    50.尚晓红,苏建宁,王化锋.ANSYS/LS-DYNA动力分析方法与工程实例(第二版)[M].北京:中国水利水电出版社,2008.
    51.沈观林.复合材料力学[M].北京:清华大学出版社,1996.
    52.沈熙环主编.灌木良种选育栽培与利用[M].北京:知识产权出版社,2005.
    53.宋江,陈远玲,梁式等.基于matlab甘蔗收获机械切割器液压系统的动态设计与仿真[J].液压与气动.20(2):31-33.
    54.宿崇,侯俊铭,朱立达等.基于LS2DYNA的金属切削加工有限元分析[J].东北大学学报(自然科学版),2008,29(9):1334-1337.
    55.滕绍民.自走式青饲收割机不分行玉米割台的研究[D].北京:中国农业机械化科学研究院,2003.
    56.王汝贵.甘蔗收割机切割器工作参数实验优化研究[J].农机化研究,2004,(4):144-147.
    57.王汝贵.甘蔗收割机圆盘式切割器工作参数优化研究[D].桂林:广西大学,2004.
    58.王晓霞,王洪祥.金属切削过程有限元分析的国内外发展现状[J].佳木斯大学学报(自然科学版),2006,24(2):262-264.
    59.王雁丽,杨如达.浅谈西部地区柠条资源的开发利用[J].中国西部科技,2004,(11):71-73.
    60.王正,何继龙,黄飞.木工圆锯片固有频率测试方法研究[J].木材加工机械,2006,(3):31-33.
    61.习宝田编著.木材切削[M].北京:中国林业出版社,1986.
    62.夏萍,印崧,陈黎卿等.收获机械往复式切割器切割图的数值模拟与仿真[J].农业机械学报,2007,38(3):65-68.
    63.徐东镇.锯切时夹盘圆锯片横向振动特性研究[D].南京:南京林业大学,2006.
    64.徐有明主编.木材学[M],北京:中国林业出版社,2006.
    65.许凤,孙润仓,詹怀宇.防沙治沙灌木生物资源的综合利用[J].2004,造纸科学与技术,23(1):17-20.
    66.杨丹彤,黄世醒,区颖刚等.我国甘蔗生产机械化技术与设备探讨[J].现代农业装备,2004,(5):9-11.
    67.杨家军,刘锋,刘喜云等.甘蔗收获机切割器的动态设计[J].机械科学与技术,2000,19(6):923-926.
    68.杨家军,谢化斌,汤双清.小型甘蔗收割机切割器结构动态设计[J].湖北工学院学报.2003,18(2):3-4
    69.杨久霞,张建宇.圆锯片的模态分析-[J].冶金设备.2003,(1):31-34.
    70.杨树川.标准往复式切割器的工作性能研究[D].杨凌:西北农林科技大学, 2005.
    71.杨天兴.齿形链式牧草收割机的研究与设计[D].兰州:甘肃农业大学.硕士论文,2005.
    72.杨永福.竹材切削性能研究[D].北京:北京林业大学,2005.
    73.尹伟伦,翟明普.建立灌木能源林概念并构筑林业可再生能源新产业链[J].生物质化学工程,2006,(1):91-95.
    74.印崧,王晓枫,夏萍.联合收割机往复式切割器运动特性研究[J].农业装备技术,2006,32(5):31-34
    75.袁湘月.典型生物质材料削片合格率灰色模型与切削力研究[D].北京:北京林业大学,2007.
    76.张桂兰,高志悦,王喜明.3种沙生灌木材材性急削片刨花制板工艺研究[J].木材工业,2006,20(4):10-12.
    77.张红兵,贾来喜,李潞编著.SPSS宝典[M].北京:电子工业出版社,2007.
    78.张思主编.振动测试与分析技术[M].北京:清华大学出版杜,1992.
    79.赵冰,陈国晶,袁长胜.单圆盘甘蔗切割器运动学仿真[J].农业装备技术,2006,32(1): 15-16.
    80. 赵二东,李黎,严雄林.开槽圆锯片热变形的实验研究[J]木材工业,2004.
    81. 周长城,胡仁喜,熊文波编著.ANSYS 11.0基础与典型范例[M].北京:电子工业出版社,2007.
    82. 朱聪玲等.联合收割机往复式割刀传动机构动力学分析[J].佳木斯大学学报(自然科学版),2004,22(1):123-126.
    83. Bal A S, Shulda L N, Sharma V K. Effect of operational parameters on the performance of base-sugar cane harvester[J]. Journal of Agric-Engineering. 1989,26(1): 11-18.
    84. Chang C S. Measuring curing resistance of sugarcane stalk with pendulum [J]. Technical Information-Digest(Philippines). 1982, 24(9):1-11.
    85. Domblesky, Joseph R Experimental investigation of reciprocating saving [J]. Transactions of the North American Manufacturing Research institute of SME, 2006, (34) :531-538.
    86. Felker, Peter. Case study: Development of a swath harvester for small diameter(<10em) woody vegetation[J]. Biomass and Bioenergy, 1999,17(1): 1-17.
    87. Gupta CP, LwinL, Kiatiwat T. Development Of a self-propelled single-angle sugar cane harvester[J]. Applied-Engineering-in-Agriculture. 1996, 12(4): 427-434.
    88. Gupta C P, Odouri M F Design of the revolving knife-type sugar cane base cutter. [J] Transaction of the American Society of Agricultural Engineers, 1992, 35(6): 1747-1752.
    89. Hou Z B, Komanduri R. Modeling of thermo-mechanical shear instability in machining [J]. International Journal of Mechanical Sciences, 1997, 39(11):1273-1314.
    90. Iwaasa A D, Beachenmin K A, Buchanan-Smith J G, Acharya S N. A shearing technique measuring resistance properties of plant stems [J]. Animal Feed Sci Technol, 1996 , 57:225-237.
    91. Iwaasa A D, Beachenmin K A, Buchanan-Smith J G, Acharya S N. Assessment of stem shearing force for three alfalfa cultivars grown under dry land and irrigated conditions[J]. Can J Anim. Sci. , 1995 , 75: 177-179.
    92. Jean Philippe. Orthogonal cutting mechanics of maple: Modeling a solid wood-cutting process[J], Journal of Wood Science, 2004, 50(1):9-12.
    93. Komvopoulos F K. Application of 2D FEM to Chip Formation in orthogonal Cutting[J]. Journal of Materials Processing Technology, 1996, (59): 169-180
    94. Kroes S. Effects of cane harvester base cutter parameters on the cutting energy and quality of cut: a kinematics model of the dual base cutter of a sugar cane harvester [R]. The 1996 Conference of European Agriculture Engineering. Madrid, 1996.
    95. Kroes S, Harri5 H D. Effects of base cutter and crop parameters on permissible cane harvester speeds[J]. Agricultural Engineering Australia, 1995, 24(1): 43-48.
    96. Kroes S, Harris H D, Egan B T. Effects of cane harvester base cutter parameters on the quality of cut. Proceedings of the 1994 Conference of the ustralian Society of Sugar Cane Technologist shed at Town silie (C) .Queensland, 1994, 169-177.
    97. Kroes S, Harris H D. A kinematics model of the dual base cutter of a sugar cane harvester Journal of Agricultural Engineering Research, 1995, (62): 163-172
    98. Kroes S, Hogarth D M. The specific splitting energy of sugar cane. Proceedings of the 1998 conference of the Australian Society of Sugar Cane Technologists held at Ballina, NSW Australia. 1998, 349-356.
    99. Kug W K, Hyo2Chol S. Finite element method and thermo-viscoelastic cutting model in manufacturing systems [M].New York: CRC Press, 2001.
    100. Li Li, Sa Chao, Xi Baotian. The Restricting Factors on the Limiting Rotary Speed of the Circular Saw [J]. Forestry Studies in China, 2000, 2(1): 85-90.
    101. Liu C R , Guo Y B. Finite element analysis of the effect of sequential cuts and tool-chip friction on residual stresses in a machined layer[J]. International Journal of Mechanical Sciences, 2000,42(9):1069-1086.
    102.MacDonald, Michael A. Evaluation of rotary cutting devices for thinning of regeneration stands [J]. American Society of Agricultural Engineers, 1985, (7): 30-36.
    103. Mamalis A G, Horvath M, Branis A S, et al. Finite element simulation of chip formation in orthogonal metal cutting[J]. Journal of Materials Processing Technology, 2001,110(5): 19-27.
    104. Mello R, Harris H D. Angled and serrated blades reduce damage, force and energy for a harvester base cutter[J].Proc. Aust. Soc. Sugar Cane Technol.. 2001, (21): 185-190.
    105. Odouri M F, Jun Sakai, Gupta C.P. Kinematics of revolving-knife disk-type sugar cane base cutter-I fundamental mathematical relationships [J]. Agricultural Mechanization in Asia, Africa and Latin America, 1992, 2(4): 9-14.
    106. Ratchev S, Stan N, Idir M. Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA [J]. Advances in Engineering Software, 2004, 35(8):481-491.
    107. Sa Chao, Xi Baotian, Li Li. An Approach to Detecting Tension of a Circular Saw [J]. Forestry Studies in China, 1999, 1 (2): 64-70.
    108. Shi G Q, Deng X M, Shet C. A finite element study of the effect of friction in orthogonal metal cutting [J]. Finite Elements in Analysis and Design, 2002, 38 (9):863-883.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700