用户名: 密码: 验证码:
~(11)C-甲异靛PET用于肺癌诊断和化疗疗效监测的实验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1、研究~(11)C-甲异靛在体外四种不同肺癌细胞中的摄取情况;2、研究~(11)C-甲异靛在荷瘤小鼠(LA795肺癌)模型体内生物分布与PET显像;3、研究~(11)C-甲异靛在炎症小鼠(松节油急性炎症)模型体内生物分布与PET显像;4、评价~(11)C-甲异靛作为一种新的PET示踪剂在荷瘤小鼠模型化疗疗效监测中的价值。
     方法:1、在LA795、95-C、95-D及H460等4种不同肺癌细胞中分别加入合成的~(11)C-甲异靛(实验组)或~(18)F-FDG(对照组),根据2种示踪剂半衰期的不同,实验组细胞分别于5、15、20分钟取出并检测各肺癌细胞的放射性摄取活度,对照组细胞分别于30、60、90、120、150分钟取出并检测各肺癌细胞株的放射性摄取活度;2、20只荷瘤小鼠(LA795肺癌)被随机分为4组,其中A组、B组、C组为实验组,经尾静脉分别于注射~(11)C-甲异靛后5min、15min、20min进行PET显像并处死小鼠,取心、肝、肺、肾、脑、肌肉和肿瘤组织,用井型探测仪测量~(11)C-甲异靛在上述各脏器组织的生物分布,D组为对照组,给予注射~(18)F-FDG后60min进行PET显像和生物分布测定;3、10只炎症小鼠(松节油急性炎症)模型随机分为~(11)C-甲异靛实验组和~(18)F-FDG对照组。~(11)C-甲异靛组在注入~(11)C-甲异靛15分钟后PET显像并处死,取心、肝、肺、肾脑、肌肉和肿瘤组织,用井型探测仪测量~(11)C-甲异靛在体内的生物分布,~(18)F-FDG组在注入~(18)F-FDG后60分钟行PET显像、处死并检测其生物分布。4、30只荷瘤小鼠(LA795肺腺癌)随机分为A组(对照组)、B组(化疗1天组)和C组(化疗2天组),每组内再分为~(11)C-甲异靛组和~(18)F-FDG组两个亚组,化疗组小鼠经尾静脉分别注入~(11)C-甲异靛或~(18)F-FDG,~(11)C-甲异靛亚组在注入~(11)C-甲异靛15分钟后显像并处死,用井型探测仪测量~(11)C-甲异靛在小鼠肿瘤放射分布,~(18)F-FDG亚组在注入~(18)F-FDG后60min显像并处死,用井型探测仪测量~(18)F-FDG在小鼠肿瘤放射分布。应用免疫组化法测定肿瘤组织增殖细胞核抗原(PCNA)的表达水平。
     结果:1、在体外四种肺癌细胞对~(11)C-甲异靛和~(18)F-FDG均有摄取,细胞对~(11)C-甲异靛的放射性摄取活度高于~(18)F-FDG。~(11)C-甲异靛的摄取高峰在注药15分钟时,其中以H460细胞摄取的放射活度最高;细胞对~(18)F-FDG的摄取随时间延长而持续增长,其增幅以90分钟时间点最高,其中以95D细胞摄取的放射活度增幅最高。比较四种肿瘤细胞在摄取2种不同示踪剂在放射活度增幅高峰时的摄取放射活度有明显统计学差异。2、~(11)C-甲异靛在荷瘤小鼠体内生物分布见肺癌组织有较高的放射性摄取,放射性主要分布在肾、肝等腹腔脏器,最高的为肝脏,其次为肾、肿瘤、心,在注药后15min肿瘤对血、肌肉及肺的T/NT均大于2,肿瘤PET显像清晰。3、炎症组织对~(11)C-甲异靛摄取值明显低于FDG,~(11)C-甲异靛组组放射性摄取最高的依次为肾、肝、心组织,炎症组织对血、肺及肌肉组织的放射性比值均小于2;而对~(18)F-FDG放射性摄取最高的依次为心、肾、炎症组织,炎症组织对血及肌肉组织的放射性比值大于2。两组炎症组织对血、肺、肌肉的放射性比值存在显著性差异。炎性组织仅在~(18)F-FDG PET中显像。4、~(11)C-甲异靛组荷瘤小鼠经顺铂1天化疗后(B组)和2天化疗后(C组)的肿瘤放射性摄取值分别为0.94、0.85,比未行化疗的对照组(A组)的放射性摄取值1.31有明显下降,肿瘤放射性摄取值B组、C组与A组比较统计学存在显著性差异。~(18)F-FDG组荷瘤小鼠B组和C组化疗后的肿瘤放射性摄取值,比A组降低,但无统计学显著性差异。PET显像见B组和C组(分别行化疗1、2天)的~(11)C-甲异靛亚组荷瘤小鼠的肿瘤部位放射性浓聚减低明显;而~(18)F-FDG亚组荷瘤小鼠的肿瘤部位放射性浓聚较A组无明显变化。PCNA免疫组化检查见三组肿瘤细胞均有表达,以A组表达最高,B组、C组依次下降,B组和C组PCNA值与A组相比较均存在显著性差异,各组内~(11)C-甲异靛亚组和~(18)F-FDG亚组无显著性差异。
     结论: ~(11)C-甲异靛有较高的肿瘤特异性,可被肺癌细胞所摄取。在荷瘤小鼠模型中肺癌组织对~(11)C-甲异靛摄取高于正常组织,PET显像清楚,在炎性组织在~(11)C-甲异靛PET中未显像,提示可用于肺癌诊断及肺癌与炎症的鉴别诊断。肺癌化疗后~(11)C-甲异靛摄取较~(18)F-FDG明显降低,能反映肺癌细胞的增值状况,可用于对化疗的疗效进行监测。
Objective: 1. To investigate uptake of ~(11)C-meisoindigo by four kinds of lung cancer cells ( LA795, 95-C, 95-D and H460). 2. To investigate the biodistribution and positron emission tomography (PET) imaging of ~(11)C-meisoindigo in a murine model of LA795 lung carcinoma. 2. To study the biodistribution and PET imaging of ~(11)C-meisoindigo in a murine model of inflammation. 3. To evaluate the use of ~(11)C-meisoindigo as a new PET tracer for monitoring tumor response to chemotherapy.
     Methods: 1. Four kinds of lung cancer cells were divided into ~(11)C-meisoindigo and ~(18)F-FDG groups, ~(11)C-meisoindigo or ~(18)F-FDG was added into different lung cancer cells respectively. According to the different tracers and after adding time, cell uptake of ~(11)C-meisoindigo group examined at 5、15、20min with well-gammadetector, cell uptake of ~(18)F-FDG groups examined at 30、60、90、120、150min. 2. 20 mice bearing LA795 lung adenocarcinoma were divided into four groups according to the different tracers and time after injection at random, A group(5min), B group(15min,) and C group(20min) after ~(11)C-meisoindigoinjection, D group( 60min ) after ~(11)F-FDG injection. The biodistribution of mice for ~(11)C-meisoindigo was measured with well-gamma detector at 5, 15 and 20min after ~(11)C-meisoindigo injection from tail veins. And the biodistribution of mice for F-FDG was examined at 60min after injection. In addition, the PET imaging of mice was performed using two tracers. 3. 10 the mice model with inflammation were divided into two groups according to the different tracers at random, ~(11)C-meisoindigo and ~(18)F-FDG group. The biodistribution of mice for ~(11)C-meisoindigo and ~(18)F-FDG was measured with well-gamma detector atl5, 60 min after injection, respectively. The PET imaging of mice was also performed using two tracers. 4. 30 mice bearing LA795 lung adenocarcinoma were divided into three groups according to days of chemotherapy at random, A group(untreated controls), B group(1 day) and C group(2 day )after chemotherapy. Each group was also divided into two groups according to two radioactive tracers, ~(11)C-meisoindigo and ~(18)F-FDG groups. The mice of group B and group C were treated with cisplatin, then, injected with ~(11)C-meisoindigo or ~(18)F-FDG. Tumor biodistribution of all mice was measured with well-gamma detector at 15, 60 min after injection and the PET imaging of mice was performed respectively. Tumor proliferation was determined by immunohistochemical examination of proliferating cell nuclear antigen (PCNA).
     Results: 1. ~(11)C-meisoindigo and ~(18)F-FDG were all uptake by four kinds of lung cancer cells. uptake of ~(11)C-meisoindigo was more than ~(18)F-FDG, time of maximum uptake of ~(11)C-meisoindigo was 15min after injection, uptake of ~(11)C-meisoindigo by H460 cell was more than others. Uptake of ~(18)F-FDG by cells increased with time prolonged, The maximum increasing time of uptake was 90min, uptake of ~(18)F-FDG by 95D cell was more than others. 2. In the biodistribution study of ~(11)C-meisoindigo, considerable radioactive uptake of tumor was observed, and much radioactivity was showed in liver and kidney. The ratios of tumor/blood, tumor/muscle and tumor/lung were all above 2.0. The tumor PET images with ~(11)C-meisoindigo were clear. 3. Uptake of ~(18)F-FDG by inflammation tissues was higher than those of ~(11)C-meisoindigo. Inflammatory tissues were visible in ~(18)F-FDG PET images, no visible in ~(11)C-meisoindigo PET. 4. Tumor ~(11)C-meisoindigo uptake decreased rapidly after treatment of cisplatin. ~(11)C-meisoindigo uptake in tumor was significantly was decreased more than that of ~(18)F-FDG The PET imaging confirmed lower tumor ~(11)C-meisoindigo retention in group B and group C compared with group A. PCNA decreased after treatment of cisplatin in B and C groups than A group significantly.
     Conclusions: Lung cancer cells can uptake of ~(11)C-meisoindigo, and the uptake of ~(11)C-meisoindigo in lung cancer tissues is higher than that normal tissues, and inflammatory tissues are invisible in ~(11)C-meisoindigo PET images, so the lung cancer could be identified with ~(11)C-meisoindigo PET imaging. The decrease in tumor ~(11)C-meisoindigo uptake after chemotherapy was more than that of ~(18)F-FDG Changes in ~(11)C-meisoindigo uptake could correspond changes of PCNA, ~(11)C-meisoindigo is a promising PET tracer for monitoring Chemotherapeutic effect of lung cancer. Our preliminary study of ~(11)C-meisoindigo in lung cancer showed it maybe a promising PET tracer in lung cancer diagnosis and chemotherapeutic effect monitoring
引文
1. American Cancer Society. Cancer facts and figures 2006[Gl. Atlanta: American Cancer Society,2006,13-15.
    2. Hanra EB, Treatment of advanced non-small-cell lung cancer: areview of eurrent randomized clinical trials and an examination of emerging therapies. Cancer Control, 2001,8(4):326-336.
    3. Ko J P. Lung nodule detection and characterization with multi-slice CT. J Thorac Imng,2005,20:196-209.
    4. Mattioli S, D'Ovidio F, Daddi N, et al.Transthoracic endosonography for the intraoperative localization of lung nodules. Ann Thorac Surg, 2005,79:443-449.
    5. Lardinois D, Weder W, Hany TF, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med, 2003,348(25):2500-2507.
    6. Cohade C, Osman M, Leal J, et al. Direct comparison of (18) F-FDG PET and PET/CT in patients with colorectal carcinoma. J Nucl Med, 2003,44(11):1797-1803.
    7. Selzner M, Hany TF, Wildbrett P, et al. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer to the liver? [J] Ann Surg, 2004,240(6): 1027-1034.
    8. Goh BK, Tan YM, Chung YF.Utility of fusion CT-PET in the diagnosis of small pancreatic carcinoma[J]. World J Gastroenterol, 2005,11 (24):3800-3802.
    9. Heinrich S, Goerres GW, Schafer M, et al. Positron emission tomography computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness. Ann Surg, 2005,242 (2):235-243. 10.Erusalem G, Hustinx R, Beguin Y, et al. PET scan imaging in oncology. Eur J Cancer 2003;39: 1525-1534.
    11. 陈敏,郭佑民,郭晓娟等.应用FDG-PET对孤立性肺结节诊断的循证分析.中国医学影像技术,2004,20(11):1754-1756.
    12. Kubota K. From tumor biology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med, 2001, 15(6): 471-486.
    13.Nomori H, Kosaka N, Watanabe K, et al.~(11)C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with y ground-glass opacit images on computed tomography. Ann Thorac Surg, 2005, 80(6): 2020-2025.
    14.Xiao Z, Qian L, Liu B, et al .Meisoindigo for the treatment of chronimyelogenous leukaemia.Br J Haematol, 2000,11:711-712
    15.Xiao Z, Hao Y, Liu B, etal. Indirubin and meisoindigo in the treatment of chronic myelogenous leukemia in China. kuk Lymphoma,2002,43:1763-1768.
    16.左明新,陈晓光.甲异靛抗肿瘤作用及对Wnt信号转导通路的影响.中国药理通讯2007,24(3)11.
    16.刘晓梅,王龙寅,籍秀娟.甲异靛抑制DNA和RNA生物合成的抗癌作用机理.中国药理学与毒理学杂志,1991,5(3):204-207
    17.王一 刘澎 刘兵城等,甲异靛对慢性粒细胞白血病抗血管新生作用的体外研究.中华血液学杂志,2004,25(2):121-122.
    1. Jerusalem G, Hustinx R, Beguin Y, et al. PET scan imaging in oncology. Eur J Cancer 2003;39:1525-1534.
    2. 陈敏,郭佑民,郭晓娟,等.应用FDG-PET对孤立性肺结节诊断的循证分析.中国医学影像技术,2004,20(11):1754-1756.
    3. Kubota K. From tumor b胞ology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med, 2001, 15(6): 471-486.
    4. Nomori H, Kosaka N, Watanabe K, et al. ~(11)C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with ground glass opacity images on computed tomography. Ann Thorac Surg,2005, 80(6): 2020-2025.
    5. Merz KH, Schwalin S, Hippe F, et al. Novel indirubin derivatives promising antitumor agents inhibiting cyclin-dependent kinases. Iin J Clin Pharmacol Ther, 2004,42(11):656-658.
    6. Eisenbrand G, Hippe F, Jakobs S, et al. Molecular mechanisms of indirubin and iIs derivatives: novel an tieancer molecules wi th their origin in traditional Chinese phytomedicine. J Cancer Res Clin Orwol, 2004,130(11):627-635.
    7. Xie Y, Liu Y, Ma C, el al. Indirubin-3-oxime inhibits c-jun nh2-terminal kinase: antiapoptotic efect in eerebellar granule neurons. Neurosci Lett, 2004,367(3):355-359.
    8. 靛玉红治疗协作组.靛玉红治疗314例慢性粒细胞白血病的临床研究.中华血液学杂志,1980;1(4):132.
    9. 左明新陈晓光.甲异靛抗肿瘤作用及对Wnt信号转导通路的影响.中国药理通讯2007,24(3):11.
    10. 刘晓梅,龙寅,籍秀娟.甲异靛抑制DNA和RNA生物合成的抗癌作用机理.中国药理学与毒理学杂志.1991,5(3):204-207
    11. Hoessel R, Leclerc S, Endicott JA, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol,1999,1(1):60-67.
    12. Chang HY, Yang X. Proteases for cell suicide: functions and regulation of caspases. Micmbiol Rev,2000,64(12):821-846.
    13. Ferrarini M, Imro MA, Sciorati C, et al. Blockade of the Fas-triggered intracellular signaling pathway in human melanomas is circumvented by cytotoxic lymphocytes . Int J Cancer, 1999,81(7):573-579.
    14. Adams JM, Cory S. The Bel-2 protein family: arbiters of cell survival. Science, 1998,281(5381):1322-1326.
    15. Jurgensmeier JM, Xie Z, Deveraux Q, et al. Bax directly induces release of cytochmme C from isolated mitochondria. Proc Natl Acad Sci USA, 1998,95(9): 4997-5002.
    16. Rosse T, Olivier R, Monney L,et al .Bcl-2 prolongs cell survival after Bax-induced release of cytochrome C.Nature,1998,29(391):496-499.
    17. Green D, Kroemer G. The central executioners of apoptosis: caspases or mitochondria?.Trends Cell Biol, 1998, 8(7): 267-271。
    18. Yu R, Mandlckar S, Harvey KJ, et al. Chemopreventive isothiocyanates induce apoptosis an d caspase-3-like protease activity.Cancer Res,2000,58(3): 402-408.
    19. 王一,朱孝峰,肖志坚等.甲异靛诱导白血病细胞HL-60凋亡及机制探讨.癌症,2005,24(12):1464-1468.
    19. Liu XM, Wang LG, Li HY, et al. Induction of differentiation and down-regulation of c-myb gene expression in ML-1 human myeloblastic leukemia cells by the clinically efective an tileukemia agent meisoindigo. Biochem Pharmaeol, 1996,51 (11): 1545-1551.
    20. 籍秀娟,张福荣.N-甲基异靛蓝的抗肿瘤作用药学学报.1985,20(4):247-251.
    21. 王一,刘澎,刘兵城等.甲异靛对慢性粒细胞白血病抗血管新生作用的体外研究.中华血液学杂志,2004,25(2):121-122.
    24. Brown RS, Leung JY, Kison PV, et al .Glucose transporters and FDG up-take inuntreated primary human non-small cell lung cancer. Nucl Med J,1999 ,40 (4):556-565.
    1. Parkin DM, Bray F, Ferlay J, et al. Global Cancer Statistics, 2002 [ J] . CA Cancer J Clin, 2005, 55: 74- 108.
    2. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer [ J] . N Engl J Med, 2005, 353( 2): 123- 132.
    3. 籍秀娟,张福荣.N-甲基异靛蓝的抗肿瘤作用药学学报.1985;20(4):247-251.
    4. Ko J P. Lung nodule detection and characterization with multi-slice CT. J Thorac Im ng, 2005, 20: 196-209.
    5. Mattioli S, D'Ovidio F, Daddi N, et al. Transthoracic en. dosonography for the intraoperative localization of lung nodules. Ann Thorac Surg, 2005, 79: 443-449
    6. Halpern B S, Schiepers C, Weber W A, et al. Presurgical staging of non-small cell lung cancer: positron emission tomography, integrated positron emission tomography / CT, and software image fusion. Chest, 2005, 128: 2289-2297.
    7. Jerusalem G, Hustinx R, Beguin Y, et al. PET scan imaging in oncology. Eur J Cancer 2003;39:1525-1534.
    8. Fischer BM, Mortensen J. The future in diagnosis and staging of lung cancerpositron emission tomography. Respiration. 2006, 73(3): 267-276.
    9. Alongi F, Ragusa P, Montemaggi P, et al. Combining independent studies of diagnostic fluorodeoxyglucose positron-emission tomography and computed tomography in mediastinal lymph node staging for non-small cell lung cancer. Tumori, 2006, 92(4): 327-333.
    10. 陈敏,郭佑民,郭晓娟,等.应用FDG-PET对孤立性肺结节诊断的循证分析.中国医学影像技术,2004,20(11):1754-1756. ground-glass opacity images on computed tomography. Ann Thorac Surg,2005, 80(6): 2020-2025.
    13. Nomori H, Kosaka N, Watanabe K, et al. 11 C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with ground-glass opacity images on computed tomography. Ann Thorac Surg, 2005, 80(6): 2020-2025.
    14. Nomori H, Kosaka N, Watanabe K, et al. 11 C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with ground-glass opacity images on computed tomography. Ann Thorac Surg, 2005, 80(6): 2020-2025.
    15. Buck AK, Schimneister H, Hetzel M, et al. 3-deoxy-3-[18F] fluorothymidine positronemission tomography for noninvasive assessment of proliferationin pulmonary nodules. Cancer Res, 2002, 62 (9): 3331-3334.
    16. Halter G, Buck AK, Schirrmeister H, et al. [18F] 3-deoxy-3'- fiuorothymidine positron emission tomography: Alternative or diagnostic adjunct to 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography in the workup of suspicious central focal lesions? J Thorac Cardiovasc Surg 2004; 127:1093-1099.
    17. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100:57-70.
    1. Been LB, Suurmeijer AJH, Cobben DCP, Jager PL, HoekstraHJ, Elsinga PH. [18F] FLT-PET in oncology: current status andopportunities. Eur J Nucl Med Mol Imaging 2004;31: 1659-72
    2. Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43: 1210-1217.
    3. Weber WA, Ott K, Becker K, Dirtier HJ, Helmberger H, AvrilNE, Meisetschlager G, Busch R, Siewert HJ, Schwaiger M,Fink U. Prediction of response to preoperative chemotherapyin adenocarcinomas of the esophagogastric junction by metabolicimaging. J Clin Oncol 2001; 9:3058-3065.
    4. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991;32: 623-648.
    5. Bury T, Corhay JL, Duysinx B, et al. Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 1999; 14: 1376-1380
    6. Minn H, Clavo AC, Grenman R, et al. In vitro comparison of cell proliferation kinetics and uptake of tritiated fluorodeoxyglucose and L-methionine in squamous-cell carcinoma of the head and neck. J Nucl Med 1995;36:252-258.
    7. Munch-Petersen B, Cloos L, Jensen HK, et al. Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 1995;35:69-89.
    8. Eriksson S, Munch-Petersen B, Johansson K, Eklund H.Structure and function of cellular deoxyribonucleoside kinases.Cell Mol Life Sci 2002;59:1327-}6
    9. Buck AK,Halter G,Schirrmeister H,et al.Imaging prliferatin in lung tumrs with PET:18F-FLT with 18F-FDG.J Nucl Med,200,44(9): 1426-1231.
    10. Sugiyama M, Sakahara H, Sato K, et al. Evaluation of 3'-deoxy-3'-~(18)F-fiuorothymidine for monitoring tumor response to radiotherapy and photodynamic therapy in mice. J Nucl Med 2004;45:1754-1758.
    11. Dohmen BM, Shields AF, Dittmann H, et al. Use of [~(18)F]FLT for breast cancer imaging. J Nucl Med 2001; 41(Suppl): 29
    12. 左明新陈晓光.甲异靛抗肿瘤作用及对Wnt信号转导通路的影响.中国药理通讯 2007,24(3):11.
    13.刘晓梅,王龙寅,籍秀娟甲异靛抑制DNA和RNA生物合成的抗癌作用机理中国药理学与毒理学杂志 1991;5(3):204-207
    1.Ko J P.Lung nodule detection and characterization with multi-slice CT.J Thorac Imanig,2005,20:196-209.
    2.Mattioli S,D'Ovidio F,Daddi N,et al.Transthoracic endosonography for the intraoperative localization of lung nodules.Ann Thorac Surg,2005,79:443-449.
    3.Lardinois D,Weder W,Hany TF,et al.Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography.N Engl Med,2003,348(25):2500-2507.
    4.Cohade C,Osman M,Leal J,et al.Direct comparison of[18]F-FDG PET and PET/CT in patients with colorectal carcinoma.J Nucl Med,2003,44(11):1797-1803.
    5.Shon I H,O'doherty M J,Maisey M N,et al.Positron emission tomography in lung cancer.Semin Nucl Med,2002,32,240-271.
    6.Praucer H W,Weber W A,Romer W,et al.Controlled prosperctive study of positron emission tomography using the glucose analogue[18F]flurodeoxyglucose in the evaluation of pulmonary nodules.Br J Surg,1988,85,:1506-1511.
    7.Selzner M,Hany TF,Wildbrett P,et al.Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer to the liver? Ann Surg,2004,240(6):1027-1034.
    8.Goh BK,Tan YM,Chung YF.Utility of fusion CT-PET in the diagnosis of small pancreatic carcinom.World J Gastroenterol,2005,11.
    9.Heinrich S,Goerres GW,Schafer M,et al.Positron emission tomography /computed tomography influences on the management of resectable pancreatic cancer and its cost-effectiveness.Ann Surg,2005,242(2):235-243.
    10.Shig S S,Lee K S,Kin Q T,et al.Non-small cell lung cancer:prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging.Radiology,2005,236:1022-1019.
    11.Vanuystl LJ,Vansteenkiste JF,Stroobants SG,et al.The impact of ~(18)F-fluoro-2-deoxy-D-glucose positron emission tomography(FDG-PET)lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer.Radiother Oncol,2000,55(3):317-324.
    12.Black QC,Grills IS,Kestin LL,et al.Defining a radiotherapy target with positron emission tomography.Int J Radiat Oncol Biol Phys,2004,60(4),1272-1282.
    13.Demura Y,Tsuchida T,Ishizaki T,et al.~(18)F-FDG accumulation with PET for differentiation between benign and malignant lesions in the thorax.J Nucl Med,2003,44(4):540-548.
    14.Cerfolio RJ,Oiha B,Bryant AS,et al.The accuracy of integrated PET-CT compared with dedicated PET alone for the staging of patients with nonsamall cell lung cancer.Ann Thorac Surg,2004,78(3):1017-1025.
    15.Hanahan D,Weinberg RA.The hallmarks of cancer.Cell 2000;100:57-70.
    16.Eriksson S,Munch-Petersen B,Johansson K,Eklund H.Structure and function of cellular deoxyribonucleoside kinases.Cell Mol Life Sci 2002;59:1327
    17.Munch-Petersen B,Cloos L,Jensen HK,et al.Human thymidine kinase 1.Regulation in normal and malignant cells.Adv Enzyme Regul 1995;35:69-89.
    18.Chen DL,Dehdashti F.Advances in positron emission tomographic imaging of lung cancer.Proc Am Thorac Soc,2005,2(6):541-544.
    19.Cherk MH,Foo SS,Poon AM,et al.Lack of correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in non-small cell lung cancer assessed by ~(18)F-Fluoromisonidazole and ~(18)F-FDG PET.J Nucl Med,2006,47(12):1921-1926.
    20.Eschmann SM,Paulsen F,Reimold M,et al.Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy.J Nucl Med,2005,46(2):253-260.
    21.Gagel B,Reinartz P,Demirel C,et al.fluoromisonidazole and[18F]fluorodeoxyglucose positron emission tomography in response evaluation after chem0-/radiotherapy of non-small-cell lung cancer:a feasibility study.BMC Cancer,2006,6:51.
    22.Zhang X,Xiong Z,Wu Y,et al.Quantitative PET imaging of tumor integrin alphavbeta3 expression with ~(18)F-RGD.J Nucl Med,2006,47(1):113-121.
    23.Liu S.Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta targeted radiotracers for tumor imaging.Mol Pharm.2006,3(5):472-487.
    24. Chen X. Multimodality imaging of tumor integrin alphavbeta expression. Mini Rev Med Chem, 2006, 6(2): 227-234.
    25. Haubner R, Weber WA, Beer AJ et al. activated alphavbeta3 integrin et al. Noninvasive visualization of the cancer patients by positron emission tomography and [18F] Galact-RGD. PLoS Med, 2005, 2(3): e70
    26. Chen X, Sievers E, Hou Y, et al. Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia, 2005, 7(3): 271-279.
    27. Pichler BJ, Kneilling M, Haubner R, et al. Imaging of delayed-type hypersensitivity reaction by PET and 18F-galact0-RGD. J Nucl Med, 2005, 46(1): 184-189.
    28. 张桂胤,李彪.正电子药物在肿瘤诊断中的进展.国际放射医学核医学杂志,2006,30(1),30-35.
    29. Kubota K. From tumor biology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med, 2001, 15(6): 471-486.
    30. Liu RS, Shei HR, Feng CF, et al. Combined ~(18)F-FDG and ~(11)C-Acetate PET imaging in diagnosis of pulmonary tuberculosis. J Nucl Med. 2002;43(5): 127P
    31. Nomori H, Kosaka N, Watanabe K, et al. 11 C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with ground-glass opacity images on computed tomography. Ann Thorac Surg,2005, 80(6): 2020-2025.
    32. 陈敏,郭佑民,郭晓娟等.应用FDG-PET对孤立性肺结节诊断的循证分析.中国医学影像技术,2004,20(11):1754-1756.
    33. Buck AK, Schimneister H, Hetzel M, et al. 3-deoxy-3-[18F] fluorothymidine-positronemission tomography for noninvasive assessment of proliferationin pulmonary nodules. Cancer Res, 2002,62(9) :3331 - 3334.
    34. Halter G, Buck AK, Schirrmeister H, et al. [18F]3-deoxy-3'- fluorothymidine positron emission tomography: Alternative or diagnostic adjunct to 2- [18F]-fluoro-2-deoxy-D-glucose positron emission tomography in the workup of suspicious central focal lesions? J Thorac Cardiovasc Surg 2004;127:1093-1099.
    35. Buck AK, Halter G} Schimneister H,et al. Imaging proliferation in lung tumors with PET: ~(18)F-FLT versus ~(18)F-FDG. J Nucl Med ,2003;44(6 ) :1426-1 431.
    36.Liu RS,Chu YK,Chu KL,et al.~(11)C-acetate PET imaging in detection and characterization of lung cancer.J Nucl Med.2002;43(5):76.
    37.Nomori H,Kosaka N,Watanabe K,et al.~(11)C-acetate positron emission tomography imaging for lung adenocarcinoma 1 to 3 cm in size with ground-glass opacity images on computed tomography.Ann Thorac Surg,2005,80(6):2020-2025.
    38. Kaji M,Nomori H,Watanabe K,et al.~(11)C-acetate and ~(18)F-fluorodeoxyglucose positron emission tomography of pulmonary adenocarcinoma.Ann Thorac Surg,2007,83(1):312-314.
    39.Higashi K,Ueda Y,Matsunari I,et al.11 C-acetate PET imaging of lung cancer:comparison with ~(18)F-FDG PET and 99mTc-MIBI SPET.Eur J Nucl Med Mol Imaging,2004,31(1):13-21
    40.Higashi K,Ueda Y,Matsunari I,et al.11 C-acetate PET imaging of lung cancer:comparison with ~(18)F-FDG PET and 99mTc-MIBI SPET.Eur J Nucl Med Mol Imaging,2004,31(1):13-21.
    41.Chang CH,Wang HE,Wu SY,et al.Comparative evaluation of FET and FDG for differentiating lung carcinoma from inflammation in mice.Anticancer Res,2006,26(2A):917-925.
    42.Van-Waarde A,Jager P L,Ishiwata K,et al.Comparison of sigma-ligands and metabolic PET tracers for differentiating tumor from inflammation.J Nucl Med,2006,47(1):150-154.
    43.Chen DL,Dehdashti F.Advances in positron emission tomographic imaging of lung cancer.Proc Am Thorac Soc,2005,2(6):541-544.
    44.Sasaki M,Kuwabara Y,Yoshida T,et al.Comparison of MET PET and FDG-PET for differentiation between benign lesions and malignant tumors of the lung.Ann Nucl Med,2001,15(5):425-431.
    45.Khan N,Oriuchi N,Zhang H,et al.A comparative study of ~(11)C-choline PET and[18F]fluorodeoxyglucose PET in the evaluation of lung cancer.Nucl Med Commun,2003,24(4):359-366.
    46.Tiara T,Kosaka N,Suzuki T,et al.Uptake rates of ~(18)F-fluorodeoxyglucose and C-choline in lung cancer and pulmonary tuberculosis:a positron emission tomography study.Chest,2003,124(3):893-901.
    47. 郭哲,张锦明.~(11)C-胆碱在PET肿瘤显像中的应用.同位素,2005,18(3):178-182.
    48. Fischer BM, Mortensen J. The future in diagnosis and staging of lung cancer:positron emission tomography. Respiration. 2006, 73(3): 267-276
    49. Alongi F, Ragusa P, Montemaggi P, et al. Combining independent studies of diagnostic fluorodeoxyglucose positron-emission tomography and computed tomography in mediastinal lymph node staging for non-small cell lung cancer. Tumori, 2006, 92(4): 327-333.
    50. 李单青,黄诚、刘洪生等,PET在非小细胞肺癌患者术前N分期的价值.中华肿瘤防治杂志.2007,14(6):452-453
    51. Cobben DC, Elsinga PH, Hoekstra HJ, et al. Is ~(18)F-3'-fluoro-3'- deoxy-L-thymidine useful for the staging and restaging of non-small cell lung cancer? J Nucl Med 2004;45:1677-1682.
    52 Halter G, Buck AK, Schirrmeister H, et al. [18F]3-deoxy-3'-fluorothymidine positron emission tomography: Alternative or diagnostic adjunct to 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography in the workup of suspicious central focal lesions? J Thorac Cardiovasc Surg 2004;127: 1093-1099.
    53. Yasukawa T, Yoshikawa K, Aoyagi H, et al. Usefulness of PET with ~(11)C-methionine for the detection of hilar and mediastinal lymph node metastasis in lung cancer. J Nucl Med, 2000, 41(2): 283-290.
    54. Hara T, Inagaki K, Kosaka N, et al. Sensitive detection of mediastinal lymph node metastasis of lung cancer with ~(11)C-choline PET. J Nucl Med, 2000,41(9):1507-1513.
    55. Khan N, Oriuchi N, Zhang H, et al. A comparative study of ~(11)C-choline PET and [18F] fluorodeoxyglucose PET in the evaluation of lung cancer. Nucl Med Commun, 2003, 24(4): 359-366.
    56. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapyin adenocarcinomas of the esophagogastric junction by metabolicimaging. J Clin Oncol 2001,19:3058-3065.
    57. Been LB, Suurmeijer AJH, Cobben DCP, Jager PL, HoekstraHJ, Elsinga PH. [18F] FLT-PET in oncology: current status andopportunities. Eur J Nucl Med Mol Imaging 2004;31:1659-72.
    58. Rasey JS, Grierson JR, Wiens LW, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 2002;43:1210-1217.
    59. Mah K,Caldwell CB,Ung YC,et al.The impact of ~(18)F-FDG on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat oncol Biol Phys,2002,52(2):339-350
    60. Vanuytsel LJ,Vansteenkiste JF,Stroobants SG,et al.The impact of 18F-fluoro-2-dexyglose positron emission tomography(FDG-PET)lymph node staging on the radiation treatment volunes in patients with non-small cell lung cancer.Radiother oncol,2000,55(3):317-324
    61. Ling CC,Humm J,Larson S,et al.Towards multidimensional radiotherapy (MDCRT): biological imaging and biological conformality.Int J Radiat ocol Biol Phys,2000,47(3):551-560
    62. Ishimori T, Saga T, Nagata Y, et al. ~(18)F-FDG and ~(11)C-methionine PET for evaluation of treatment response of lung cancer after stereotactic radiotherapy.Ann Nucl Med, 2004, 18(8): 669-674.
    63. Keidar Z, Haim N , Guralnik I, et al. PET / CT using 18F-FDG in suspected lun cancer recurrence: diagnostic; value and impact on patient management. J Nuel M ed. 2004. 45(10): 1640 - 1646.
    64. Marom EM , Sarvis S, Herndon JE, et al. Tl lung cancers: sensitivity of diagnosis with fluorodeoxyglucose PET. Radiology , 2002, 223: 453
    65. Valk PE, PoundsTR, HopkinsDM, etal. Staging non-small celllung cancer by whole body positron emission tomographic imaging. Ann Th orac Surg, 1995, 60: 1573
    66. 谭业颖,田嘉禾,张锦明等.~(18)F-FLT PET显像诊断肺单发结节及评价细胞增值的价值.中华核医学杂志,2007,27(2):65-67.
    67. 田嘉禾,杨小丰,陈萍等.肺结节~(18)F-FDG和~(18)F-FLT PET/CT鉴别诊断的多中心临床研究.中国医学影像学杂志.2008,16(4):241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700