焊接电弧引燃过程的机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
焊接在机械制造中是一种十分重要的加工工艺。它是两种或两种以上的同类或非同类材料通过原子(或分子)间的扩散与结合从而连接在一起的工艺过程。弧焊则是当前应用最为广泛的一类金属焊接方法,无论是在手工焊还是自动化、机器人等焊接生产中都得到广泛应用。
     所谓电弧是指两个电极间由气体介质产生的持久而强烈的放电现象,具有低电压、高电流的特点。电弧现象是焊接物理的重要组成部分,一直备受焊接工作者的关注。引弧过程作为电弧放电过程的起始阶段,直接影响后续焊接过程的开展。由于引弧过程十分复杂,目前在国内外对其机理的研究还比较缺乏。
     本文针对弧焊中几种常用焊接模式(包括TIG焊、MIG焊与激光辅助TIG焊)的引弧过程进行了详细地试验研究与理论分析。发现这些模式下的引弧过程虽然体现了不尽相同的特点,但都有着类似的气体导电特征,使得焊接引弧过程的这一物理特征具有认识的普遍性。在深入分析各个引弧过程的基础上,提出了TIG焊接触引弧过程中三个连续特征阶段的概念,并对TIG焊引弧、MIG焊引弧及激光辅助引弧过程进行了初步的定量研究。论文主要内容及创新点如下:
     (1)通过焊接电源、透镜光学装置、光谱仪、高速摄像机、数据处理与分析系统等构建了光谱诊断试验系统平台,实现了对引弧过程准确可靠的实时观测。通过对电子数密度测试原理的说明,比较了两种基于Hα谱线Stark展宽的不同的计算模型。从接触引弧和非接触引弧两种条件下的引弧过程入手,对主要研究对象——焊接电弧引燃过程的时间进行了不同角度的界定,为后续试验的开展奠定了基础。
     (2)从不同角度对铝板和低碳钢板TIG焊接触引弧过程进行了观测与研究。对该过程电子密度随时间的变化作出了定量计算分析,得到了引弧过程的基本特征,即过程存在着主体电离元素的变换现象。借助先进的高速摄像与电信号采集设备,对不同焊接条件(包括焊接电流、保护气体、焊接弧长、阳极材料、钨极直径与空载电压)下的TIG焊接触引弧过程进行了时间描述,得到了不同焊接输入量对输出量——引弧时间的变化趋势,并对影响机理进行了阐述。
     (3)对铝合金MIG焊引弧及激光辅助引弧过程进行了详细地观测与研究。通过对MIG焊引弧过程电信号与光谱图像的采集与分析,得到了该过程存在着类似TIG焊的气体导电特征。研究还表明,在MIG焊引弧过程中当两电极同时被激发时,后续的导电速率将显著提高,并且具有在低温条件下,易电离元素优先激发提供电子的物理特征。将连续激光作为热源进行非接触引弧,尝试探索外部能量参与并建立电弧可能。研究发现,激光辅助引弧亦存在着贡献电子主体电离元素的变换现象。同时,该过程也支持了钨极电弧焊引弧的主要特点:即对金属工件的局部加热是产生电子碰撞进而进行电弧空间能量传递的初始条件。
     (4)通过对焊接引弧弛豫现象的时序统计分析,概括了TIG焊接触引弧过程的三个连续特征阶段,即工件预热阶段、场致发射阶段及电弧放电阶段。分别对每个阶段的物理现象与特点进行了说明,并给出了可以定量描述该阶段的一般理论公式。采用Thomas-Fermi模型与Saha方程联立的方法,计算了引弧过程不同时刻的平均电离度,总结归纳了电离度的变化规律。借助试验数据的提炼与概括,对不同焊接条件对焊接引弧时间的影响规律进行了研究,给出了描述引弧过程时间的经验公式。
     (5)以焦耳加热与金属熔化理论为基础,推导了MIG焊引弧过程时间的预测公式。结果表明,当焊丝熔化部分质量越小,焊丝直径越小,焊丝密度越大,焊接电流越大,局部接触电压越大时,引弧过程时间越短。以激光脉冲作用导致气体击穿形成等离子体理论为基础,在同时考虑多光子电离与碰撞电离的情况下,推导了用于描述激光辅助引弧中电弧空间自由电子密度发展过程的理论公式。公式中综合考虑了空载电压的持续作用,使得其更加符合实际的引弧过程。同时,也指出由于激光辅助引弧过程采用连续激光,使得空间击穿更容易发生。
     论文的研究实现了对接触引弧过程(TIG焊与MIG焊)与非接触引弧过程(激光辅助TIG焊)的定性观测与定量分析,分别从宏观和微观角度对引弧过程的物理特征进行了阐述。研究有助于进一步深入理解焊接电弧产生的机理,对丰富焊接物理理论基础与提升自动化弧焊过程的精量监控都具有一定的学术和现实意义。
Welding is a very important processing technology in mechanical manufacturing. It is such a process that two or more similar or different materials are connected through the diffusion and the combination of atoms or molecules. Nowadays, arc welding is one of the most widely used metal welding methods, it has gotten extensive application in whether manual welding or automated welding and robotic welding.
     The so-called arc is a lasting and strong discharging phenomenon generated by the gas medium between the two electrodes. It has the features as low voltage and high current. As an important part of the welding physics, arc phenomenon receives much concern in welding workers. Arc starting process that is the initial stage of the discharging process directly affects the subsequent development of the welding process. Because of the complexity of the process, the research on its mechanism is quite lack at home and abroad.
     In this dissertation, the arc starting processes of several welding modes including TIG, MIG and laser-assisted TIG welding are discussed in detail through the experimental study and the theoretical analysis. The similar conductive characteristics in arc starting processes of these modes are found although the concrete forms are different in different modes. The universal understanding in physical characteristics in arc starting process is showed through this discovery. On the basis of in-depth analysis of these processes, the concept of three consecutive stages in TIG touch arc starting process is proposed. The quantitative studies on arc starting processes in TIG,MIG and laser-assisted TIG welding are primarily investigated. The main contents and innovations of this dissertation are as follows:
     (1)The spectral diagnostic system is established through welding power source, optical device, spectroscopy, high-speed cameras, data processing and analysis system. The real-time observation for arc starting process is realized accurately and reliably by this system. Two different calculation models based on the Stark-broadened line of Hαare compared through the explanation of the testing principle for electron density. Under the two conditions including touch arc starting process and non-touch arc starting process, the time of welding arc starting process is defined from different angles and it laid the basis for the following experiments.
     (2)The TIG touch arc starting process for aluminum plate and low-carbon steel plate in different angles are observed and studied. The changes of electron density in TIG touch arc starting process are quantitatively calculated and the changing phenomenon of the main ionized element in arc starting is found. The time descriptions on the arc starting processes under different welding parameters (including welding current, shielding gas, welding arc length, anode material, tungsten diameter and no-load voltage) are carried out with advanced high-speed camera and the acquisition equipment for electrical signal. The trends of different input-output (the arc starting time) are obtained and the mechanisms are also discussed.
     (3)The MIG and the laser-assisted arc starting processes are observed and studied in detail. The similar conductive characteristics as above are observed via the acquisition and analysis on the MIG arc starting process. The results show that the rate of the subsequent energy transfer will be significantly increased when the metallic atoms from the two electrodes are excited at the same time. The characteristic that the easily ionized element has a priority of providing electrons under the low temperature condition in the initial time of the arc starting process is also verified. In order to investigate the possibility of using the external energy to establish an arc, the CW laser is used as heat source in non-touch arc starting process. It shows that the changing phenomenon of main ionized element providing the electrons can be also found in the laser-assisted arc starting process. Meanwhile, the features of the tungsten arc welding are also supported by the process, that is, the local heating of workpiece is the initial condition of the electron impact produced by the heating process and the energy transfer in the arc space.
     (4)The three consecutive stages in TIG touch arc starting process are proposed through the timing sequential statistical analyses of welding arc starting relaxation phenomenon. That is, the workpiece preheating stage, the field emission stage and the arc discharging stage. The physical phenomena and characteristics of each stage are described separately and the general theoretical formulae in these stages are quantitatively described. The average ionization degree of arc plasma in arc starting process is calculated by the Thomas-Fermi model and the Saha equation. The change law of ionization degree is also summarized. With the refinement and generalization of test data, the rules that the different welding conditions have influences on the arc starting time are studied. The empirical formula is also given for describing the arc starting time.
     (5)On the basis of Joule heating and melting theories, the prediction formula of MIG arc starting time is derived. The results show that the smaller the weight of the welding wire melting part, the smaller the welding wire diameter, the bigger the welding density, the bigger the welding current and the bigger the local touch voltage, the arc starting time will be shorter. The formula of development of free electron density in laser-assisted arc starting process is derived based on the theory of gaseous breakdown initiated by the laser pulse. The multiphoton ionization and collision ionization are also considered. Because of the consideration of continuing effect of no-load voltage, the formula is good agreement with that of the actual arc starting process. It also pointed out that due to using the CW laser in laser-assisted arc starting process, the space is more prone to breakdown.
     In this dissertation, the touch arc starting process (including TIG and MIG welding)and the non-touch arc starting process (including laser-assisted welding) are realized in qualitative observations and quantitative analyses. The physical characteristics of arc starting processes are respectively described in macroscopic and microcosmic points of view. It is helpful to further understanding on the generation mechanism of welding arc starting and it also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.
引文
1 J. F. Lancaster. The Physics of Welding [J]. Physics in Technology. 1984,15(2):73
    2李亮玉,张广军,李莉群等.焊接电弧引弧机理的探讨[J].焊接学报. 1997,18(4):238-243
    3过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986:12-13,281,296-310
    4殷树言.气体保护焊工艺基础[M].北京:机械工业出版社,2007:160-161,162,281,294,297
    5王宗杰主编.熔焊方法及设备[M].北京:机械工业出版社,2009:133,151
    6都东,韩赞东,张人豪等. TIG焊提升引弧方法的研究与应用[J].焊接技术. 1997,26(1):21-23
    7 D. Farson. Arc Initiation in Gas Metal Arc Welding [J]. Welding Research Supplement.1998,77(8):15-20,315-321
    8安藤弘平,长谷川光雄.焊接电弧现象(增补版)[M].北京:机械工业出版社,1985:55-56,216-217
    9许子成,于庆胜,黄念慈.高频引弧可靠性研究[J].电焊机. 1989(1):15-18
    10段然.数字化高压引弧式TIG焊机的研制[D].北京工业大学硕士论文. 2006:5-6
    11李亮玉,刘景奎,苏淑靖. TIG焊引弧技术的发展与现状[J].电焊机. 1995,(1):23-25
    12 T. M.拉弗蒂.真空电弧理论和应用[M].北京:机械工业出版社,1985:30-34
    13 C. S. Wu. Analysis of the TIG Welding Arc Behavior Computational [J]. Materials Science. 1997: 43-46
    14 R. A. Willgoss. Touch Start Techniques for TIG Welding [J]. Welding and Metal Fabrication. 1984,5
    15 P. Vervisch,B. Cheron,J F Lhuissier. Spectroscopic Analysis of a TIG Arc Plasma [J]. J.Phys.D:Appl.Phys.23(1990):1058-1063
    16 Yoshinori HIRATA, Masato FUKUSHIMA, Takanobu SANO, et al. Micro-arc Discharge in Argon Gas Atmosphere [C]. The 52nd Annual Assembly International Institute of Welding, Lisbon, Portugal, 1999
    17李冬青,张忠典,姜伟雁等.钨极氩弧焊的小电流接触引弧方法[J].焊接学报. 2001,22(5):69-72
    18陈茂爱,李中友,陆皓等. TIG焊接触引弧系统[J].山东工业大学学报. 1995,25(3):217-224
    19方臣富,周方明,邱俊等. TIG焊小电流接触引弧控制电路的研究[J].电力电子技术. 1999,2:23-25
    20谭晓川. TIG焊提升引弧方式的研究[D].吉林大学硕士论文. 2007
    21张晓囡,李俊岳,杨运强等.引弧用高频振荡器电路的数学分析及参数的确定[J].焊接学报. 2002,23(2):13-17
    22黄晨,杨震.一种新型高压脉冲引弧器[J].上海工程技术大学学报. 2000,14(1):34-37
    23任志远.一种新型TIG焊工频高压脉冲引弧器[J].电焊机. 2000(5):34-35
    24郑兵,王其隆,胡春伟.新型高压脉冲引弧器[J].焊接. 1993(5):6-9
    25邵成吉,李德元,孙振中等. TIG焊电弧引燃方式的探讨及新型引弧器的介绍[J].电焊机. 1997(3):19-22
    26王军,胡云岩,王会霞等.新型逆变式高压脉冲引弧器的研制[J].河北科技大学学报. 2006,27(3):227-229
    27肖波.具有高压脉冲引弧功能的氩弧焊机[P].中国专利:2360203,2000-01-26
    28殷树言,黄继强,陈树君等.方波交流GTAW电弧再引燃机理的研究[J].机械工程学报. 2002,38(3):16-18
    29 Y. S. Kim,D. M. Mceligot,T. W. Eagar. Analysis of Electrode Heat Transfer in Metal Arc Welding [J]. Welding Journal. 1991,70(1):20-31
    30 S. A. David,T. DebRoy. Current Issues and Problems in Welding Science [J]. Science. 1992,257:497-502
    31杨于银.基于GMAW引弧过程的仿真与分析研究[D].哈尔滨工业大学硕士论文. 2003
    32 T. DebRoy ,S. A. David. Physical Processes in Fusion Welding [J]. Reviews of Modern Physics. 1995,67(1):85-112
    33 J. J. Lowke,Manabu Tanaka. The Physics of the Cathodes of MIG Arcs [C]. IIW 2007,Doc.212-1108-07
    34 Y.Yokomizu,T. Matsumura, Y. W. Sun,et al. Electrode Sheath Voltages for Helium Arcs Between Non-thermionic Electrodes of Iron, Copper and Titanium [J]. J. Phys. D: Appl. Phys. 1998,31:880-883
    35 Huismann Gerd. Starting of the MIG Process [C]. IIW Doc.212-1065-04
    36 E. Craig. Increase Robotic Welding Productivity by Fighting Tip Burn Back [J]. Robotics World. 1996,14(1):34-35
    37 M. Hamura,M. Okuda,Y. Makihata. Arc Welding Control Method for a Welding Robot [P]. United States Patent 5486679. 1996:1-36
    38耿正. GMAW引弧过程的研究[C].第十一次全国焊接会议论文集(第2册). 2005年
    39傅延安. GMAW引弧动态过程DSP控制优化[D].上海交通大学硕士论文. 2003
    40韩德斌.提高焊机的一次引弧成功率[J].东北电力技术. 1994 (8):41-43
    41黄坚,李铸国,吴毅雄.焊接电弧计算机动态测试与分析系统[J].上海交通大学学报. 1998,32(2):112-115
    42焦向东,潘际銮,张骅.交流MIG焊接电弧控制系统的研究[J].电焊机. 1994 (2):9-11
    43刚铁,殷树言,王克鸿等.微机控制脉冲MIG焊引弧及收弧的研究[J].焊接. 1992,10:12-17
    44 N. B. M. Roman,Proc. Laser Ignition of Explosives and Its Application in a Laser Diode Based Ignition System [C]. Proceedings of 16th International Pyrotechnics Seminar,Jonkoping, Sweden, 1992:822-836
    45沈美.激光与含能材料相互作用机理研究[D].南京理工大学硕士论文. 2004
    46钱彦.不同介质中激光等离子体冲击波波前参量特性研究[D].南京理工大学硕士论文. 2004
    47夏小平,王声波,吴鸿兴等.激光技术及强激光与物质相互作用实验[J].物理实验. 2002,26(4):258-261
    48 D. C. Smith. High-power Laser Propagation. Thermal blooming, Proc [J]. IEEE. 1977(65):1679-1714
    49 M. V. Allmen. Laser-Beam Interaction with Material: Physical Principle and Application [M].漆海滨等译.北京:科学出版社,1994
    50 A. Vogel, J. Noack,K. Nahen,et al. Energy Balance of Optical Breakdown in Water at Nanosecond to Femtosecond Time Scales. Appl [J]. Phys.B. 1999,68(2):271-280
    51陆建,倪晓武,贺安之.激光与材料相互作用物理学[M].北京:机械工业出版社. 1996
    52孙承伟等.激光辐照效应[M].北京:国防工业出版社. 2002
    53邹彪,陆克斌,杨生武等.激光等离子体声波及应用[J].光电子·激光. 1999,10(5):484-486
    54 P. A. Barnes,K. E. Rieckhoff. Laser-induced Underwater Sparks [J]. Appl. Phys. Lett. 1968,13:282-284
    55 A. G. Doukas,A. D. Zweig,J. K. Frisoli,et al. Non-invasive Determination of Shock Wave Pressure Generated by Optical Breakdown [J]. Appl .Phys. Lett. 1991,53(4):237-245
    56 E. Pérez-Tijerina,J. Bohigas,R. Machorro. Density and Temperature Maps of an Aluminium Plasma Produced by Laser Ablation [J]. Revista Mexicana De Fisica. 2005,51(2):153-156
    57徐荣青.高功率激光与材料相互作用力学效应的测试与分析[D].南京理工大学博士论文. 2004
    58陈彦宾.激光-TIG复合热源焊接物理特性的研究[D].哈尔滨工业大学博士论文. 2003
    59陈彦宾,李俐群,陈凤东.激光维持燃烧波对激光-TIG复合热源的影响[J].哈尔滨工业大学学报. 2003,35(6):695-697
    60胡绳荪,张绍彬,赵家瑞.电弧强化激光焊[J].焊接学报. 1993,14(3):159-163
    61高志国,黄坚,李亚玲等.激光-MIG复合焊中激光与电弧前后位置对焊缝成形的影响[J].焊接学报. 2008,29(12):69-73
    62胡连海,黄坚,庄凯等.激光与电弧间距对激光复合焊熔滴过渡的影响[J].焊接学报. 2010,31(2):49-52
    63田川,吕高尚,闻义.激光电弧复合焊接--一种新型焊接方法[J].机车车辆工艺. 2005(2):5-7
    64 J. Matsuda,A. Utsumi,M. Katsumura,et al. TIG or MIG Augmented Laser Welding of Thick Mild Steel Plate [J]. Joining and Materials,1988(7):31-34
    65倪宇.激光电弧复合焊接及激光焊接超低碳钢的焊缝磁性能研究[D].华中科技大学硕士论文. 2004
    66邵福球.等离子体粒子模拟[M].北京:科学出版社,2002
    67 S. Amoruso,V. Berardi,R. Bruzzese,et al. High Fluence Laser Ablation of Aluminum Targets: Time-of-flight Mass Analysis of Plasmas Produced at Wavelengths 532 nm and 355 nm [J]. Appl. Phys. A. 1996,62(6):533-541
    68 S. Amoruso,M. Armenante,V. Berardi,et al. Absorption and Saturation Mechanisms in Aluminium Laser Ablated Plasmas [J]. Appl.Phys. A. 1997,65(3):265-271
    69 H. C. Ong,R. P. H. Chang. Effect of Laser Intensity on the Properties of Carbon Plasmas and Deposited Films [J]. Phys. Rev. B. 1997,55(19):13213-13220
    70 P. Clark,P. E. Dyer,P. H. Key,et al. Plasma Ignition Thresholds in UV Laser Ablation Plumes [J]. Appl.Phys. A. 1999,69(Supplement 1):S117-S120
    71 Sanda Pleslic,Zeljko Andreic. Numerical Modeling of Laser Beam-target Interaction near the Plasma-formation Threshold [J]. Vacuum. 2004,72(4):439-444
    72郝达福.激光等离子体点燃机理分析与阈值测试研究[D].南京理工大学硕士论文. 2006
    73 M. Tsukamoto, M. Tanaka, N. Abe, et al. Pulsed Laser Focusing for Triggering Arc Discharge in an Arc Welding System [J]. Welding International,2006,20(2):106-110
    74夏源,宋永伦,冉国伟等.激光辅助引燃TIG电弧机理分析[J].焊接学报,2010,31(1):9-11
    75吴言高,李午申,邹宏军等.焊接数值模拟技术发展现状[J].焊接学报. 2002,23(3):89-92
    76 R. Ducharme,P. Kapadia,J. Dowden,et al. A Mathematical Model of the Arc in Electric Arc Welding including Shielding Gas Flow and Cathode Spot Location [J]. J. Phys. D:Appl. Phys. 1995,28:1840-1850
    77 K. C. Hsu,K. Etemadi,E. Render. Study of the Free-Burning High Intensity Argon Arc [J]. J. Appl. Phys. 1983,54(3):1293-1301
    78 K. C. Hsu,E. Pfender. Two-Temperature Modeling of the Free-Burning High Intensity Argon Arc [J]. J. Appl. Phys. 1983,54(8):4359-4366
    79 L. E. Cram. A Model of the Cathode of a Thermionic Arc [J]. J. Phys. D:Appl. Phys. 1983,16(9):1643-1650
    80 J. Mckelliget,J. Szekely. Heat Transfer and Fluid Flow in the Welding Arc [J]. Metallurgical and Materials Transactions A. 1986,17(7):1139-1148
    81 A. Calisti,R. Stamm,B. Talin. Simulation Calculation of the Ion-dynamic Effect on Overlapping Neutral Helium Lines [J]. Physical Review A. 1988,38(9):4883-4888
    82 J. J. Lowke,P. Kovitya,H. P. Schmidt. Theory of Free-Burning Arc Columns including the Influnce of the Cathodes [J]. J. Phys. D:Appl. Phys. 1992,25(11):1600-1606
    83 R. T. C. Choo,J. Szekely,S. A. David. On the Calculation of the Free Surface Temperature of Gas-Tungsten-Arc Weld Pools from First Principles:PartⅠ. Modeling the Welding Arc [J]. Metallurgical and Materials Transactions B. 1992,23(6):357-369
    84 Peiyuan Zhu,John J. Lowke,R. Morrow, et al. Prediction of Anode Temperatures of FreeBurning Arcs [J]. J. Phys. D:Appl. Phys. 1995,28:1369-1376
    85 Manabu Tanaka,Masao Ushio,John J. Lowke. Numerical Study of Gas Tungsten Arc Plasma with Anode Melting [J]. Vacuum,2004,73(3-4):381-389
    86 K.Yamamoto,Manabu Tanaka,S. Tashiro,et al. Numerical Simulation of Metal Vapor Behavior in Arc Plasma [J]. Surface and Coatings Technology. 2008,202(22-23):5302-5305
    87 K.Yamamoto,Manabu Tanaka,S. Tashiro,et al. Numerical Simulation of Metal Vapor Behavior in Argon TIG Welding [J]. Transactions of JWRI. 2007,36(2):1-4
    88 K.Yamamoto,Manabu Tanaka,S. Tashiro,et al. Metal Vapor Behavior in GTA Welding of a Stainless Steel Considering the Marangoni Effect [J]. IEEJ Transactions on Electrical and Electronic Engineering. 2009,4(4):497-503
    89 D. Karabourniotis,E. Drakakis,B. Zacharopoulos. Electron and Population Temperatures in a Non-LTE Optically Thick Plasma [J]. J.Phys.D:Appl.Phys. 1992,25(2):188-194
    90 V. A. Zhovtyansky. The Factors of Gradiental Nonequilibrium in Thermal Plasma [C]. IEEE
    18th Int. Symp. on Discharges and Electrical Insulation in Vacuum-Eindhoven. 1998:358-361
    91 L. P. Podenok,L. I. Sharakhovskii,V. D. Shimanovich,et al. Influence of Plasma Properties on Arc Discharge Destabilization [J]. Journal of Engineering Physics and Thermophysics. 1997,70(1):95-99
    92 R. Ducharme,P. Kapadia,J. Dowden,et al. A mathematical Model of the Arc in Electric Arc Welding including Shielding Gas Flow and Cathode Spot Location [J]. J.Phys.D:Appl.Phys. 1995,28(9):1840-1850
    93 L. O. Vilarinho,A. Scotti. Proposal for a Modified Fowler-milne Method to Determine the Temperature Profile in TIG Welding at Low Currents [C]. COBEF 2003– II Brazilian Manufacturing Congress, May 2003, Uberlandia, MG. Brazil.
    94付希圣,牛尾诚夫. TIG电弧的数学化模型研究[J].甘肃工业大学学报. 1985,11(4):14-26
    95樊丁,陈剑虹,牛尾诚夫. TIG电弧传热传质过程的数值分析[J].机械工程学报. 1998,34(2):39-45
    96范红刚.直流、脉冲GTA焊接电弧数值模拟[D].西安交通大学博士论文. 1995
    97范红刚,陆家榆,史耀武.直流TIG焊接电弧的数值分析[J].海军工程学院学报. 1996,3:1-6
    98范红刚,杨军,史耀武等.直流TIG焊接电弧阳极电流密度的数值计算[J].西安交通大学学报. 1997,31(4):77-82
    99雷永平,顾向华,史耀武等. GTA焊接电弧与熔池系统的双向耦合数值模拟[J].金属学报. 2001,37(5):537-542
    100芦凤桂,姚舜,钱伟方.钨极氩弧焊焊接电弧数值分析[J].上海交通大学学报. 2003,37(12):1862-1865
    101芦凤桂,唐新华,李少青等.定点TIG焊接电弧与熔池交互耦合数值模拟[J].焊接学报. 2005,26(9):69-72
    102芦凤桂,姚舜,楼松年.三维TIG焊接电弧与熔池动态交互过程数值分析[C].第十一次全国焊接会议论文集(第2册). 2005年,11卷
    103 Shu Zheng,Yue Liu, Jinyuan Liu,et al. Two-dimensional Numerical Simulation on Evolution of Arc Plasma [J]. Vacuum,2004,73(3-4):373-379
    104雷玉成,李彩辉,郁雯霞等.氮氩气体保护TIG焊接电弧数值分析[J].焊接学报. 2006,27(11):25-28
    105李健,焦向东.高压钨极氩弧焊焊接电弧行为数值模拟的研究现状与发展[J].北京石油化工学院学报. 2005,13(2):31-35
    106华学明,吴毅雄,张勇等.熔化极气体保护焊引弧时间预测模型[J].上海交通大学学报. 2009,43(5):697-699
    107梁秀娟.基于光谱诊断的TIG焊引弧过程研究[D].天津大学硕士论文. 2007:5-6
    108辛仁轩.等离子体发射光谱分析[M].北京:化学工业出版社,2005
    109 Hans R Griem. Spectral Line Broadening by Plasmas [M]. NY:Academic. 1974
    110 Hans R Griem,Alan C Kolb. Stark Broadening of Hydrogen Lines in a Plasma [J]. Physical Review. 1959,116(2): 4-15
    111 Hans R Griem. Stark Profile Calculations for the HβLine of Hydrogen [J]. American Astronomical Society. 1962,(4):272-276
    112 Ji Hun Kim, Yoon Ho Choi,Y. S. Hwang. Electron Density and Temperature Measurement Method by using Emission Spectroscopy in Atmospheric Pressure Nonequilibrium Nitrogen Plasmas [J]. Physics of Plasma. 2006,13(093501):1-7
    113宋永伦.焊接电弧等离子体的光谱诊断法及其应用的研究[D].天津大学博士论文. 1990
    114李俊岳,宋永伦,李桓等.焊接电弧光谱信息的基本理论和基本方法[J].焊接学报. 2002,23(6):5-8
    115徐晨明.氩氦混合气体保护焊接电弧光谱诊断[D].哈尔滨工业大学博士论文. 2005
    116 P. Baessler,M. Kock. An Interferometric and Spectroscopic Study on a High-current Argon arc [J]. J. Phys. B:Atom. Molec. Phys. 1980,(13):1351-1361
    117 M. F. Thornton. Spectroscopic Determination of Temperature Distributions for TIG Arc [D]. Ph.D thesis. Cranfield University,UK,1993
    118 M. F. Thornton. Spectroscopic Determination of Temperature Distributions for TIG Arc [J]. J. Phys. D:Appl. Phys. 1993,26(9):1432-1438
    119 G. N. Haddad,A. J. D. Farmer. Temperature Determinations in a Free-burning Arc. I. Experimental techniques and results in argon [J]. J. Phys. D: Appl. Phys. 1984, 17(6):1189-1196
    120 C. O. Laux,T. G.. Spence,C. H. Kruger,et al. Optical Diagnostics of Atmospheric Pressure Air Plasmas [J]. Plasma Sources Sci. Technol. 2003,12:125-138
    121 W. Kohsiek. Measurement of the Electron Temperature and Density of a Helium Plasma produced by a Hollow Cathode Arc Discharge [J]. Plasma Physics. 1975,17(12):1083-1089
    122 J.E. Heidrich,B.A. Jacoby,T.M. York,et al. A Comparison of Spectroscopic and ThomsonScattering Measurements of Electron Densities and Temperatures in a Transient expanding Plasma Flow [J]. J. Appl. Phys. 1982,53(6):4130-4135
    123 Y. Kaga,S. Tsuge,K. Kitagawa,et al. Temporally resolved Boltzmann Plots and Excitation Temperatures of Iron Atoms in a Helium Radiofrequency Atomization/Excitation Source for Atomic Emission Spectrometry [J]. Microchemical Journal. 1999,63(1):34-42
    124 R. F. Boivin,J. L. Kline,E. E. Scime. Electron Temperature Measurement by a Helium Line Intensity Ratio Method in Helicon Plasmas [J]. Phys. Plasmas. 2001,8(12):5303-5314
    125 Jeroen Jonkers,Marco van de Sande,Antonio Sola,et al. On the Differences between Ionizing Helium and Argon Plasmas at Atmospheric Pressure [J]. Plasma Sources Sci. Technol. 2003,12:30-38
    126柳刚,李俊岳,李桓等.焊接电弧光谱的分布特征[J].机械工程学报,2000,36(5):58-61
    127 Wei Fushui,Song Yonhlun,Li Junyue,et al. A Multilineal Spectroscopy Analytic Solution and Experimental Procedure for Simultaneously Measuring Composition and Temperature of an arc Plasma [J].天津理工学院学报. 1998,14(4):53-57
    128姜明,程新路,杨向东.高密度氩等离子体电子密度的计算[J].原子与分子物理学报. 2004,21(3):421-424
    129严健华,屠昕,马增益等.大气压直流氩等离子体射流工作特性研究[J].物理学报. 2006,55(7):3451-3457
    130董凤宇,王季梅.真空电弧的光谱诊断[J].力学学报,1990,22(3):311-317
    131陆同兴,赵献章,崔执凤.用发射光谱测量激光等离子体的电子温度与电子密度[J].原子与分子物理学报,1994,11(2):120-128
    132 Hans R Griem. Principles of Plasma Spectroscopy [M]. Cambridge University Press,1997
    133冯红艳,吴蓉,李燕等.小尺寸等离子体电子密度原子发射光谱诊断[J].分析科学学报,2008,24(1):103-107
    134 Sherbini A M EI,Hegazy H,Sherbini Th M EI. Measurement of Electron Density utilizing the Hα-line from Laser produced Plasma in Air [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2006,61(5):532-539
    135 M. A. Gigosos ,M.á. González ,V. Carde?oso. Computer simulated Balmer‐alpha ,‐beta and‐gamma Stark Line Profiles for Non‐equilibrium Plasmas Diagnostics [J]. Spectrochimica Acta Part B:Atomic Spectroscopy,2003,58(8):1489-1504
    136Г. A.米夏兹著,李国政译.真空放电物理和高功率脉冲技术[M].北京:国防工业出版社,2007:6-7,9-12,61-67
    137 C. A. Spindt,I. Brodie,L. Humphrey,et al. Physical Properties of Thin-film Field Emission Cathodes with Molybdenum Cones [J]. J. Appl. Phys,1976,47(12):5248-5263
    138 A. V. Oostrom. Field Emission Cathodes [J]. J. Appl. Phys,1962,33:2917-2922
    139 E. M. Charbonnier,E. E. Martin. A Simple Method for Deriving, from Measured I(V) Data, Information on the Geometry of a Field Emission Current Source of Unknown Characteristics [J]. J. Appl. Phys,1962,33:1897-1898
    140胡庆.低温等离子体放电过程的数值模拟[D].电子科技大学硕士论文. 2007
    141白秀庭.从基本观点对气体放电理论的探讨[J].清华大学学报(自然科学版),1993,33(1):11-17
    142 S. T. Pai. Analytic Approach to Glow Discharge Theory: The Physical Model [J]. J. Appl. Phys,1992,71(12):5820-5825
    143李弘.低温气体放电现象的数值研究[D].中国科学技术大学博士论文. 2002
    144田杨萌,王彩霞,姜明等.惰性物质等离子体物态方程研究[J].物理学报,2007,56(10):5698-5702
    145张颖、陈其峰、顾云军等.部分电离稠密氦等离子体物态方程的自洽变分计算[J].物理学报,2007,56(3):1318-1324
    146王彩霞,田杨萌,姜明等.一种计算氩等离子物态方程的简单模型[J].物理学报,2006,55(11):5784-5789
    147李有宽,陈栋泉,李茂生等.氢的高密度等离子体物态方程[J].高压物理学报,2001,15 (4):271-276
    148 M.McChesney. Equilibrium Shock-Wave Calculations in Inert Gas, Multiply Ionized Debye-Huckel Plasmas [J]. Can. J. Phys. 1964,42(12):2473-2494
    149徐锡申,张万箱.实用物态方程理论导引[M].北京:科学出版社,1986:138
    150陈祝年.焊接工程师手册(第二版)[M].北京:机械工业出版社,2010:346-347,132
    151陆同兴,路轶群.激光光谱技术原理及应用[M].合肥:中国科学技术大学出版社,2006:216-219
    152 C. L. M. Ireland,C. Grey Morgan. Gas Breakdown by a Short Laser Pulse [J]. J.Phys.D: Appl Phys. 1973,6(6):720-729
    153 F. Morgan,L. R. Evans,C. Grey Morgan. Laser Beam induced Breakdown in Helium and Argon [J]. J. Phys. D: Appl Phys. 1971,4(2):225-235
    154 C. Grey Morgan. Laser-induced Breakdown of Gases [J]. Rep. Prog. Phys. 1975,38(5):621-665
    155 Yosr E E-D Gamal,M. A. Harith. Molecular Gas Breakdown by Short Laser Pulses [J]. J. Phys. D: Appl Phys. 1981,14(12):2209-2214
    156 Yosr E E-D Gamal,Iftitan M Azzouz. Theoretical Analysis of the Breakdown of Neon Induced by 248 nm Laser Radiation [J]. J. Phys. D: Appl Phys. 2001,34(22):3234-3240
    157 J. Schwarz,P. Rambo,J. C. Diels. Measurements of Multiphoton Ionization Coefficients with Ultrashort Ultraviolet Laser Pulse [J]. Appl Phys B: Lasers and Optics. 2001,72(3):343-347
    158倪晓武,陆建.空气击穿机理研究[J].华东工学院学报. 1989,2:1-7
    159韩晓玉,杨小丽.激光大气击穿阈值的数值分析[J].强激光与离子束. 2005,17(11):1655-1659

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700