模拟锑矿废水的吸附处理技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
据美国地质调查局2003年出版的《Mineral commodity summaries》报告公布,世界锑储量180万t,其中中国储量79万t,居世界首位。我国是锑生产和出口大国,锑矿主要集中分布在湖南、贵州、广西等南方省区。矿石开挖、精选等过程会产生大量含锑、砷等有毒元素的废水,往往未经任何处理直接排入河流、水库等地表水体,对当地水环境造成严重污染,对矿区附近及下游地区的居民身体健康造成严重危害。然而,与其它各种类型的矿山废水相比,目前针对锑矿山废水吸附处理的文献报道还非常有限,缺乏可供应用的成熟技术。
     因此,本研究拟开发一种基于高效、廉价吸附剂的锑矿废水处理新技术。通过吸附实验,从粘土类吸附剂、废弃物吸附剂、生物吸附剂等中筛选出高效锑吸附材料(由于时间有限,此次只对废弃物吸附剂进行研究),通过批量吸附实验,研究高效吸附剂吸附锑的动力学、等温吸附、热动力学及吸附机理;在此基础上,通过物理、化学手段对吸附剂进行改性,提高其吸附效率。
     研究结果表明:100℃烘干CL2007#[注]、400℃和800℃高温改性CL2007#、用浓度为20%的盐酸改性CL2007#均对水中的锑有不同程度的去除,去除效果100℃烘干>20%盐酸改性>400℃高温改性>800℃高温改性。因此,本论文主要研究100℃烘干CL2007#处理锑矿废水的影响因素,以寻找最佳吸附条件。
     通过批量实验得出,100℃烘干的CL2007#在pH=2,Sb溶液浓度为200mg/L,反应温度为35℃,反应时间为45min条件下,对锑吸附趋于平衡(Qe =17.92mg/g)。从等温吸附三个方程模拟的相关系数来看,Langmuir方程的拟合结果最好, Freundlich方程的拟合结果次之,而Temkin方程的拟合结果较差。从动力学方程模拟的相关系数来看,只有拟二级速率方程拟合的结果最符合实验数据。由此说明CL2007#是通过物理吸附、表面络合吸附、离子交换和絮凝沉淀等作用去除锑矿废水中的锑离子。
     受锑污染CL2007#的再生最优化条件为0.025~0.075mol/L EDTA,经EDTA解吸的CL2007#可再吸附锑的量为16.25mg/g,接近初始吸附值Qe =17.92mg/g。
According to the announcement named "Mineral commodity summaries " , which was pubished by American geology Investigation Bureau in 2003, it reports that there are 1.8 million t antimony reserves in the world and 790,000 t antimony reserves in China, occupies the first place of the world. Our country is the great nation which produces and exports antimony. the antimony ore mainly and centrally distributes in Hunan, Guizhou, Guangxi , as well as the south provincial area. The Wastewater which contains much antimony and arsenic virulent element will be produced massively during the process of the ore excavates and selects. The water not only has caused the serious pollution to eht local water environment, but also the serious harm to inhabitants health in the nearby and the down stream of the minning area if it had not been disposed after any processing and disperse directhly into surface water, the rivers and reserviors. However, compares with other kind of type mine Wastewater, at present we also extremely are limited in view of the antimony mine waster water processing literature report, and lackes the mature technology which may supply the application
     Therefore, this research plans to develop one new technology which based on highly effective, inexpensive absorbent antimony ore Wastewater processes. Through the adsorption experiment, we screen the highly effective antimony adsorption material from sticks the soil type absorbent, the reject absorbent, the biological absorbent ( this only conducts research to reject absorbent;through batch adsorption experiment, highly effective absorbent adsorption antimony dynamics, uniform temperature adsorption, hot dynamics and adsorption mechanism; In this foundation, through physics, chemistry method carries on the modification to the absorbent, and enhance its adsorption efficiency.
     The findings indicated that, 100℃dries CL2007# [ note ], 400℃ and 800℃high temperature modified CL2007#, is 20% hydrochloric acid modified CL2007# adds water with the density the antimony to have the varying degree removeing, removes effect 100℃to dry 20% hydrochloric acid modification 400℃high temperatures modifications 800℃high temperatures modifications. Therefore, the present paper mainly studies the influence factor ,which is 100℃to dry the CL2007# processing antimony ore Wastewater, seeks the best adsorption condition.
     Obtains through the batch experiment, 100℃drying CL2007# in pH=2, the Sb solution concentration is 200mg/L, the reaction temperature is 35℃, the reaction time is under the 45min condition, tends to the balance to the antimony adsorption (Qe =17.92mg/g). To look from the correlation coefficient of the uniform temperature adsorbs three equations simulations that, Langmuir equation fitting result best, the Freundlich equation fitting result is next, but the Temkin equation fitting result is worse. The driven mechanics equation simulation correlation coefficient looked that, only has draws up two levels of speeds equations fitting the result most to conform to the empirical datum. From this explained CL2007# is through function and so on physisorption, superficial complexing adsorption, ionic exchange and flocculent precipitate removes in the antimony ore Wastewater the antimony ion.
     Polluted CL2007# the antimony the regeneration optimization condition is 0.025~0.075mol/L EDTA, may adsorb the antimony after EDTA Desorption CL2007# the quantity is 16.25mg/g again, approaches initial adsorption value Qe =17.92mg/g.
引文
[1] 白树林, 赵桂英, 付希贤. 改性活性炭对水溶液中 Cr(III)吸附的研究[J]. 化学研究与应用, 2001, 13(6): 670-672.
    [2] 陈冠荣, 化工百科全书编辑委员会. 化工百科全书第 15 卷[M]. 北京: 化学工业出版社, 1997: 865-865.
    [3] 丁恒如. 工业用水处理工程[M]. 北京: 清华大学出版社, 2005,12: 158-166.
    [4] 董秉直, 曹达文, 范谨初等. UF 膜与混凝粉末活性炭联用处理微污染原水[J]. 环境科学, 2001, 22(1): 37-40.
    [5] 杜军. 锑矿选矿尾矿废水的处理研究[M]. 甘肃有色金属. 1995, (4): 32~35.
    [6] 段绍甫, 宣 宁, 文献军等. 锑工业的可持续发展[M]. 有色金属工业. 2005, (7) : 9~13.
    [7] 范延臻, 王宝贞, 王琳等. 改性活性炭的表面特性及其对金属离子的吸附性能[M]. 环境化学, 2001, 20(5): 437-442.
    [8] 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[M]. 化学进展. 2004, 16 (1) : 131~135.
    [9] 黄鑫. 强化常规净水工艺处理饮用水源中锑的研究[M]. 湖南大学, 2005.
    [10] 客绍英, 石洪凌, 刘冬莲. 锑的污染及其毒性效应和生物有效性[J]. 化学世界. 2005, (6): 382~384.
    [11] 李树酞, 郑宇, 何淑敏等. 活性氧化铝去除水中共存砷氟的试验研究[J]. 卫生研究, 1995, 24(2): 88-90.
    [12] 李迎凯, 李君文. 骨炭与活性氧化铝除氟性能比较[J]. 中国给水排水, 1994, 10(3): 37-39.
    [13] 刘纯玉, 刘朝霞. 活性氧化铝及其发展[J]. 轻金属, 2001, (4): 24-25.
    [14] 宁平, 邓春玲, 普红平等. 活性氧化铝吸附水中的磷酸盐[J]. 有色金属, 2002, 54(1): 37-39.
    [15] (日)馆稔等著, 薛德榕等译. 环境的科学[M]. 北京: 科学出版社, 1982: 349.
    [16] 石油化学工业部化工设计院. 污染环境的工业有害物[M]. 北京: 石油化学工业出版社, 1976: 233.
    [17] (苏)格鲁什科著, 钟祥浩译. 工业污水中的有毒金属及其无机化合物[M]. 北京: 科学出版社, 1979: 165~167.
    [18] 王连军, 黄中华, 刘晓东等. 膨润土的改性研究[J]. 工业水处理, 1999, 19(1): 9-11.
    [19] 王琳, 王宝贞. 优质饮用水净化技术[J]. 北京: 科学出版社, 2000.
    [20] 魏艳红.《有色金属工业污染物排放国家标准一锑》的研究[M]. 昆明理工大学, 2006.
    [21] 温淑瑶, 马毅杰. 膨润土改性机理研究进展[J]. 污染防治技术, 1999, 12(3): 178-180.
    [22] 吴执中. 职业病[M]. 北京: 人民卫生出版社, 1982: 157.
    [23] 许保玖. 给水处理理论[M]. 北京: 中国建筑工业出版社, 2000: 374-376.
    [24] 严煦世, 范瑾初. 给水工程(第四版) [M]. 北京: 中国建筑工业出版社, 1995: 154.
    [25] 张伟宁, 李静, 刘军. 用分步沉积法去除Nb(OH)5/Ta(OH)5中Ti, Sb等金属杂质的工艺研究[J]. 宁夏工程技术, 2002, 1(3): 165~167.
    [26] 张志, 赵永斌, 刘如意. 微电解-中和沉淀法处理酸性重金属矿山地下水的试验研究[J]. 有色金属. 2002, (2): 44~47.
    [27] 张自杰, 林荣忱, 金儒霖等. 排水工程(第四版) [M]. 北京: 中国建筑工业出版社, 1996: 167-169.
    [28] 朱利中, 陈宝梁. 有机膨润土在废水处理中的应用及其进展[J]. 环境科学进展, 1998, 6(3): 53-61.
    [29] 朱利中. 有机粘土吸附处理水中苯酚的性能及应用[J]. 水处理技术, 1996, 22(2): 107-112.
    [30] 邹洪涛. 锑与社会[J]. 化学教育. 1998, (7) : 1~3.
    [31] 邹家庆. 工业废水处理技术[M]. 北京: 化学工业出版社, 2003. 7: 272~280.
    [32] Belzile N., Chen Y.-W., Wang Z. Oxidation of antimony III by amorphous iron and manganese oxyhydroxides[J]. Chem.Geol, 2001,174(4):379-387.
    [33] Brannon J M, Patrick Jr W H. Adsorption of antimony on hydrous ferrous oxides[J]. Environment Pollution, 1985, 9B:107-126.
    [34] Crecelius E.A., Bothner M H, Carpenter R. Chemical changes in arsenic following ingestion in man[J]. Environ Sci Technol. 1975, 9:325-333.
    [35] He M C, Yang J R. Effects of different forms of antimony on rice during the period of germination and growth and antimony concentration in rice tissue[J]. The Science of the Total Environment, 1999, 243/244:149-155.
    [36] Jarvie H P, Neal C, Burton J D, et al. Patterns in trace element chemistry in the freshwater tidal reaches of the River Trent[J]. Sci Total Environ, 2000, (251 /252):317-333.
    [37] K J Ives. The scientific of filtration[J]. noordhoff: A W Sijthoff international publishing CO, 1975.
    [38] Kazufumi Takayanagi, Daniel Cossa. Vertical distributions of Sb(III) and Sb( V) in Pavin Lake France[J]. Wat.Res, 1997, 31(3): 671-674.
    [39] Koretsky C. The significance of surface complexation reactions in hydrologic systems a geochemist's perspective[J]. Journal of Hydrology, 2000, 230: 127-171.
    [40] Meea K.,Tasuku K., Yasumoto M. Comparing polyaluminum chloride and ferric chloride for antimony removal[J]. Wat. Res, 2003, 37(17): 4171~4179.
    [41] Montserrat Filella, Nelson Belzile, Yu-Wei Chen. Antimony in the environment: a view focused on natural waters II Relevant solution chemistry[J]. Earth-Science Reviews, 2002, 59(4): 265-285.
    [42] Nalan Ozdemir, Mustafa Soylak, Latif Elci, Mehmet Dogan. Speciation analysis of inorganic Sb(Ⅲ ) and Sb(Ⅴ ) ions by using mini column filled with Amberlite XAD-8 resin[J]. AnalyticaChimica Acta, 2004, 505(1): 37~41.
    [43] Nasir Khalid, Shujaat Ahmad, Aqidat Toheed, Jamil Ahmed. Potential of rice husks for antimony removal[J]. Applied Radiation and Isotopes, 2000, 52 (1): 31~38.
    [44] Pilarski J, Waller P, Pickering W. Adsorption of antimony in natural waters by NOM[J]. Water Air Soil Pollution, 1995, 84(2): 51-59.
    [45] Scheidegger A M, Sparks D L. A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface[J]. Soil Sci, 1996, 161(12): 813-831.
    [46] SYED MOOSA HASANY and MUNAWAR HUSSAIN CHAUDHARY. Sorption Potential of Haro River Sand for the Removal of Antimony from Acidic Aqueous Solution[J]. AppL Radiat Lsot, 1996, 47(4): 467~471.
    [47] Thanabalasingam P, Pickering W F. Specific sorption of antimony(III) by the hydrous oxides of Mn Fe and Al[J]. Water Air and Soil pollution, 1990, 49:175-185.
    [48] Yuko Nakamura, Takashi Tokunaga. Antimony in the north Kyushu district of Japan[J]. Wat.Res, 1996, 34: 133~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700