硼化钛基复相陶瓷刀具及其失效机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对TiB:陶瓷材料难以烧结致密化、抗弯强度、断裂韧度低等缺点,根据复合陶瓷刀具材料物理、化学相容性原则,采用热压烧结工艺,以Ni. Co、(Ni,Mo)、(Co,Mo)、(Ni,Ti)、(Co,Ti)作为金属相,以TiC、WC作为硬质相,研制成功了新型TiB2基复相陶瓷刀具TiB2-25wt.%TiC-WC(TTW7)、 TiB2-WC(BW3).TiB2-WC-TiC(TWTN3),并对金属相含量、金属相与硬质相的物理相容性、材料的液相烧结致密化机理、力学性能、微观组织、增韧机理、刀具切削性能及失效机理进行了系统研究。
     提出了新型TiB2基复相陶瓷刀具材料的设计目标和设计原则。确定了TiC和WC为TiB2基复相陶瓷刀具材料的添加相,确立了TiB2基复相陶瓷刀具材料体系。建立了金属相全包覆硬质相晶粒模型,推导了TiB:基复相陶瓷刀具材料中金属相含量的计算式,确定了实现金属相全包覆硬质相时的金属相体积分数为φ∈[3.5%,13%]。对金属相与硬质相间的物理相容性研究表明,硬质相颗粒越小,容许的硬质相与金属相热膨胀系数差越大。
     研究了TiB2基复相陶瓷刀具材料液相烧结时的致密化机理。烧结初期的致密化机理主要是增强相在液相中的溶解、气孔收缩、颗粒重排,在烧结初期气孔逐步形成球形。研究了TiB2基复相陶瓷刀具材料在烧结中后期致密化过程中相对密度与烧结工艺参数之间的关系,结果表明,随晶粒尺寸(b)、液相厚度(λl)、保温时间(t)和液相密度(pL)的增大,材料的相对密度不断增加;而随液相动力粘度(μ)和坯体高度(h)的增大,材料的相对密度不断减小;其中烧结压力(P)和烧结温度(T)对材料相对密度的影响不大。
     对烧结温度、保温时间、金属相含量和硬质相含量进行了优化。研究了金属相和硬质相含量对TiB2复相陶瓷刀具材料力学性能的影响,确定了制备TTW7、BW3和TWTN3刀具的工艺方案。
     研制成功了TiB2-25wt.%TiC-WC(TTW7)复相陶瓷刀具材料,其中TiB2-25wt.%TiC复合粉的含量为72wt.%,WC的含量为20wt.%,Ni的含量为8wt.%。在1650℃下烧结复相陶瓷材料时,基体和WC具有良好的化学相容性。随着WC含量的增加,微观组织中的粗大晶粒和气孔逐渐减少,TiB2复相陶瓷刀具材料的抗弯强度、断裂韧度、硬度逐渐增大;但是当WC含量超过20wt.%时,刀具材料的力学性能降低。当WC含量为20wt.%时,材料的抗弯强度为955.7MPa,断裂韧度为7.5MPa·m1/2,硬度为23.5GPa。
     研制成功了TiB2-WC(BW3)复相陶瓷刀具材料,其中TiB2的含量为72wt.%,WC的含量为20wt.%,(Ni, Mo)的含量为8wt.%。在1650℃下烧结复相陶瓷材料时,TiB2和WC具有良好的化学相容性。金属相为Co的复相陶瓷刀具材料中的气孔、粗大晶粒明显多于金属相为Ni、(Ni, Mo)的复相陶瓷刀具材料,且前者的力学性能低于后两者。金属相为(Ni, Mo)的复相陶瓷刀具材料的缺陷最少,力学性能最好,其抗弯强度为1307.0MPa,断裂韧度为8.2MPa·m1/2,硬度为22.7GPa。
     研制成功了TiB2-TiC-WC(TWTN3)复相陶瓷刀具材料,其中TiB2的含量为42wt.%,WC的含量为20wt.%,Ni的含量为8wt.%,TiC的含量为30wt.%。在1650-C下烧结复相陶瓷刀具材料时,TiB2、WC和TiC具有良好的化学相容性。对微观组织的研究表明,当TiC含量为10wt.%时,复相陶瓷刀具材料中存在许多气孔和粗大晶粒;随TiC含量的增加,气孔及粗大晶粒逐渐减少;当TiC含量为30wt.%时,TWTN3及TWTNM3复相陶瓷刀具材料微观组织中的缺陷逐渐消失。材料的抗弯强度为996.6MPa,断裂韧度为7.6MPa.m1/2,硬度为23.6GPa。
     研究了刀具材料TTW7、BW3和TWTN3的增韧机理。结果表明,金属相均以环状兼颗粒状分布在硬质相形成的晶界上,具有弥散强化作用,其增韧机理是裂纹桥联和偏转、WC晶粒拔出和固溶强化;材料的断裂模式是沿晶断裂和穿晶断裂同时存在。
     研究了TTW7、BW3、TWTN3和SG4刀具连续切削淬硬Crl2MoV模具钢、哈氏合金C-276和奥氏体不锈钢1Cr18Ni9Ti时的切削性能及刀具失效机理。结果表明,干切削淬硬Cr12MoV模具钢和哈氏合金C-276时,加工表面会发生粘屑现象;加入冷却液后粘屑现象消逝。干切削奥氏体不锈钢1Cr18Ni9Ti时,当切削速度选择合适时,加工表面质量良好。四种刀具在湿切削状态下,以切削速度为60m/min、进给量为0.1mm/r、切削深度为0.3mm连续切削淬硬Cr12MoV模具钢时,刀具的抗磨损能力由强到弱的顺序为B W3>SG4>TTW7>TWTN3;刀具的主要失效形式是后刀面沟槽磨损、刀尖破损、主切削刃微崩、前刀面剥落,其主要磨损机理是磨粒磨损及粘着磨损。四种刀具在湿切削状态下,以切削速度为60m/min、进给量为0.1mm/r、切削深度为0.2mm连续切削哈氏合金C-276时,刀具的抗磨损能力由强到弱的顺序为B W3>SG4>TTW7>TWTN3;刀具的主要磨损形式是后刀面沟槽磨损、刀尖破损、主切削刃微崩,其主要磨损机理是磨粒磨损和粘着磨损。四种刀具在干切削状态下,以切削速度为80m/min、进给量为0.1mm/r、切削深度为0.1mm连续切削奥氏体不锈钢1Cr18Ni9Ti时,刀具的抗磨损能力由强到弱的顺序为TTW7>SG4>TWTN3>BW3;刀具的主要磨损形式是是后刀面沟槽磨损、刀尖破损、主切削刃微崩、前刀面剥落,其主要磨损机理是磨粒磨损、扩散磨损和粘着磨损。
Titanium diboride matrix composite materials are difficult to be sintered. The flexural strength and fracture toughness of the materials are very low. Aiming at the disadvantages of the materials, the materials with high performance have been successfully developed according to the chemical and physical compatibility. Under the liquid-phase hot-pressing technology, the high-performance titanium diboride matrix ceramic tool materials such as TiB2-25wt.%TiC-WC(TTW7), TiB2-WC(BW3) and TiB2-WC-TiC(TWTN3), were fabricated by adding metal phases and hard phases. The metal phases were Ni, Co,(Ni, Mo),(Co, Mo),(Ni, Ti), and (Co, Ti) respectively. The hard phases were TiC and WC. The content of metal, the physical compatibility between the metal phases and the hard phases, the densification mechanism during the sintering process, the mechanical properties, the micro structure, toughening mechanisms of the materials, the cutting performance and failure mechanisms of tools were investigated.
     Additives and compositions of the titanium diboride matrix ceramic tool materials were determined according to the design purpose and design principles. The additives were TiC and WC. According to the model for the metal phase coating the hard phases, the metal phase volume fractionφ∈[3.5%,13%] can be calculated. The smaller the size of the hard phase is, the bigger the difference of the thermal expansion coefficient between the metal phases and the hard phases is. The result is obtained by calculating the physical compatibility of the metal phases and the hard phases.
     The densification process was investigated, and the densification equations of the initial and final sintering stages were established. It is shown that the densification during the initial sintering stage is determined by the formation of the metal liquid, the dissolution of the ceramic particle, the shrinkage of pores, the grain recomposition, and the densification rate has been affected by the physical properties of liquid-phase, external compressive pressure, particle size and the wetting angle between liquid-phase and particle. The relative density during the final sintering stage increases with an increase in the size of grains(b), the content of the metal(λ1), sintering time(t) and the density of the liquid(ρL) and decreases with an increase in the dynamic viscosity coefficient of the liquid(μ) and the height of the samples(h). The effects of external compressive pressure(P) and sintering temperature(T) on the relative density during the final sintering stage were not obvious.
     Sintering temperatures, sintering times, the contents of the metals and the hard phases were optimized by the orthogonal test method. Titanium diboride matrix ceramic tool materials were frabricated according to the optimal sintering process. The effects of the metal phases and the contents of hard phases on the mechanical properties of the materials were investigated and the fabrication processes of the cutting tool such as TTW7, BW3and TWTN3were made.
     TiB2-25wt.%TiC-WC(TTW7) composite was fabricated successfully. The contents of TiB2-25wt.%TiC, WC and Ni were72wt.%,20wt.%and8wt.%, respectively. The matrix and WC grains had a good chemical compatibility in the composite that was sintered at1650℃. The mechanical properties increased with a decrease in the defects such as coarse grains and pores when the content of WC increases. The mechanical properties reduced when the content of WC was more than20wt.%. The optimal mechanical properties of TiB2-25wt.%TiC-20wt.%WC composite were955.7MPa of flexural strength,7.5MPa·m1/2of fracture toughness and23.5GPa of Vickers hardness.
     TiB2-WC(BW3) composite was fabricated successfully. The contents of TiB2, WC and (Ni, Mo) were72wt.%,20wt.%and8wt.%, respectively. TiB2and WC grains had a good chemical compatibility in the composite that was sintered at1650℃. The defects including coarse grains, pores and brittle phases had an important effect on the the mechanical properties. TiB2-WC-Co composites had more defects such as coarse grains and pores in the micro structure than TiB2-WC-Ni and TiB2-WC-(Ni, Mo) composites, so the mechanical properties of the composites were very low. TiB2-WC-(Ni, Mo) composite has a good micro structure, so the composite has optimal mechanical properties that were1307.OMPa of flexural strength,8.2MPa·m1/2of fracture toughness and22.7GPa of Vickers hardness.
     TiB2-TiC-WC(TWTN3) composite was fabricated successfully. The contents of TiB2, WC, Ni,(Ni, Mo) and TiC were42wt.%,20wt.%,8wt.%,8wt.%and30wt.%, respectively. TiB2, WC and TiC grains had a good chemical compatibility in the composite that was sintered at1650℃. The micro structure and mechanical properties of the composite were investigated. There are many pores and coarse grains in the composite when the TiC content is10wt.%. The quantity of the pores and the coarse grains reduced gradually with an increase in the content of TiC. The defects of micro structure disappeared in TiB2-WC-TiC-Ni and TiB2-WC-TiC-(Ni, Mo) composite when the TiC content is30wt.%. The mechanical properties increased when the defcts reduced. The optimal mechanical properties of TiB2-WC-TiC-Ni composite were996.6MPa of flexural strength,7.6MPa·m1/2of fracture toughness and23.6GPa of Vickers hardness.
     Toughening mechanisms of TTW7, BW3and TWTN3composite cutting tool materials were studied. The metal phase dispersed at the interface of the ceramic phase, which formed rings and particles in the composite. The main toughening mechanisms are crack bridging and deflection, pulling out of WC grain, the change of fracture mode and solid solution.
     Compared to the commercial SG4ceramic tool, the cutting performance and failure mechanisms of the cutting tools such as TTW7, BW3and TWTN3in continuous machining hardened Cr12MoV mold steel, hastelloy alloy C-276and stainless steel1Cr18Ni9Ti were investigated. The wear mechanisms of the ceramic tools were analyzed. The wear resistance of the ceramic tools was very poor in high cutting speed. There were many small scraps that adhered to the finished surface when these tools were used to machine hardened Cr12MoV mold steel and hastelloy alloy C-276without cutting fluid, but there were no small scraps on the surface when they were used to machine the materials with cutting fluid. Under the proper cutting speed, the quality of the finished surface was very good when these tools were used to machine stainless steel1Cr18Ni9Ti without cutting fluid. The wear resistance is BW3>SG4>TTW7>TWTN3when continuous machining hardened Cr12MoV mold steel with cutting fluid under the cutting conditions that the cutting speed is60m/min, the feed rate is0.1mm/r and the cutting depth is0.3mm. The main wear patterns are tool flank and rake wear as well as the main wear mechanisms were adhesive wear and abrasive wear. The wear resistance is BW3>SG4>TTW7>TWTN3when continuous machining hastelloy alloy C-276with cutting fluid under the cutting conditions that the cutting speed is60m/min, the feed rate is0.1mm/r and the cutting depth is0.2mm. The main wear patterns are tool flank and rake wear as well as the main wear mechanisms were adhesive wear and abrasive wear. The wear resistance is TTW7>SG4>TWTN3>BW3when continuous machining stainless steel1Cr18Ni9Ti without cutting fluid under the cutting conditions that the cutting speed is80m/min, the feed rate is0.1mm/r and the cutting depth is0.1mm. The main wear patterns are tool flank and rake wear as well as the main wear mechanisms were adhesive wear, abrasive wear and diffusing wear.
引文
[1]苗赫濯.新型陶瓷刀具的发展与应用[J].中国有色金属学报.2004,14(1):237-242.
    [2]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:3-4.
    [3]肖诗纲.刀具材料及其合理选择[M].第2版.北京:机械工业出版社,1990:13-14.
    [4]周曦亚,方培育.现代陶瓷刀具材料的发展[J].中国陶瓷.2005,41(1):49-51.
    [5]刘战强,艾兴.高速切削刀具的发展现状[J].工具技术.2001,35(3):3-8.
    [6]H. Schulz, T. Moriwaki. High-speed mechining[J]. Annals of the CIRP,1992(41): 637-643.
    [7]J. Tlusly. High-speed maching[J]. Annals of the CIRP.1993,42:733-738.
    [8]王致坚.陶瓷刀具的切削性能研究[J].机床与液压.2005,7:69-70.
    [9]叶毅,叶伟昌.陶瓷刀具概述[J].产品与技术.2003,3:63-65.
    [10]于涛.先进陶瓷刀具材料及质量的研究现状与发展趋势[J].中国机械工程.1998,9(8):57-60.
    [11]黄传真,孙静,刘大志,等.陶瓷刀具材料磨损的研究现状[J].试验与研究.2003,6:20-22.
    [12]文鹏.新型陶瓷刀具材料的发展趋势[J].佛山陶瓷.2004,14(2):36-37.
    [13]储开宇.21世纪数控机床刀具材料的发展[J].机床与液压.2011,39(14):117-123.
    [14]仇启源.新型陶瓷刀具[M].北京:国防工业出版社,1987:5-6.
    [15]黄传真,孙静,刘大志,等.陶瓷刀具材料的研究现状[J].组合机床与自动化加工技术.2004,10:1-3.
    [16]李文超.21世纪先进陶瓷的发展动向[J].中国科技信息.1995,6:16.
    [17]许崇海,黄传真,艾兴,等.复相陶瓷刀具材料设计的理论框架[J].中国机械工程.2001,12(10):1198-1201.
    [18]许崇海,黄传真,艾兴,等.复相陶瓷刀具材料的物化相容性分析[J].机械科学与技术.2001,20(2):260-268.
    [19]吕志杰,艾兴,赵军.高性能复合陶瓷刀具材料[J].山东大学学报(工学版).2004,34(4):91-97.
    [20]V.J. Tennery, C.S. Yust, G.W. Clark. Structure-property correlations for TiB2-based ceramics densified using active liquid metals [J]. In Science of Hard Materials. New York:Plenum,1983:891-909.
    [21]C. Martin, B. Cales, P. Viver, et al. Electrical discharge machineable ceramic composites [J]. Mater. Sci. Eng. A.1989,109:351-356.
    [22]J. Karch, R. Birringer, H. Gleiter. Ceramics ductile at low temperature[J]. Nature. 1987,330(6148):556-558.
    [23]钟金豹,黄传真,于金伟,等.纳米复相陶瓷刀具材料的研究现状[J].设计与 研究.2006,4:17-19.
    [24]J.L. Li, F. Li, K. Hu, et al. TiB2/TiC nanocomposite powder fabricated via high energy ball milling [J]. J. Euro. Ceram. Soc.2001,21:2829-2833.
    [25]S. Liu, W.P. Zhang. Research on microstructure of in situ synthesized TiB2/Ni metal-ceramics composite coating [J].J. Alloy. Compd.2005,391:146-150.
    [26]A. Saez, F. Arenas, E. Vidal. Microstructure development of WCoB-TiC based hard materials [J]. RM&HM.2003,21:13-18.
    [27]L.X. Ding, K. Nakasa, M. Kato, et al. Coating of TiB2 dispersed Ti5oNi5o superelastic alloy layer onto Ti-6Al-4V alloy by spark and resistance sintering [J]. Surface & Coatings Technology.2010,204:1738-1748.
    [28]B. LOTFI. Elevated temperature oxidation behavior of HVOF sprayed TiB2 cermet coating [J].Trans. Nonferrous Met. Soc. China,2010,20:243-247.
    [29]G.S. Wang, L. Geng. Microstructure formation mechanism of (Al2O3+TiB2+Al3Ti)/Al composites fabricated by reactive hot pressing [J]. Key. Eng. Mater.2007,353-358:1439-1442.
    [30]X. Chen, C.X. Yang, L.D. Guan, et al. TiB2/Al2O3 ceramic particle reinforced aluminum fabricated by spray deposition [J]. Mater. Sci. Eng. A.2008,496:52-58.
    [31]S.L. Guo, D.F. Li, D. Chen, et al. Hot deformation behavior of in situ TiB2 reinforced 6351 Al composites during compression at elevated temperatures [J]. Int. J. Mod. Phys. B.2009,23(6-7):1432-1437.
    [32]S.C. Tjong, G.S. Wang. Low-cycle fatigue behavior of in situ TiB2/Cu composite prepared by reactive hot pressing [J]. J. Mater. Sci.2006,41:5263-5268.
    [33]G.S. Wang, Y.Q. Jiang, L.D. Zhang. Mechanical properties and microstructure of in situ TiB2/Cu composite fabricated by reactive hot pressing [J]. Rare Metals.2007, 26:322-325.
    [34]S.C. Tjong, K.C. Lau. Properties and abrasive wear of TiB2/Al-4%Cu composites produced by hot isostatic pressing [J]. Compos. Sci. Technol.1999,59:2005-2013.
    [35]X.Q. Zhang, H.W. Wang, L.H. Liao, et al. The mechanical properties of magnesium matrix composites reinforced with (TiB2+TiC) ceramic particulates [J]. Mater. Lett.2005,59:2105-2109.
    [36]B.H. Li, Y. Liu, J. Li, et al. Effect of sintering process on the micro structures and properties of in situ TiB2-TiC reinforced steel matrix composites produced by spark plasma sinter ing [J]. J. Mater. Proc. Technol.2010,210:91-95.
    [37]J.X. Deng, X. Ai. Wear resistance of Al2O3/TiB2 ceramic cutting tool in sliding wear tests and in machining processes [J]. J. mater. Proc. tech.1997,72:249-255.
    [38]GJ. Zhang, Z.Z. Jin, X.M. Yue. A multilevel ceramic composite of TiB2-Ti0.9W0.1C-SiC prepared by in situ reactive hot pressing [J]. Mater. Lett.1996, 28:1-5.
    [39]D.H. Kuo, W.M. Kriven. Mechanical behavior and microstructure of SiC and SiC/TiB2 ceramics [J]. J. Euro. Ceram. Soc.1998,18:51-57.
    [40]C. Blanc, F. Thevenot, D. Goeuriot. Micro structural and mechanical characterization of SiC-submicron TiB2 composites [J]. J. Euro. Ceram. Soc.1999, 19:561-569.
    [41]A.H. Jones, R.S. Dobedoe, M.H. Lewis. Mechanical properties and tribology of Si3N4-TiB2 ceramic composites produce by hot pressing and hot isostatic pressing [J]. J. Euro. Ceram. Soc.2001,21:969-980.
    [42]B. Basu, J. Vleugels, O.V. Biest. Processing and mechanical properties of ZrO2-TiB2 composites [J]. J. Euro. Ceram. Soc.2005,25:3629-3637.
    [43]H.Q. Ru, H.F. Xu, P. Lu, et al. Microstructure of TiB2/B4C composites with 1% Y2O3 prepared by co-precipitating and in situ synthesis[J]. J. Rare. Earth.2007,25: 42-45.
    [44]D. Mattia, M.D. Brut, D. Tetard, et al. Wetting of HIP AlN-TiB2 ceramic composites by liquid metals and alloys [J]. J. Euro. Ceram. Soc.2005,25: 1797-1803.
    [45]C. Li, M.S. Li, Y. Wang, et al. The preparation of Ti3AlC2/TiB2 composites by in situ hot-press synthesis process [J]. Rare Metal Mat. Eng.2007,36(1):784-787.
    [46]W.B. Zhou, B.C. Mei, J.Q. Zhu. Synthesis of Ti3SiC2/TiB2 composite by in-situ hot pressing (HP) method [J]. Journal of WuHan University of Technology-Materials Science Edition.2008,23 (6):863-865.
    [47]乔英杰,李一栋,方双全.TiB2基复合材料的制备及其研究近况[J].材料工程.2007,(1):66-68.
    [48]M. Shibuya, M. Ohyanagi. Effect of nickel boride additive on simultaneous densification and phase decomposition of TiB2-WB2 solid solutions by pressureless sintering using induction heating [J]. J. Euro. Ceram. Soc.2007,27:301-306.
    [49]L. Klinger, I. Gotman, D. Horvitz. In situ processing of TiB2/TiC ceramic composites by thermal explosion under pressure:experimental study and modeling [J]. Mater. Sci. Eng. A.2001,302:92-99.
    [50]B.L. Zou, P. Shen, Z.M. Gao, et al. Combustion synthesis of TiCx-TiB2 composites with hypoeutectic, eutectic and hypereutectic microstructures[J]. J. Euro. Ceram. Soc.2008,28:2275-2279.
    [51]X.H. Zhang, C.C. Zhu, W. Qu, et al. Self-propagating high temperature combustion synthesis of TiC/TiB2 ceramic-matrix composites[J]. Compos. Sci. Technol.2002, 62:2037-2041.
    [52]L. Zhan, P. Shen, Y.F. Yang, et al. Self-propagating high-temperature synthesis of TiCxNy-TiB2 ceramics from a Ti-B4C-BN system[J]. RM&HM.2009,27:829-834.
    [53]L.J. Zhou, Y.T. Zheng, S.Y. Du, et al. Fabrication of AlN-SiC-TiB2 ceramics by self-propagating high temperature synthesis and hot isostatic pressing[J]. Mater. Sci. Forum.2007,546-549:1505-1508.
    [54]C.F. Feng, L. Eroyen.Processing and properties of hot-pressed in-situ Al/(TiB2+Al2O3) metal matrix composites[J]. Processing of Metals and Advanced Materals:Modeling, Design and Properties.1998:239-25.
    [55]G.J. Zhang. Preparation of TiB2-TiC0.5N0.5 ceramic composite by reactive hot-pressing and its microstructure [J]. Ceram. Int.1995,21:29-31.
    [56]G.J. Zhang, X.M. Yue, Z.Z. Jin. Preparation and micro structure of TiB2-TiC-SiC platelet-reinforced ceramics by reactive hot-pressing [J]. J. Euro. Ceram. Soc.1996, 16:1145-1148.
    [57]M. Moriyama, H. Aoki, Y. Kobayashi. Fabrication and mechanical properties of hot-pressed TiB2-TiNxCy high-strength composite by the solid phase reaction of TiN with B4C powder [J]. J. Ceram. Soc. JPN.1998,106(8):824-829.
    [58]H. Taimatsu, S. Sugiyama, S. Koseki. Synthesis of TiB2-TiC-Ti3SiC2 composites by reactive hot pressing of B4C-SiC-Ti powder mixtures [J]. Mater. Trans.2008, 49(10):2335-2340.
    [59]I. Gotman, N.A. Travitzky, E.Y. Gutmanas. Dense in situ TiB2-TiN and TiB2-TiC ceramic matrix composites:reactive synthesis and properties [J]. Mater. Sci. Eng. A.1998,244:127-137.
    [60]D.G. Zhu, S.K. Liu, X.D. Yin, et al. In-situ HIP synthesis of TiB2-SiC ceramic composites[J]. J. Mater. Proc. Technol.1999,89-90:457-461.
    [61]M. Moriyama, H. Aoki, Y. Kobayashi. Fabrication and mechanical properties of hot-pressed TiB2-ZrB2 ceramic system[J]. J. Ceram. Soc. JPN. 1998,106(12):1196-1200.
    [62]M. Moriyama. Mechanical and electrical properties of strong TiB2-B4C ceramic system by hot-pressing [J]. J. Ceram. Soc. JPN.2001,109(6):550-556.
    [63]J.X. Deng, X. Ai. Microstructure and mechanical properties of hot-pressed TiB2-SiCw composites [J]. Mater. Res. Bull.1998,33(4):575-582.
    .[64] X.T. Luo, X.L. Xie, R.Z. Yuan. Microstructure and mechanical properties of hot-pressed TiB2 ceramics [J]. J. Inorg. Mater.2000,15(3):541-545.
    [65]W.M. Wang, Z.Y. Fu, H. Wang, et al. Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics[J]. J. Euro. Ceram. Soc.2002,22:1045-1049.
    [66]J.S. Peters, B.A. Cook, J.L. Harringa, et al. Microstructure and wear resistance of low temperature hot pressed TiB2 [J]. Wear.2009,266:1171-1177.
    [67]R. Konigshofer, S. Furnsinn, P. Steinkellner, et al. Solid-state properties of hot-pressed TiB2 ceramics [J]. RM&HM.2005,23:350-357.
    [68]K.F. Caia, C.W. Nanc, M. Schmueckera, et al. Microstructure of hot-pressed B4C-TiB2 thermoelectric composites [J]. J. Alloy. Compd.2003,350:313-318.
    [69]H. Wang, W.M. Wang, P. Gu, et al. Mechanical properties and structure of TiB2-NbB2 composite prepared by hot pressing[J]. J. Inorg. Mater.2002,17(4): 703-707.
    [70]M.L. Gu, C.Z. Huang, B. Zou, et al. Effect of (Ni, Mo) and TiN on the micro structure and mechanical properties of TiB2 ceramic tool materials [J]. Mater. Sci. Eng. A.2006,433:39-44.
    [71]X.D. Luo, Z.W. Wang, Z.N. Shi, et al. Corrosion behavior of hot-pressed TiB2 in metallic neodymium and Nd2O3-NdF3-LiF system [J]. Proceedings of 2007 Non-Grid-Connected Wind Power Systems.2007:261-266.
    [72]S.K. Bhaumik, C. Divakar, A.K. Singh, et al. Synthesis and Sintering of TiB2 and TiB2-TiC Composite under High Pressure [J]. Mater. Sci. Eng. A.2000,279: 275-281.
    [73]A. Mukhopadhyay, G.B. Raju, B. Basu, et al. Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics [J]. J. Euro. Ceram. Soc.2009,29:505-516.
    [74]B. Fokwa, P. Misse, M. GilleBen, et al. Sn-flux syntheses, characterizations and bonding analyses of OsB and TiB2 [J].J. Alloy. Compd.2010,489:339-342.
    [75]X.D. Luo, Z.W. Wang, X.W. Hu, et al. Influence of metallic additives on densification behavior of hot-pressed TiB2 [J]. Light. Metals.2009:1151-1155.
    [76]M.G. Barandika, J.M. Scanchez, T. Rojo, et al. Fe-Ni-Ti binder phase for TiB2 based cermets:A thermodynamic approach [J]. Scripta. Mater.1998,39(10): 1395-1400.
    [77]W.J. Kim, D.H. Kim, E.S. kang. Two-step Sintering of TiB2-Ni Cermet [J]. J. Mater. Sci.1996,31:5805-5809.
    [78]孙景,魏庆丰,李群英.添加VC的TiB2基硬质材料研究[J].粉末冶金技术.2003,21(6):323-325.
    [79]李荣久.陶瓷-金属复合材料[M].第2版,冶金工业出版社,北京,2004:86,269-275.
    [80]张金玲,崔洪芝,张文静,等.Fe含量对燃烧合成TiB2-A1203复相陶瓷组织与性能的影响[J].热加工工艺.2006,35(16):1-3.
    [81]谢艳春,崔洪芝,黑鸿君.基于自蔓延高温合成技术制备TiB2/A1203复相陶瓷[J].新技术新工艺.2006,9:79-81.
    [82]汪建利,张光胜,朱云广,等.燃烧合成CF/TiC-TiB2陶瓷基复合材料的致密化因素探讨[J].粉末冶金技术.2008,26(1):33-36.
    [83]T.S.R.Ch. Murthy, C. Subramanian, R.K. Fotedar, et al. Preparation and property evaluation of TiB2+TiSi2 composite [J]. RM&HM.2009,27:629-636.
    [84]G.B. Raju, B. Basu, N.H. Tak, et al. Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid [J]. J. Euro. Ceram. Soc.2009,29: 2119-2128.
    [85]T.S.R.Ch. Murthy, B. Basu, A. Srivastava. Tribological properties of TiB2 and TiB2-MoSi2 ceramic composites [J]. J. Euro. Ceram. Soc.2006,26:1293-1300.
    [86]M.L. Gu, C.Z. Huang, S.R. Xiao, et al. Improvements in mechanical properties of TiB2 ceramics tool materials by the dispersion of Al2O3 particles [J]. Mater. Sci. Eng. A.2008,486:167-170.
    [87]李家镜,傅正义,张金咏,等.气压烧结TiB2-A1203复相陶瓷的显微结构与力学性能[J].硅酸盐学报.2007,35(8):973-977.
    [88]曲振生,赵忠民,张龙,等.TiC-TiB2复合陶瓷制备与性能[J].新技术新工艺.2009.7:92-97.
    [89]陈永虹,黄向东,葛桂宾,等TiB2-BN-AlN复相陶瓷的结构与性能研究[J].硅酸盐通报.2008,27(3):471-476.
    [90]G. Gorny, M. Raczka, L. Stobierski, et al. Ceramic composite Ti3SiC2-TiB2—Microstructure and mechanical properties [J]. Mater. Charact.2009, (60):1168-1174.
    [91]L. Rangaraj, C. Divakar, V. Jayaram. Low-temperature densification of TiN-TiB2 composites through reactive hot pressing with excess Ti additions [J]. J. Am. Ceram. Soc.2009,92(2):311-317.
    [92]J.S. Li, Z.Y. Cai, H.S. Guoa, et al. Characteristics of porous Al2O3-TiB2 ceramics fabricated by the combustion synthesis [J].J. Alloy. Compd.2009,479:803-806.
    [93]F. Huang, Z.Y. Fu, A.H. Yan, et al. Experimental evidence of structural evolution for TiB2 microcrystal under externally high stresses [J]. Powder. Technol.2010, 197:83-86.
    [94]K. Wang, V.D. Krstic. Reaction sintering of TiN-TiB2 ceramics [J]. Acta. Mater. 2003,51:1809-1819.
    [95]于金伟.纳米陶瓷刀具材料的切削性能研究[J].煤矿机械.2007,28(5):48-49.
    [96]S. Yamadaa, K. Hiraob, Y. Yamauchib, et al. High strength B4C-TiB2 composites fabricated by reaction hot-pressing [J]. J. Euro. Ceram. Soc.2003,23:1123-1130.
    [97]A.J. Li, Y.H. Zhen, Q. Yin, et al. Microstructure and properties of (SiC,TiB2)/B4C composites by reaction hot pressing [J]. Ceram. Int.2006,32(8):849-856.
    [98]L.J. Zhou, Y.T. Zheng, S.Y. Du. Fabrication of BN-AlN-TiB2 compound conductive ceramics by self-propagating high temperature synthesis and hot lsostatic pressing [J]. Key. Eng. Mater.2007,336-338:786-789.
    [99]S.H. Lee, S.Q. Guo, H. Tanaka, et al. Thermal decomposition, densification and mechanical properties of AlN-SiC(-TiB2) systems with and without B, B4C and C additives [J]. J. Euro. Ceram. Soc.2008,28:1715-1722.
    [100]谷美林.新型硼化钛基复合陶瓷刀具及切削性能研究[D].济南:山东大学博士学位论文.2007:124-126.
    [101]孙俊.陶瓷的显微结构与力学性能[J].国外医学口腔医学分册.1999,26(3):149-151.
    [102]C.Q. Hong, J.C. Han, X.H. Zhang, et al. Influence of hot pressing on microstructure and mechanical properties of combustion synthesized TiB2-Cu-Ni composite [J]. J. Mater. Proc. Technol.2007,183:445-449.
    [103]何奖爱,王玉玮.材料磨损与耐磨材料[M].哈尔滨:东北大学出版社,2001:2-8.
    [104]R. Wasche, D. Klaffke. Ceramic particulate composites in the system SiC-TiC-TiB2 sliding against SiC and Al2O3 under water [J]. Tribol. Int.1999,32: 197-206.
    [105]J.H. Meng, J.J. Lu, J.B. Wang, et al. Preparation and properties of MoSi2 composites reinforced by TiC, TiCN, and TiB2 [J]. Mater. Sci. Eng. A.2005,396: 277-284.
    [106]J.X. Deng. Friction and wear behavior of Al2O3/TiB2/SiCw ceramic composites at temperatures up to 800℃ [J]. Ceram. Int.2001,27:135-141.
    [107]郑树起,闵光辉,邹增大,等.非氧化陶瓷材料的氧化性[J].陶瓷学报.2002,23(3):83-86.
    [108]V.A. Lavrenko, A.D. Panasyuk, M. Desmaison-Brut, et al. Kinetics and mechanism of electrolytic corrosion of titanium-based ceramics in 3% NaCl solution [J]. J. Euro. Ceram. Soc.2005,25:1813-1818.
    [109]T.S.R.Ch. Murthya, R. Balasubramaniama, B. Basua, et al. Oxidation of monolithic TiB2 and TiB2-20wt.%MoSi2 composite at 850℃ [J]. J. Euro. Ceram. Soc.2006,26:187-192.
    [110]L. Yu, H.Q. Ru, X.X. Xue, et al. Oxidation Behaviors of C-B4C(TiB2)-SiC composites prepared by hot pressing [J]. Rare. Metal. Mat. Eng.2007,36(1): 742-746.
    [111]G.B. Raju, B. Basu, A.K. Suri. Oxidation kinetics and mechanisms of hot-pressed TiB2-MoSi2 composites [J]. J. Am. Ceram. Soc.2008,91(10):3320-3327.
    [112]G.B. Raju, K. Biswas, B. Basu. Micro structural characterization and isothermal oxidation behavior of hot-pressed TiB2-10wt.%TiSi2 composite [J]. Scripta. Mater. 2009,61:104-107.
    [113]L.J. Zhou, Y.T. Zheng, S.Y. Du, et al. Oxidation behavior of AlN-SiC-TiB2 ceramics synthesized by SHS-HIP [J].J. Alloy. Compd.2009,478:173-176.
    [114]V.A. Lavrenko, J. Desmaison, A.D. Panasyuk, et al. Oxidation resistance of AlN-(TiB2-TiSi2) ceramics in air up to 1450℃ [J]. J. Euro. Ceram. Soc.2003,23: 357-369.
    [115]V.A. Lavrenko, J. Desmaison, A.D. Panasyuka, et al. High-temperature oxidation of AlN-SiC-TiB2 ceramics in air [J]. J. Euro. Ceram. Soc.2005,25:1781-1787.
    [116]R. Gonzalez, M.G. Barandika, D. Ona, et al. New binder phases for the consolidation of TiB2 hardmetals [J]. Mater. Sci. Eng. A.1996,216:185-192.
    [117]J.Y. Zhang, Z.Y. Fu, W.M. Wang, et al. Microstructure and mechanical properties of TiB2/(Ni+Mo) composites fabricated by hot pressing [J]. J. Mater. Sci. & Technol.2000,16(6):634-636.
    [118]D.H. He, Z.Y. Fu, Q.J. Zhang. Welding TiB2 ceramics and metal Mo with combustion reaction technology [J]. J. Mater. Sci. & Technol.2004,20(6): 763-766.
    [119]黄培云.粉末冶金原理[M].第2版,北京:冶金工业出版社,2011:307-311.
    [120]刘开琪,徐强,张会军.金属陶瓷的制备与应用[M].第1版,北京:冶金工业出版社,2008:5-7.
    [121]宋金鹏.TiB2复相陶瓷刀具致密度的研究现状[J].热加工工艺.2010,39(14):83-85.
    [122]S. Bolognini. G. Feusier. High temperature mechanical behavior of Ti(C, N)-Mo-Co cermet [J]. RM&HM.1998,16:257-268.
    [123]M.L. Gu, C.Z. Huang, J. Wang. Effect of Nano-scale Al2O3 on mechanical properties of TiB2 ceramic tool materials [J]. Key. Eng. Mater.2006,123: 315-316.
    [124]E.S. Kang, C.H. Kim. Improvements in mechanical properties of TiB2 by the dispersion of B4C particles [J]. J. Mater. Sci.1990,25:580-584.
    [125]E.O. Correa, J.N. Santos, A.N. Klein. Microstructure and mechanical properties of WC Ni-Si based cemented carbides developed by powder metallurgy [J]. RM&HM. 2010; 28:572-575.
    [126]D. Vallauri, I.C. Atias Adrian, A. Chrysanthou. TiC-TiB2 Composites:A Review of Phase Relationships, Processing and Properties [J]. J. Euro. Ceram. Soc.2008, 28:1697-1713.
    [127]杨发展.新型WC基纳米复合刀具材料及其切削性能研究[D].济南:山东工业大学博士学位论文,2009:22-25.
    [128]李闯,顾冬冬,沈以赴,等.选区激光熔化制备TiCx/Ti纳米复合材料的致密化及显微组织[J].中国有色金属学报.2011,21(7):1554-1561.
    [129]B. Lin, T. Iseki. Effect of thermal residual stress on mechanical properties of SiC/TiC composites [J]. Brit. Ceram. T.1992,91:1-5.
    [130]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J].硅酸盐学报.1994,22(3):259-269.
    [131]金宗哲,张国军,包亦望.复相陶瓷增强颗粒尺寸效应[J].硅酸盐学报.1995,23(6):610-617.
    [132]许崇海.复相陶瓷刀具材料设计、仿真及其应用研究[D].济南:山东工业大学博士学位论文,1998:15-12.
    [133]叶大伦,胡建华.实用无机物热力学数据手册[M].第2版.北京:冶金工业出版社,2002:30-46.
    [134]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:20-38.
    [135]D.J. Kim, H.J. hung, D.H. Cho. Phase transformations of Y2O3 and Nb2O5 doped tetragonal zirconia during low temperature aging in air [J]. Solid State Ionics.1995, 80:67-63.
    [136]果世驹.粉末烧结理论[M].北京:冶金工业出版社,2002:61-85.
    [137]J.C. Kim, S.S. Ryu, Y.D. Kim, et al. Densification behavior of mechanically alloyed W-Cu composite powders by the double rearrangement process [J]. Scripata. Mater.1998,39(6):669-676.
    [138]崔国文.缺陷、扩散与烧结[M].北京:清华大学出版社,1990:162-180.
    [139]刘燕.超临界流体制备超微颗粒的过程模拟与喷嘴设计[D].济南:山东工业大学博士学位论文,2005:17-22.
    [140]http://www.ap1700.com/water.aspx?fluidid=%u7a7a%u6c14.
    [141]饭田孝道,格斯里.液态金属的物理性能[M].第1版.北京:科学出版社,2006:221-230.
    [142]中华人民共和国国家技术监督局.GB6596-1986.中华人民共和国国家标准-工程陶瓷抗弯曲强度试验方法[S].北京:中国标准出版社,1986.
    [143]中华人民共和国国家技术监督局.GB/T16534-1996.中华人民共和国国家标准-工程陶瓷维氏硬度试验法[S].北京:中国标准出版社,1996.
    [144]H.R. Baumgartner, R.A. Steiger. Sintering and properties of titanium diboride made from powder synthesized in a plasma-arc heater [J]. J. Am. Ceram. Sco.1984, 67(3):207-212.
    [145]姜同川.正交试验设计[M].第1版.济南:山东科学技术出版社,1985:110-121.
    [146]夏伯忠.正交试验法[M].第1版.吉林:吉林人民出版社,1986:251-262.
    [147]K. Youngjae, K. Shinhoo. The surface micro structure of TiC-(Ti,W)C-WC-Ni cermets sintered in a nitrogen atmosphere [J]. Mater. Sci. Eng. A.2010,527: 7241-7246.
    [148]K.H. Lee, S.I. Cha, B.K. Kim, et al. Effect of WC/TiC grain size ratio on micro structure and mechanical properties of WC-TiC-Co cemented carbides [J]. RM&HM.2006,24:109-114.
    [149]H. Tsukamoto. Micromechanical modeling of transformation toughening in multi-phase composites enriched with zirconia particles [J]. Comput. Mater. Sci. 2010,48:724-729.
    [150]S. Funfschilling, T. Fett, M.J. Hoffmann, et al. Mechanisms of toughening in silicon nitrides:the roles of crack bridging and microstructure [J]. Acta. Mater. 2011,59:3978-3989.
    [151]R.X. Shi, J. Li, Y.S. Yin, et al. Toughening mechanisms and microstructure of Al2O3-TiC-Co composites [J]. Mater. Sci. Eng. A.2011,528:5341-5347.
    [152]X.H. Zhang, C.X. Liu, M.S. Li, et al. Toughening mechanism of alumina-matrix ceramic composites with the addition of AlTiC master alloys and ZrO2 [J]. Ceram. Int.2009,35:93-97.
    [153]王国栋.硬质合金生产原理[M].北京:冶金工业出版社,1998:161-178.
    [154]L. Sigl, K. Schwetz. TiB2-based cemented borides:a new generation of hardmetals [J]. Powder. Metall. Int.1991,23(4):221-3.
    [155]艾兴,邓建新,赵军,等.陶瓷刀具的发展及其应用[J].机械工人冷加工.2000,9:4-6.
    [156]肖茂华,何宁,李亮,等.陶瓷刀具高速切削镍基高温合金沟槽磨损试验研究[J].中国机械工程.2008,19(10):1188-1192.
    [157]肖茂华,何宁,李亮,等.镍基合金高速切削中锯齿状切屑毛边和刀具磨损研究[J].工具技术.2009,43(6):32-36.
    [158]J. Pirso, M. Viljus, K. Juhani, et al. Two-body dry abrasive wear of cermets [J]. Wear.2009,266:21-29.
    [159]T. Kagnaya, C. Boher, L. Lambert, et al. Wear mechanisms of WC-Co cutting tools from high-speed tribological tests [J]. Wear.2009,267:890-897.
    [160]W. Grzesik. Wear development on wiper Al2O3-TiC mixed ceramic tools in hard machining of high strength steel [J]. Wear.2009,266:1021-1028.
    [161]J.X. Deng, J.T. Zhou, H. Zhang, et al. Wear mechanisms of cemented carbide tools in dry cutting of precipitation hardening semi-austenitic stainless steels [J]. Wear. 2011,270:520-527.
    [162]J. Wang, Y.B. Liu, J. An, et al. Wear mechanism map of uncoated HSS tools during drilling die-cast magnesium alloy [J]. Wear.2008,265:685-691.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700