选择性激光熔化成形金属零件性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
选择性激光熔化成形技术(Selective Laser Melting, SLM)是快速原型及制造(Rapid Prototyping&Manufacturing, RP&M)领域最具发展潜力的技术之一。该技术利用高能束激光直接熔化金属粉末,可成形近全致密的高性能金属零件。由于可成形传统加工方法无法加工或多部件拼装的复杂结构,因此在航空航天、个性化生物制造及复杂模具镶块等方面具有广阔的应用前景。但是SLM成形影响因素众多,成形零件的精确控形与控性存在较大难度。为此,本文重点研究SLM成形零件的表面质量、尺寸精度及力学性能,并在SLM成形复杂模具上进行初步研究。主要内容包括如下几个方面:
     (1)研究了SLM成形零件的表面粗糙度。通过系列实验,研究了单熔化道尺寸特征,引用形状系数F来评价熔化道的形状。揭示了SLM工艺参数及扫描策略对单道、单层表面粗糙度的影响规律。研究表明,熔化道表面粗糙度随着扫描速度的提高而降低,随着激光功率的提高先降后升。激光沿一个方向扫描一次的表面粗糙度最大,用两倍间距扫描一次,再用正常间距扫描第二次后的成形表面粗糙度最小。研究了成形角度(成形零件侧面与工作平面的角度)、激光功率密度及加工层厚等多因素对零件侧面表面粗糙度的影响规律。结果表明,在成形角度小于60°时,随着成形角度的增加,表面粗糙度呈大幅降低的趋势。在成形角度大于60°,随着角度的增加,表面粗糙度有所降低,但是变化并不明显。
     (2)研究了SLM成形零件的尺寸精度。研究了SLM成形精细零件的加工性,设计了尺寸从0.1-0.45mm厚的薄壁件,分析加工误差。结果显示,由于激光光斑的尺寸接近0.1mm,壁厚越小,其相对误差越大。壁厚为0.1mm的零件,其相对误差接近99%。当壁厚增加到0.4mm时,其相对误差只有0.1%。研究了不同工艺参数时XY平面及Z轴的成形精度的影响因素,工作平面不同位置的零件的尺寸误差。利用三维测量工具对成形零件的三维尺寸进行测量,并对比模型进行分析。测试结果表明,SLM成形金属零件在Z轴方向存在收缩情况,但其高度方向相对误差在1%以内。激光熔化粉末后形成致密金属层,由于粉末体松装密度较低,导致熔化后的层厚出现明显降低,该现象经过累积,对Z轴的精度有一定影响,粉末松装密度越高,铺粉层厚越小,影响越小。
     (3)研究了SLM成形零件的致密度。利用田口分析方法,分析了SLM工艺参数对零件致密度的影响规律。结果显示,在影响SLM成形致密度的三个因素中,成形速度影响最大,占43.98%,激光功率影响其次,占34.61%,扫描间距影响较小,仅为19.81%。说明了扫描速度对成形致密度的影响最大,超过扫描间距的2倍。研究了成形平面的不同区域内SLM零件的致密度变化。在不同区域内零件的致密度表现出一定差异,离平面中心位置近的致密度最高。
     (4)研究了SLM成形零件的力学性能。通过成形不同倾斜角度的零件研究了零件的延伸特性变化规律。结果发现,熔化道搭接处,即熔池边界为性能弱区,是降低SLM零件延伸率的重要因素。熔池边界的空间拓扑导致SLM零件的拉伸特性产生明显的各向异性。通过热处理消除熔池边界,可大大提高SLM成形件的延伸性能,并减小各向异性特征。研究了不同粉末粒径分布对成形性能的影响。研究发现,平均粒径为26.36μm的粉末成形性能较好,松装密度大(松装密度为0.56)的粉末成形致密度高,为99.1%。
     (5)研究了SLM技术成形模具的初步应用。利用SLM方法成形随形冷却流道模具。模拟和试验表明,SLM成形的随形冷却流道模具,其冷却效率和冷却均匀性优于传统直流道。
     综上所述,本文着重研究了SLM成形零件的表面粗糙度、尺寸精度及力学性能,为SLM成形实用零件提供了指导。并在模具应用方面进行了一定的探讨,为SLM成形零件的工程应用奠定了基础。
Selective Laser Melting is one of the most potential Rapid Prototyping andManufacturing technologies. By using a high-energy laser to melt metal powder directly, itcan manufacture metal parts which are formed in nearly full density and havehigh-performance. This technology can manufacture complex structures which areimpossible for traditional methods to make or need to assemble multi–components, so ithas a Broad application prospect in the fields such as aerospace manufacturing,personalized biomanufacturing and complex mold inserts manufacturing. But influencedby many factors,the precise control of shape and control of the forming part are mostdifficult. This paper focuses on the surface quality, dimensional accuracy and mechanicalproperties of SLM forming part; the manufacture of complex molds has also beenresearched. The main content of research in the paper is as following:
     (1) Surface quality of the SLMed parts. Through a series of experiments, dimensionalcharacteristic of single melting Road is analyzed with shape factor F evaluating themelting road. Meanwhile the paper also exposes how SLM process parameters andscanning strategies influence the surface roughness of single-channel and single-layer. Theresults show that with the improvement of the scanning speed, surface roughness of theroad is reduced, which is first down then up when laser power increases. Single scan in thesame direction has the worst surface quality, while with twice the spacing scan first, thenthe normal scan, surface roughness is the least. This paper also illustrates how the factorssuch as manufacturing angle, laser power density and processing thickness influence thesurface roughness on the parts’ side face. The results show that when manufacturing angleis less than60°, the surface roughness tends to decrease significantly with the increase ofthe angle; while, when the angle is more than60°, it decreases a little, but not obvious,with the increase of the angle.
     (2) Dimensional accuracy of SLMed parts. A research in the property of manufactureprecision parts has been done. In order to analyze processing errors, a series of0.1-0.45mm thickness parts have been made. The research shows that when the laser beam spot size close to0.1mm, relative error increases with the decreasing of its wall thickness.The relative error of the part which just has a thickness of0.1mm is close to99%. Therelative error is just0.1%when the thickness rises to0.4mm. The paper researches howthe parameters influence the forming precision on the XY plane and the Z-axis, and errorof the parts in different positions of the working plane. Measured in terms of thethree-dimensional size and compared with the model, metal parts have a shrinkage inZ-axis direction with a relative error of less than1%. Laser melt powders will form adense metal layer, due to low density of the powder, thickness of the layer decreasesdramatically after the melting. With accumulation of the error, accuracy of the Z axis willbe affected to some degree. The higher the density of the power and the lower thethickness of power, the smaller this impact will be.
     (3) Density of SLMed parts. This paper analyzes how the SLMed process parametersinfluence the density through Taguchi analysis method. The results show that, among thethree factors which influence SLMed forming density, forming speed has the greatestimpact, accounting for43.98%; laser power is next, for34.61%; the impacts of scanspacing is very small, just about19.81%. So the forming speed is much more importantthan scanning spacing, which should be optimized in the first place. The paper researchesthe change of the density in different areas, indicating that density is different in differentarea, the center position of the plane being with a higher density.
     (4) Mechanical properties of SLMed parts. This paper researches the variation of theextension properties of different parts by manufacturing the parts of the different tiltangles. The results show that lap joints of melting road, also called boundary of weldingpool is the obvious weak performance area, which is the important factor to reduce theelongation of the SLM Part; the space topology of the boundary brings out a significantanisotropy of the parts’ tensile properties. By using heat treatment to eliminate theboundary pool, the extended performance will be improved and anisotropy will be reduced.This paper analyzes how powder particle size distribution influences the formability. Theresults show that an average smaller particle size of26.36μm powder has a betterperformance and the higher bulk density of the powder (0.56) has a high density about
     (5)Preliminary application of manufacturing mold by SLM. This paper researches howthe SLM technology apply to the manufacture of complex parts by manufacturing customcooling channels for molds. The test proves that both cooling rate and cooling uniformityare better than traditional ones.
     All in all, this paper has focused on the research of the surface roughness, dimensionalaccuracy and mechanical properties of SLM forming part, and provided guidance formanufacturing practical SLM parts. It also explores the mold application and throws somelight on the market of SLM manufacturing parts.
引文
[1] Simchi A and H Pohl. Effects of laser sintering processing parameters on themicrostructure and densification of iron powder. Materials Science andEngineering: A,2003,359(1-2):119-128.
    [2] Gu D D, Hagedorn Y C, Meiners W et al. Densification behavior, microstructureevolution, and wear performance of selective laser melting processedcommercially pure titanium. Acta Materialia,2012,60(9):3849-3860.
    [3] Khan M and P Dickens. Selective laser melting (SLM) of gold (Au). RapidPrototyping Journal,2012,18(1):81--94.
    [4]闫世兴,董世运,徐滨士等. Fe314合金粉末激光快速成形组织与力学性能分析.中国激光,2009,(11):3074-3078.
    [5] Kruth J P, Froyen L, Van Vaerenbergh J, et al. Selective laser melting ofiron-based powder. Journal of Materials Processing Technology,2004,149(1–3):616-622.
    [6] Averyanova M, Cicala E, Bertrand P, et al. Experimental design approach tooptimize selective laser melting of martensitic17-4PH powder: part I-singlelaser tracks and first layer. Rapid Prototyping Journal,2012,18(1):28-37.
    [7] Yasa E and Kruth J P. Microstructural investigation of Selective Laser Melting316L stainless steel parts exposed to laser re-melting. Procedia Engineering,2011,19:389-395.
    [8] Jerrard P, Hao L and Evans K E. Experimental investigation into selective lasermelting of austenitic and martensitic stainless steel powder mixtures.Proceedings of The Institution of Mechanical Engineers Part B-Journal ofEngineering Manufacture,2009,223(11):1409-1416.
    [9] Li R D, Liu J H, Shi Y S, et al. Balling behavior of stainless steel and nickelpowder during selective laser melting process. Inernational Journal ofAdvanced Manufacturing Technology,2012,59(9-12):1025-1035.
    [10]贾文鹏,汤慧萍,贺卫卫等.316L不锈钢激光快速成形的微观组织模拟.金属学报,2010,46(2):135-140.
    [11]李瑞迪,史玉升,刘锦辉等.304L不锈钢粉末选择性激光熔化成形的致密化与组织.应用激光,2009,(5):369-373.
    [12]陈静,林鑫.316L不锈钢激光快速成形过程中熔覆层的热裂机理.稀有金属材料与工程,2003,32(3):183-186.
    [13] Simchi A. Direct laser sintering of metal Powders: Mechanism,kinetics,andmicrostructure feature. Materials Science and Engineering A,2006,428:148-158.
    [14] Joo B D, Jang J H, Lee J H, et al. Selective laser melting of Fe-Ni-Cr layer onAISI H13tool steel. Transactions of Nonferrous Metals Society of China,2009,19(4):921-924.
    [15] Gu D D, Shen Y F and Wu P. development of porous316l stainless steel withcontrollable microcellular features using slm. Materials Science And Technology,2008,24(12):1501-1505.
    [16]林鑫,杨海鸥,陈静等.激光快速成形过程中316L不锈钢显微组织的演变.金属学报,2006,(4):361-368.
    [17] Wang Y B, Bergstr m J, Burman C. Characterisation of an iron-based lasersintered material. Journal of Materials Processing Technology2006,127(1):77-87.
    [18] Morgan R, Sutcliffe C J and O'Neill W. Density analysis of direct metal laserre-melted316L stainless steel cubic primitives. Journal of materials science,2004,39(4):1195--1205.
    [19] Xie J W, Fox P, O’Neill W, et al. Effect of direct laser re-melting processingparameters and scanning strategies on the densification of tool steels. Journal ofMaterials Processing Technology,2005,170(3):516-523.
    [20] Hao L, Dadbakhsh S, Seaman O, et al., Selective laser melting of a stainless steeland hydroxyapatite composite for load-bearing implant development. Journal ofMaterials Processing Technology,2009,209(17):5793-5801.
    [21] Marcu T, Todea M, Gligor I, et al. Effect of surface conditioning on theflowability of Ti6Al7Nb powder for selective laser melting applications. AppliedSurface Science,2012,258(7):3276-3282.
    [22] Marcu T, Dadbakhsh S, Seaman O, et al. Effect of surface conditioning on theflowability of Ti6Al7Nb powder for selective laser melting applications. AppliedSurface Science,2012,258(7):3276-3282.
    [23] Gu D D, Meng G B, Li C, et al. Selective laser melting of TiC/Ti bulknanocomposites: Influence of nanoscale reinforcement. Scripta Materialia,2012,67(2):185-188.
    [24] Zhang L C, Klemm D, Eckert J, et al. Manufacture by selective laser melting andmechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scripta Materialia,2011,65(1):21-24.
    [25] Fukuda A, Takemoto M, Saito T, et al. Osteoinduction of porous Ti implants witha channel structure fabricated by selective laser melting. Acta Biomaterialia,2011,7(5):2327-2336.
    [26] Pattanayak D K,, Fukuda A, Matsushita T, et al. Bioactive Ti metal analogous tohuman cancellous bone: Fabrication by selective laser melting and chemicaltreatments. Acta Biomaterialia,2011,7(3):1398-1406.
    [27] Gu D D, Hagedorn Y C,Meiners W, et al. Nanocrystalline TiC reinforced Timatrix bulk-form nanocomposites by Selective Laser Melting (SLM):Densification, growth mechanism and wear behavior. Composites Science andTechnology,2011,71(13):1612-1620.
    [28] Gu D D, Hagedorn Y C,Meiners W,et al. Selective Laser Melting of in-situTiC/Ti5Si3composites with novel reinforcement architecture and elevatedperformance. Surface and Coatings Technology,2011,205(10):3285-3292.
    [29] Thijs L, Verhaeghe F, Craeghs T,et al. A study of the microstructural evolutionduring selective laser melting of Ti–6Al–4V. Acta Materialia,2010,58(9):3303-3312.
    [30] Wang Y, Shen Y F, Wang Z Y, et al. Development of highly porous titaniumscaffolds by selective laser melting. Materials Letters,2010,64(6):674-676.
    [31] Wang Y, Shen Y F, Wang Z Y, et al. Development of highly porous titaniumscaffolds by selective laser melting. Materials Letters,2010,64(6):674-676.
    [32] Mullen L, Stamp R C, Brooks W K, et al. Selective Laser Melting: a regular unitcell approach for the manufacture of porous, titanium, bone in-growth constructs,suitable for orthopedic applications. J Biomed Mater Res B Appl Biomater,2009,89(2):325-34.
    [33] Gu D D, Wang Z Y, Shen Y F, et al. In-situ TiC particle reinforced Ti-Al matrixcomposites: Powder preparation by mechanical alloying and Selective LaserMelting behavior. Applied Surface Science,2009,255(22):9230-9240.
    [34] Gu D D, Shen Y F, and Lu Z J. Preparation of TiN-Ti5Si3in-situ composites bySelective Laser Melting. Materials Letters,2009,63(18-19):1577-1579.
    [35] Hao L, Dadbakhsh S, Seaman O, et al. Selective laser melting of a stainless steeland hydroxyapatite composite for load-bearing implant development. Journal ofMaterials Processing Technology,2009,209(17):5793-5801.
    [36] Stamp R, Fox P, O’Neill W, et al. The development of a scanning strategy for themanufacture of porous biomaterials by selective laser melting. Journal ofMaterials Science: Material Med,2009,20(9):1839-48.
    [37] Gu D D, Shen Y F, and Meng G C. Growth morphologies and mechanisms ofTiC grains during Selective Laser Melting of Ti–Al–C composite powder.Materials Letters,2009,63(29):2536-2538.
    [38] Sercombe T, Jones N, Day R, et al. Heat treatment of Ti-6Al-7Nb componentsproduced by selective laser melting. Rapid Prototyping Journal,2008,14(5):300-304.
    [39] Vandenbroucke B, and Kruth J P. Selective laser melting of biocompatible metalsfor rapid manufacturing of medical parts. Rapid Prototyping Journal,2007,13(4):196-203.
    [40]陈静,张霜银,薛蕾等.激光快速成形Ti-6Al-4V合金力学性能.稀有金属材料与工程,2007(3):475-479.
    [41] Amato K N, Gaytan S M, Murr L E, et al. Microstructures and mechanicalbehavior of Inconel718fabricated by selective laser melting. Acta Materialia,2012,60(5):2229–2239.
    [42] Amato K, HernandezJ, Murr L E, et al. Comparison of Microstructures andProperties for a Ni-Base Superalloy (Alloy625) Fabricated by Electron BeamMelting. Journal of Materials Science Research,2012,1(2):3.
    [43] Zeng Z, Kuroda S, and Era H. Comparison of oxidation behavior of Ni--20Cralloy and Ni-base self-fluxing alloy during air plasma spraying. Surface andCoatings Technology,2009,204(1):69-77.
    [44] Mumtaz K A, Erasenthiran P, and Hopkinson N. High density selective lasermelting of Waspaloy (R). Journal of Materials Processing Technology,2008,195(1-3):77-87.
    [45] Kempen, Yasa, Thijis, et al. microstructure and mechanical of selective lasermelted18NI300steel. Physics Procedia,2011,12(Part A):255–263.
    [46] Mumtaz K A, and Hopkinson N. Selective laser melting of Inconel625usingpulse shaping. Rapid Prototyping Journal,2010,16(4):248-257.
    [47] Mumtaz K A, and Hopkinson N, Selective Laser Melting of thin wall parts usingpulse shaping. Journal of Materials Pprocessing Technology,2010,210(2):279-287.
    [48] Wang Z M, Guan K, Gao M, et al. The microstructure and mechanical propertiesof deposited-IN718by selective laser melting. Journal of Alloys and Compounds,2012,513(0):518-523.
    [49] Mumtaz K A, Hopkinson N. Top surface and side roughness of inconel625partsprocessed using selective laser melting. Rapid Prototyping Journal,2009,15(2):96-103.
    [50] Mumtaz K A, Erasenthiran P, and Hopkinson N. High density selective lasermelting of Waspaloy. Journal of materials processing technology,2008,195(1-3):77-87.
    [51] Mumtaz K. and Hopkinson N. Top surface and side roughness of Inconel625parts processed using selective laser melting. Rapid Prototyping Journal,2009,15(2):96-103.
    [52] Yadroitsev I, Thivillon L, Bertrand P, et al. Strategy of manufacturingcomponents with designed internal structure by selective laser melting ofmetallic powder. Applied Surface Science,2007,254(4):980-983.
    [53]左铁钏.高强铝合金的激光加工.北京:国防工业出版社,2002.
    [54] Buchbinder D, Schleifenbaum H, Heidrich S, et al. High Power SelectiveLaser Melting (HP SLM) of Aluminum Parts. Physics Procedia,2011,12:271-278.
    [55] Louvis E, Fox P, and Sutcliffe C J. Selective laser melting of aluminiumcomponents. Journal of Materials Processing Technology,2011,211(2):275-284.
    [56] Brandl E, Heckenberger U, Holzinger V, et al. Additive manufactured AlSi10Mgsamples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue,and fracture behavior. Materials&Design,2012,34:159-169.
    [57] Olakanmi E O, Cochrane R F, and Dalgarno K W. Densification mechanism andmicrostructural evolution in selective laser sintering of Al–12Si powders. Journalof Materials Processing Technology,2011,221:113–121.
    [58]顾冬冬.激光烧结铜基合金的关键工艺及基础研究:[博士论文].南京:南京航空航天大学,2007.
    [59]顾冬冬,沈以赴,吴鹏等.铜基金属粉末选区激光烧结的工艺研究.中国激光,2005.32(11):1561-1566.
    [60] Abe F, Osakada K, Shiomi M, et al. The manufacturing of hard tools frommetallic powders by selective laser melting. Journal of materials processingtechnology,2001,111(1):210-213.
    [61] Shiomi M, Osakada K, Nakamural K, et al. Residual Stress within MetallicModel Made by Selective Laser Melting Process. CIRP Annals-ManufacturingTechnology,2004,53(1):195-198.
    [62] Ghany K A and Moustafa S F. Comparison between the products of four RPMsystems for metals. Rapid Prototyping Journal,2006,12(2):86-94.
    [63] Rehme O and Emmelmann C. Rapid manufacturing of lattice structures withselelctive laser melting.2006, Proceedings of SPIE-The International Societyfor Optical Engineering,6107:61070K1-12.
    [64] Rehme O and Emmelmann C. Reproducibility for properties of Selective LaserMelting products. Proceedings of the Third International WLT-Conference onLasers in Manufacturing, Munich,2005.1-6.
    [65] Gebhardt A, Schmidt F M, Hotter J S, et al. Additive Manufacturing by selectivelaser melting the realizer desktop machine and its application for the dentalindustry. Physics Procedia,2010,5(2):543-549.
    [66] Atzeni E, Iuliano L, Minetola P, et al. Proposal of an innovative benchmark foraccuracy evaluation of dental crown manufacturing. Computers in Biology andMedicine,2012,42(5):548-555.
    [67] Yadroitsev I, Bertrand P and Smurov I. Parametric analysis of the selective lasermelting process. Applied Surface Science,2007,253(19):8064-8069.
    [68] Meier H and Haberland C. Experimental studies on selective laser melting ofmetallic parts. Materialwissenschaft und Werkstofftechnik,2008,39(9):665-670.
    [69] Perry T L, Werschmoeller D, Duffie N A, et al. Examination of Selective PulsedLaser Micropolishing on Microfabricated Nickel Samples Using SpatialFrequency Analysis. Journal of Manufacturing Science and Engineering,2009,131(9):0210021-0210029.
    [70] Ahn D, Kweon J H, Kwon S, et al. Representation of surface roughness in fuseddeposition modeling. Journal of Materials Processing Technology,2009,209(15-16):5593-5600.
    [71] Kruth J P, Badrossamay M, Yasa E, et al. Part and material properties in selectivelaser melting of metals.16th International Symposium on Electromachining,Shanghai,2010.
    [72] Spierings A B, Herres N and Levy G. Influence of the particle size distribution onsurface quality and mechanical properties in AM steel parts. Rapid PrototypingJournal,2011,17(3):195-202.
    [73] Sun M L, Lu L and Fuh J Y H. Microstructure and properties of Fe-base alloyfabricated using selective laser melting. Second International Symposium onLaser Precision Microfabrication, Koji Sugioka,2002,4426:139-142.
    [74] Simchi A and Pohl H. Direct laser sintering of iron-graphite powder mixture.Materials Science and Engineering,2004,383(2):191-200.
    [75] Wang Y, Bergstrom J, Burman C. Characterization of an iron-based laser sinteredmaterial. Journal of materials processing technology,2006,172(1):77-87.
    [76] Majumdar J D, Pinkerton A, Liu Z, et al. Microstructure characterisation andprocess optimization of laser assisted rapid fabrication of316L stainless steel.Applied surface science,2005,247(1):320-327.
    [77]席明哲,高士友.激光快速成形Inconel718超合金拉伸力学性能研究.中国激光,2012,39(3):68-73.
    [78] Yadroitsev I, and Smurov I. Surface Morphology in Selective Laser Melting ofMetal Powders. Physics Procedia Part A(0),2011,12:264-270.
    [79] Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanicalbehavior of Ti–6Al–4V produced by rapid-layer manufacturing, for biomedicalapplications. Journal of the Mechanical Behavior of Biomedical Materials,2009,2(1):20-32.
    [80] Chlebus E, Kuznicka B, Kurzynowski T, et al. Microstructure and mechanicalbehaviour of Ti-6Al-7Nb alloy produced by selective laser melting. MaterialsCharacterization,2011,62(5):488-495.
    [81] Fbe A, Santos E C, Kitamura Y, et al. Influence of forming conditions on thetitanium model in rapid prototyping with the selective laser melting process.Journal of Mechanical Engineering Science,2003,217(1):119-126.
    [82] Cheng Y X, Li G F and Yu S L. Electiron microanalysis for laser melted zone in45steel with Fe-Ni-Cr coating. Acta Metallurgica Sinica,1989,2(3):190-193.
    [83] Hollander D A, Wirtz T, Walter M, et al. Development of IndividualThree-Dimensional Bone Substitutes Using Selective Laser Melting. EuropeanJournal of Trauma,2003,29(4):228-234.
    [84] Santos E C, Osakada K, Shiomi M, et al. Fabrication of Titanium DentalImplants by Selective Laser Melting. Proceedings of the SPIE-The InternationalSociety for Optical Engineering,2004,5562(1):268-273.
    [85] Lin C Y, Wirtz T, LaMarca F, et al. Structural and mechanical evaluations of atopology optimized titanium interbody fusion cage fabricated by selective lasermelting process. Journal of Biomedical Materials Research-Part A,2007,83(2):272-279.
    [86] Yang Y Q, Huang Y L and Wu W H. One-step shaping of NiTi biomaterial byselective laser melting. Proceedings of the SPIE-The International Society forOptical Engineering,2008,6825:68250C1-7.
    [87] Syam W P. Rapid prototyping (RP) and Rapid Manufacturing (RM) in MedicalApplication. CIRP Annals-Manufacturing Technology,2011,52(2):589-609.
    [88] Sachs E, Allen S, Guo H, et al. Progress on tooling by3D printing: conformalcooling, dimensional control, surface finish and hardness. Proceedings of theEighth Annual Solid Freeform Fabrication Symposium,1997.115-124.
    [89] Jacobs P F. New frontiers in mold construction: high conductivity materials andconformal cooling channels.1999.
    [90] Sachs E, Eylonis E and Allen S. Production of injection molding tooling withconformal cooling channels using the three dimension printing process. PolymerEngineering and Science,2000,40(5):1232-1247.
    [91] Dalgarno K W and Stewart T D. Production tooling for polymer moulding usingindirect SLS. Rapid Prototyping Journal,2001,7:173-179.
    [92] Wimpenny D I, Bryden B and Pashby I R. Rapid laminated tooling. Journal ofMaterials Processing Technology,138(1-3):214-218.
    [93] Ferreira J C and Mateus A. Studies of rapid soft tooling with conformal coolingchannels for plastic injection moulding. Journal of Materials ProcessingTechnology,2003,142(2):508-516.
    [94] Karapatis N P, Griethuysen J and Glardon R. Direct rapid tooling: a review ofcurrent research. Rapid Prototyping Journal,1998,4(2):77-89.
    [95] King D and Tansey T. Rapid tooling: selective laser sintering injection tooling.Journal of Materials Processing Technology,2003,132(1-3):42-48.
    [96] Xu X R, Sachs E, Allen S, et al. Designing conformal cooling channels fortooling, in Solid Freeform Fabrication Proceedings, Austin,1998.131-146.
    [97] Aluru R, Keefe M and Advani S. Simulation of injection molding intorapid-prototyped molds. Rapid Prototyping Journal,2001,7(1):42-51.
    [98] Dalgarno K W and Stewart T D. Manufacture of production injection mouldtooling incorporating conformal cooling channels via indirect selective lasersintering. Journal of engineering manufacture,2001,215(10):1323-1332.
    [99]史玉升,伍志刚,魏青松等.随形冷却对注塑成型及生产效率的影响研究.华中科技大学学报(自然科学版),2007,35(3):60-62.
    [100]伍志刚,史玉升,魏青松等.注塑模新型冷却技术及其研究进展.中国机械工程,2006, s1:161-165.
    [101] Wang L, Wei Q S, Xue P J, et al. Fabricate mould insert with conformal coolingchannel using selective laser melting. Advanced Materials Research,2012,502:67-71.
    [102]刘锦辉.选择性激光烧结间接制造金属零件研究:[博士论文].武汉:华中科技大学,2006.
    [103]刘娜. Ti6Al4V粉末及其制品的研究进展.材料导报,2010,5:92-95.
    [104] Yuan W X, Mei J and Samarov V. Computer modeling and tooling design fornear net shaped components using hot isostatic pressing. Journal of MaterialsProcessing Technology,2007,182(1-3):39-49.
    [105] Kruth J P, Mercelis P, Van Vaerenbergh J, et al. Binding mechanisms in selectivelaser sintering and selective laser melting. Rapid prototyping journal,2005,11(1):26-36.
    [106] Dalgarno K W. Materials research to support high performance RM parts.2007.147-156.
    [107] Klocke F and Wagner C. Coalescence behaviour of two metallic particles as basemechanism of selective laser sintering. CIRP Annals-Manufacturing Technology,2003,52(1):177-180.
    [108] Gusarov A V, Yadroitsev I, Bertrand P, et al. Heat transfer modelling and stabilityanalysis of selective laser melting. Applied Surface Science,2007,254(4):975-979.
    [109] Kruth J P, Levy G, Klocke F, et al. Consolidation phenomena in laser andpowder-bed based layered manufacturing. CIRP Annals-ManufacturingTechnology,2007,56(2):730-759.
    [110] Gu D D and Shen Y F. Balling phenomena in direct laser sintering of stainlesssteel powder: Metallurgical mechanisms and control methods. Material&Design,2009,30(8):2903-2910.
    [111] Fischer P, Romano V, Weber H P, et al. Pulsed laser sintering of metallic powders.Thin Solid Films,2004,453-454:139-144.
    [112] Yadroitsev I, Gusarov A, Yadroitsava I, et al. Single track formation in selectivelaser melting of metal powders. Journal of Materials Processing Technology,2010,210(12):1624-1631.
    [113]李瑞迪.金属粉末选择性激光熔化成形的关键基础问题研究:[博士论文].武汉:华中科技大学,2010.
    [114] Agarwala M, Bourell D, Beaman J, et al. Direct selective laser sintering ofmetals. Rapid Prototyping Journal,1995,1(1):26-36.
    [115]尚晓峰,刘伟军,王天然等.金属粉末激光成形扫描方式.机械工程学报,2005,41(7):99-102.
    [116] Yadroitsev I, Yadroitsava I and Smurov I. Strategy of fabrication of complexshape parts based on the stability of single laser melted track. Proceedings of theSPIE-The International Society for Optical Engineering,2011,7921(79210C).
    [117] Yang J L, Ouyang H W, Xu C, et al. Top surface quality research for direct metallaser fabrication. Rapid Prototyping Journal,2012,18(1):4–15.
    [118] Wang F. Mechanical property study on rapid additive layer manufactureHastelloy X alloy by selective laser melting technology. The InternationalJournal of Advanced Manufacturing Technology,2012,58(5):545.
    [119]王志坚.装备零件激光再制造成形零件几何特征及成形精度控制研究:[博士论文].广州:华南理工大学,2011.
    [120]顾冬冬,沈以赴.粉体特性对铜基金属粉末选区激光烧结的影响.航空学报,2007,1:222-227.
    [121]李瑞迪.金属粉末选择性激光熔化成形的关键基础问题研究.华中科技大学,2010.
    [122]向宝珍.基于田口方法的脉冲Nd:YAG激光焊接工艺参数优化:[硕士论文].镇江:江苏大学,2010.
    [123]林秀雄.田口方法实战技术.北京:海天出版社,2004.
    [124]侯东坡,宋仁伯,项建英等.固溶处理对316L不锈钢组织和性能的影响.材料热处理学报,2010,31(12):61-65.
    [125]丁秀平,刘雄,何燕霖等.316L奥氏体不锈钢中时效条件下析出相演变行为的研究.材料研究学报,2009,23(3):269-274.
    [126]刘小萍,田文怀,杨峰等.时效处理SUS316L不锈钢中析出相的晶体结构和化学成分.材料热处理学报,2006,27(3):81-85.
    [127] Gu D D, and Shen Y F. Balling phenomena during direct laser sintering ofmulti-component Cu-based metal powder. Journal of Alloys and Compounds,2007,432(1-2):163-166.
    [128]张瑞华,尹燕,水谷正海等.激光辅助活性焊接法.焊接学报,2009,30(11):21-24.
    [129]宋建岭,林三宝,杨春利等.不锈钢TIG熔钎焊接头微观组织及力学性能.焊接学报,2008,29(4):105-108.
    [130]樊丁,林涛,黄勇等.不锈钢活性激光焊工艺研究.船舶焊接国际论坛论文集,2007(5):28-30.
    [131]胡礼木,胡波,郭从盛等.奥氏体不锈钢TIG焊用活性剂的研制.焊接学报,2006,27(6):53-55.
    [132]马立彩,刘金合,谢耀征.激光焊活性影响等离子体的初步研究.电焊机,2005,(7):35-38.
    [133]林三宝,杨春利,刘风尧等.不锈钢TIG焊活性剂对焊缝性能的影响.哈尔滨工业大学学报,2002,34(3):308-311.
    [134] Lu S, Fujii H, Sugiyarna H. Weld penetration and Marangoni convection withoxide fluxes in GTA welding. Materials Transactions,2002,43(11):2926-31.
    [135] Modenesi P J, Apolimario E R and Pereira I M. TIG Welding withSingle-component Fluxes. Journal of Materials Processing Technology,2000,99:260-265.
    [136] Howse D S and Lucan W. Investigation into arc constriction by active fluxes fortungsten inert gas welding. Science and Technology of Welding&Joining,2000,5(3):189-193.
    [137] Kou S and Wang Y H. Computer simulation of convection in moving arc weldpools. Metallurgical and Materials Transactions A,1986,17(12):63-70.
    [138] Fujii H, Sato T, Lu S, et al. Development of an Advanced A-TIG (AA-TIG)welding method by control of Marangoni convection. Materials Science andEngineering A,2008,495:296–303.
    [139] Fujii H, Nogi K. Formation and disappearance of pores in aluminum alloymolten pool under microgravity. Science and Technology of AdvancedMaterials,2004,5(1-2):219-23.
    [140] Xu Y L, Dong Z B, Wei Y H, et al. Marangoni convection and weld shapevariation in A-TIG welding process. Theoretical and Applied Fracture Mechanics,2007,48:178–186.
    [141] Lu S, Fujii H, Nogi K. Marangoni convection in weld pool in CO2-Ar-shieldedgas thermal arc welding. Metallurgical and Materials Transactions A,2004,35(9):2861-7.
    [142]杨春利,牛尾诚夫. TIG焊熔池表面张力的测定及表面活性剂的影响.机械工程学报,2000.36(10):第59-63页.
    [143]张瑞华.活性焊接法及熔深增加机理的数值模拟研究:[博士论文].兰州:兰州理工大学,2005.
    [144] Xu Y L, Dong Z B, Wei Y H, et al., Marangoni convection and weld shape variationin a tig welding process. Theoretical and Applied Fracture Mechanics,2007,48:178-186.
    [145]林三宝等,杨春利,刘凤尧等.不锈钢TIG焊活性剂对焊缝性能的影响.哈尔滨工业大学学报,2002,34(3):308-312.
    [146]唐振廷.冲击断口测量方法及其存在的问题.汽车工艺与材料,2005,(10):23-29.
    [147]郑建平,程蓉,伍晓宇等.基于SLS快速成形方法的注塑模具随形冷却水道制造技术的研究.机械设计与制造,2010,(11):231-232.
    [148]伍志刚,史玉升,魏青松等.注塑模新型冷却技术及其研究进展.中国机械工程增刊,2006,(10):161-165.
    [149] Dimla D E, Camilotto M and Miani F. Design and optimization of conformalcooling channels in injection moulding tools. Journal of Materials ProcessingTechnology,2005,164-165:1294-1300.
    [150]史玉升,伍志刚,魏青松.随形冷却对注塑成型和生产效率的影响.华中科技大学学报(自然科学版),2007,35(3):60-62.
    [151]刘锦辉,史玉升,陈康华等.选择性激光烧结复合粉末法制造合金零件.华中科技大学学报(自然科学版),2006,34(5):83-85.
    [152]刘锦辉.选择性激光烧结间接制造金属零件研究:[博士论文].武汉:华中科技大学,2006.
    [153]林鑫,杨海鸥,陈静等.激光快速成形过程中316L不锈钢显微组织的演变.金属学报,2006,42(4):361-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700