不同成因黄铜矿极端嗜热菌浸出差异性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以斑岩型、海相火山岩型、矽卡岩型黄铜矿为研究对象,系统研究了三种成因黄铜矿极端嗜热菌浸出特性,在对极端嗜热菌进行种群鉴定和驯化的基础上,对不同pH值、不同矿浆浓度进行条件实验,研究三种成因黄铜矿的浸出差异,并从矿物性质、吸附机理和溶解途径三个方面对浸出差异性进行了分析,从而为系统开展黄铜矿极端嗜热菌浸出机制的研究奠定了基础。
     研究了不同pH值、矿浆浓度下三种成因黄铜矿极端嗜热菌浸出特性,比较三种成因黄铜矿的浸出差异。不同pH值条件下,海相火山岩型黄铜矿浸出率均明显高于矽卡岩型黄铜矿和斑岩型黄铜矿,显示了海相火山岩型黄铜矿较易浸出。斑岩型黄铜矿菌体浓度和浸出率随着pH值升高先增高后降低,并在pH值为1.5时达到最高;而海相海相火山岩型和矽卡岩黄铜矿则是随着pH值升高不断增高。不同矿浆浓度条件下,三种成因黄铜矿浸出行为具有较大的差异。其中斑岩型和矽卡岩黄铜矿菌体浓度和浸出率随着矿浆浓度的升高均为先升高后降低,并在矿浆浓度为2.0%时达到最高,而海相火山岩型黄铜矿在矿浆浓度为0.5%时,菌体浓度和浸出率最高,随着矿浆浓度的升高而降低。通过条件实验分析发现,三种成因黄铜矿的浸出率与其菌体浓度完全成正相关性,为寻找适宜的浸出工艺参数提供依据。
     通过晶体结构、电子结合能、穆斯堡尔谱Fe的价态和矿物组成(硫化矿物组分)等四个方面对三种成因黄铜矿的矿物性质进行了深入分析,从原矿本质上揭示了三种黄铜矿浸出差异的本源原因。海相火山岩型黄铜矿具有较小的晶格能和电子结合能、较高的Fe2+/Fe3+的含量,同时表面含有一部分有助于浸出进行的Cu(II),使得该类黄铜矿具有较好的浸出特性。此外,还研究了黄铜矿中所含硫化矿物组分对浸出的影响,研究发现黄铁矿、闪锌矿和铜蓝这三种硫化矿物对斑岩型和矽卡岩型黄铜矿的极端嗜热菌浸出具有阻碍作用,而对海相火山岩型黄铜矿的极端嗜热菌浸出具有一定的促进作用。
     通过选择性吸附、电动性质和吸附作用力性质等方面对三种成因黄铜矿极端嗜热菌的吸附机理进行了深入分析,从吸附机理上揭示了浸出差异的过程原因。不同影响因素下极端嗜热菌在斑岩型、海相火山岩型、矽卡岩型黄铜矿表面的吸附规律表明,矿物单位面积微生物吸附量的大小顺序为:矽卡岩型>斑岩型>海相火山岩型。通过分析三种成因黄铜矿与极端嗜热菌作用后的Zeta电位,揭示了三种成因黄铜矿的等电点(IEP)与极端嗜热菌在其表面的吸附率高低相一致。利用EDLVO理论对微生物吸附行为的分析,进一步揭示了极端嗜热菌在三种成因黄铜矿表面的吸附受静电(EL)作用的控制。
     通过浸出过程中氧化还原反应分析与浸出产物分析,揭示三种成因黄铜矿在极端嗜热菌浸出时的溶解途径,从而通过溶解途径的研究揭示浸出差异的本质原因。极端嗜热菌浸出时,质子(H+)与极端嗜热菌的共同作用,使得黄铜矿价带空穴和导带电子的转移同时发生。极端嗜热菌对黄铜矿浸出的作用,取决于其在矿物表面的吸附。斑岩型、海相火山岩型及矽卡岩型黄铜矿生成的产物分别为缺M-硫化物(CuFeS)与铜蓝、富M-硫化物(Cu2Fe2S)及缺M-硫化物(Cu4Fe4S5)与富M-硫化物(Cu3.5Fe4S2.5)。三种成因黄铜矿生成单质硫(S0)及黄钾铁矾。单质硫(S0)层阻碍了斑岩型及矽卡岩型黄铜矿进一步溶解,所以提高极端嗜热菌的菌体浓度,有利于这两种成因黄铜矿的溶解。而海相火山岩型黄铜矿的表面覆盖有黄钾铁矾层,因此降低浸出溶液的pH值,有利于海相火山岩型黄铜矿的溶解。此外,进一步描述了三种成因黄铜矿的溶解反应方程式,从而揭示了三种成因黄铜矿在极端嗜热菌浸出时的溶解机理。
The thermophiles bioleaching behaviours and mechanisms of chalcopyrite with distinct genetic types were studied in the present thesis. The chalcopyrite samples are from porphyry type, marine volcanic type, skarn type copper deposit. On the basis of identification and domestication, different thermophiles bioleaching conditions of experiments were carried out, such as different pH values and pulp concentration. To investigate the different bioleaching behaviours, the nature of minerals, the biosorption mechanism, and the dissolution were analyzed. This study provided the theoretical basis of the thermophiles bioleaching mechanisms of chalcopyrite.
     The effects of pH values and pulp density on the thermophiles bioleaching behaviours of chalcopyrite with distinct genetic types were studied. Under different pH values leaching conditions, the copper leaching yield of marine volcanic chalcopyrite was significantly higher than the porphyry type and skarn type. This result indicated that the marine volcanic type is easier to dissolve than the other two type chalcopyrite. As pH value increasing, the cell concentration and the copper leaching yield of porphyry chalcopyrite increased first and then decreased, and reached a maximum at pH1.5. However, the cell concentration and the copper leaching yield of marine volcanic type and skarn type increased with pH value increasing. Under different pulp density, there were greater differences between behaviours. As pulp density increasing, the cell concentration and the copper leaching yield of porphyry type and skarn type increased first and then decreased, and reached a maximum at pulp density2.0%. However, the cell concentration and the copper leaching yield of marine volcanic type decreased with pulp density increasing. These results suggested that the copper leaching yield of three type chalcopyrite was positive correlations with the cell concentration, which is very important for bioleaching process.
     To reveal the different bioleaching behaviours of chalcopyrite essentially, the nature of chalcopyrite was studied by four aspects, crystal structure, electron binding energy, valence Fe (Mossbauer spectroscopy) and mineral composition (sulfide mineral). Marine volcanic chalcopyrite had smaller lattice energy and electron binding energy, the higher the Fe2+/Fe3+content, and Cu(II) on its surface, which caused this type chalcopyrite easier to dissolved. In addition, the effects of sulfide minerals on chalcopyrite bioleaching were also studied. The results showed that pyrite, sphalerite and covellite played a negative role in porphyry type and skarn type bioleaching, whereas they had a role in promoting marine volcanic chalcopyrite bioleaching.
     To reveal the biosorption mechanism of chalcopyrite essentially, the selective attachment, Zeta potential and adsorption affinity were studied. The results showed that after biosorption reached equilibrium, mineral adsorption capacity per unit area of extreme thermophilic bacteria order:skarn type> porphyry type> marine volcanic type. The Zeta potential results indicated that after biosorption, the isoelectric point (IEP) of three type chalcopyrite were consistent with the biosorption order. Analysis of the adsorption behavior of extreme thermophilic bacteria by EDLVO theory, it was found that electrostatic force (EL) played an important role in biosorption.
     To reveal the dissolution mechanism of chalcopyrite essentially, the redox reaction and leaching product were studied. When extreme thermophiles bioleaching, holes in conduction band and electrons in valence band simultaneously transferring, this meant that protons (H+) and extreme thermophilic bacteria attacked chalcopyrite simultaneously. Extreme thermophilic bioleaching depended on adsorption on mineral surfaces. It was found that the products of porphyry, marine volcanic and skarn chalcopyrite were M-lacking sulfide (CuFeS) and covellite, M-rich sulfide (Cu2Fe2S), M-lacking sulfide (Cu4Fe4S5) and M-rich sulfide (Cu3.5Fe4S2.5) respectively. Elemental sulfur (S0) layer hindered porphyry and skarn chalcopyrite further dissolution, so increasing the cell concentration was favor of these types chalcopyrite dissolved. The surface of the marine volcanic chalcopyrite covered with jarosite layer, thus reducing the pH value of the solution was conducive to marine volcanic chalcopyrite leaching. In addition, reaction equation described the dissolution of three type chalcopyrite, which revealed thermophilic bioleaching mechanism.
引文
[1]Cordoba E. M., Munoz J. A., Blazquez M. L., et al. Leaching of chalcopyrite with ferric ion. Part I:General aspects [J]. Hydrometallurgy,2008,93:81-87.
    [2]Bravo P. El panorama de la hidrometalurgia [EB/OL], http://www.mch.cl/reportajes/el-panorama-de-la-hidrometalurgia/,2006-09-28.
    [3]Burkin A. R. Solid-state transformations during leaching [J]. Min. Sci. Engng.,1969, 1:4-14.
    [4]杨洪英,杨立.细菌冶金学[M].北京:化学工业出版社,2006:46-47.
    [5]Hall S. R., Stewart J. M. The crystal structure refinement of chalcopyrite, CuFeS2 [J]. Acta Crystallographica Section B,1973,29:579-585.
    [6]Jones R. T. Electronic structures of the sulfide minerals sphalerite, wurtzite, pyrite, marcasite, and chalcopyrite [D]. University of South Australia,2006.
    [7]Petiau J., Sainctavit P., Calas G. K X-ray absorption spectra and electronic structure of chalcopyrite CuFeS2 [J]. Materials Science and Engineering B,1988,1:237-249.
    [8]Nikiforov K. G. Magnetically ordered multinary semiconductors [J]. Progress in Crystal Growth and Characterization of Materials,1999,39:1-104.
    [9]Habashi F. Chalcopyrite:its chemistry and metallurgy [M]. NewYork:McGraw-Hill Book Co.,1978:15-17.
    [10]Llanos J., Buljan A., Mujica C, et al. Electron transfer in the insertion of alkali metals in chalcopyrite [J]. Materials Research Bulletin,1995,30:43-48.
    [11]de Oliveira C., Duarte H. A. Disulphide and metal sulphide formation on the reconstructed surface of chalcopyrite:A DFT study [J]. Applied Surface Science, 2010,257:1319-1324.
    [12]Von Oertzen G., Harmer S., Skinner W. M. XPS and ab initio calculation of surface states of sulfide minerals:pyrite, chalcopyrite and molybdenite [J]. Molecular Simulation,2006,32:1207-1212.
    [13]Raj D., Chandra K., Puri S. Mossbauer studies of chalcopyrite [J]. Journal of the Physical Society of Japan,1968,24(1):39-41.
    [14]Mikhlin Y., Tomashevich Y., Tauson V., et al. A comparative X-ray absorption near-edge structure study of bornite, CusFeS4 and chalcopyrite, CuFeS2 [J]. Journal of Electron Spectroscopy and Related Phenomena,2005,142:83-88.
    [15]Todd E. C, Sherman D. M. Surface oxidation of chalcocite (CU2S) under aqueous (pH=2-11) and ambient atmospheric conditions:Mineralogy from Cu L-and O K-edge X-ray absorption spectroscopy [J]. American Mineralogist,2003,88: 1652-1656.
    [16]Pearce C. I., Pattrick R. A. D., Vaughan D. J., et al. Copper oxidation state in chalcopyrite:Mixed Cu d9 and d10 characteristics [J]. Geochimica et Cosmochimica Acta,2006,70:4635-4642.
    [17]Karlsson K., Gunnarsson O., Jepsen O. Shape of the Cu 2p core level photoemission spectrum for monovalent, divalent and trivalent Cu compounds [J]. Journal of Physics: Condensed Matter,1992,4:2801-2816.
    [18]van der Laan G., Pattrick R. A. D., Henderson C. M. B., et al. Oxidation state variations in copper minerals studied with Cu 2p X-ray absorption spectroscopy [J]. Journal of Physics and Chemistry of Solids,1992,53:1185-1190.
    [19]Brion D. Photoelectron spectroscopic study of the surface degradation of pyrite (FeS2), chalcopyrite (CuFeS2), sphalerite (ZnS), and galena (PbS) in air and water [J]. Appl Surf Sci.,1980,5:133-152.
    [20]Cahen D., Ireland P., Kazmerski L., et al. X-ray photoelectron and Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CuInSe2 photoelectrodes [J]. Journal of Applied Physics,1985,57:4761-4671.
    [21]Fujisawa M., Suga S., Mizokawa T., et al. Electronic structures of CuFeS2 and CuAlo.9Feo.1S2 studied by electron and optical spectroscopies [J]. Physical Review B, 1994,49:7155-7164.
    [22]Okiji A., Kanamori J. Theoretical Analysis of the Mossbauer Data in Some Fe2+ Compounds [J]. Journal of the Physical Society of Japan,1964,19(6):908-915.
    [23]Sainctavit P., Petiau J., Flank A., et al. XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2 [J]. Physica B:Condensed Matter,1989,158:623-624.
    [24]Tributsch H., Bennett J. C. Semiconductor electrochemical aspects of bacterial leaching. I. Oxidation of metal sulphides with large energy gaps [J]. Journal of Chemical Technology and Biotechnology,1981,31:565-577.
    [25]Crundwell F. How do bacteria interact with minerals? [J]. Hydrometallurgy,2003,71: 75-81.
    [26]Teranishi T., Sato K. Optical, Electrical and Magnetic Properties of Chalcopyrite, CuFeS2 [J]. J. Phys. Colloques,1975,36:149-153.
    [27]Hamajima T., Kambara T., Gondaira K. I., et al. Self-consistent electronic structures of magnetic semiconductors by a discrete variational X-calculation. III. Chalcopyrite CuFeS2 [J]. Physical Review B,1981,24:3349-3353.
    [28]Saunders V., Dovesi R., Roetti C., et al. CRYSTAL 98 user's manual [M]. Torino: University of Torino,1998:14-72.
    [29]Edelbro R., Sandstrom A., Paul J. Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite [J]. Applied Surface Science. 2003,206:300-313.
    [30]Torma A. E. Electrochemistry of a semiconductor chalcopyrite concentrate leaching by Thiobacillus ferrooxidans [J]. Hydrometallurgy and Electrometallurgy of Copper Pergamon Press,1991,73-85.
    [31]Harmer S. L., Pratt A. R., Nesbitt W. H., et al. Sulfur species at chalcopyrite (CuFeS2) fracture surfaces [J]. American Mineralogist,2004,89:1026-1032.
    [32]Acres R. G., Harmer S. L., Beattie D. A. Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite [J]. Minerals Engineering,2010,23:928-936.
    [33]Acres R.G., Harmer S. L., Shui H. W., et al. Synchrotron scanning photoemission microscopy of homogeneous and heterogeneous metal sulfide minerals [J]. Journal of Synchrotron Radiation,2011,18:649-657.
    [34]Perdew J. P., Burke K., Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters,1996,77:3865-3868.
    [35]Klauber C. Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface [J]. Surface and interface analysis,2003,35:415-428.
    [36]de Oliveira C., de Lima G. F., De Abreu H.A., et al. Reconstruction of the Chalcopyrite Surfaces-A DFT Study [J]. The Journal of Physical Chemistry C,2012, 116(10):6357-6366.
    [37]Shuey R. T. Semiconducting ore minerals [M]. Amsterdam:Elsevier Scientific Publishing Company,1975:215-240.
    [38]Absolon V. A comparison of biological and chemically induced leaching mechanisms of chalcopyrite [D], University of South Australia,2008.
    [39]Tributsch H. Direct versus indirect bioleaching [J]. Hydrometallurgy,2001,59: 177-185.
    [40]Sand W., Gehrke T., Jozsa P. G., et al. (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching [J]. Hydrometallurgy,2001,59:159-175.
    [41]Schippers A., Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur [J]. Applied and Environmental Microbiology,1999,65:319.
    [42]Hiroyoshi N., Miki H., Hirajima T., et al. A model for ferrous-promoted chalcopyrite leaching [J]. Hydrometallurgy,2000,57:31-38.
    [43]Sandstrom A., Shchukarev A., Paul J. XPS characterisation of chalcopyrite chemically and bio-leached at high and low redox potential [J]. Minerals Engineering, 2005,18:505-515.
    [44]Pradhan N., Nathsarma K. C., Srinivasa Rao K., et al. Heap bioleaching of chalcopyrite:A review [J]. Minerals Engineering,2008,21:355-365.
    [45]Baker B. J., Banfield J. F. Microbial communities in acid mine drainage [J]. FEMS Microbiology Ecology,2003,44:139-152.
    [46]Rodriguez Y., Ballester A., Blazquez M. L., et al. Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite, and sphalerite [J]. Geomicrobiology Journal,2003,20:131-141.
    [47]Chen M. L., Zhang L., Gu G. H., et al. Effects of microorganisms on surface properties of chalcopyrite and bioleaching [J]. Transactions of Nonferrous Metals Society of China,2008,18:1421-1426.
    [48]Valdes J., Pedroso I., Quatrini R., et al. Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications [J]. BMC Genomics,2008,9:597.
    [49]Zeng W., Qiu G., Zhou H., et al. Characterization of extracellular polymeric substances extracted during the bioleaching of chalcopyrite concentrate [J]. Hydrometallurgy,2010,100:177-180.
    [50]Rohwerder T., Gehrke T., Kinzler K., et al. Bioleaching review part A:Progress in bioleaching:Fundamentals and mechanisms of bacterial metal sulfide oxidation [J]. Applied Microbiology and Biotechnology,2003,63:239-248.
    [51]Zeng W., Qiu G., Zhou H., et al. Electrochemical behaviour of massive chalcopyrite electrodes bioleached by moderately thermophilic microorganisms at 48℃ [J]. Hydrometallurgy,2011,105:259-263.
    [52]Bobadilla Fazzini R. A., Levican G., Parada P. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate [J]. Applied Microbiology and Biotechnology,2011,89: 771-780.
    [53]Gomez E., Blazquez M. L., Ballester A., et al. Study by SEM and EDS of chalcopyrite bioleaching using a new thermophilic bacteria [J]. Minerals Engineering, 1996,9:985-999.
    [54]Konishi Y., Asai S., Tokushige M., et al. Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi [J]. Biotechnology Progress,1999,15:681-688.
    [55]Gautier V., Escobar B., Vargas T. Cooperative action of attached and planktonic cells during bioleaching of chalcopyrite with Sulfolobus metallicus at 70℃ [J]. Hydrometallurgy,2008,94:121-126.
    [56]Watling H. R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review [J]. Hydrometallurgy,2006,84:81-108.
    [57]Karimi G. R., Rowson N. A., Hewitt C. J. Bioleaching of copper via iron oxidation from chalcopyrite at elevated temperatures [J]. Food and Bioproducts Processing, 2010,88:21-25.
    [58]Gericke M., Govender Y., Pinches A. Tank bioleaching of low-grade chalcopyrite concentrates using redox control [J]. Hydrometallurgy,2010,104:414-419.
    [59]Gomez C., Roman E., Blazquez M. L., et al. SEM and AES studies of chalcopyrite bioleaching in the presence of catalytic ions [J]. Minerals Engineering,1997,10: 825-835.
    [60]Klauber C., Parker A., van Bronswijk W., et al. Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy [J]. International Journal of Mineral Processing,2001,62:65-94.
    [61]Jordan H., Sanhueza A., Gautier V., et al. Electrochemical study of the catalytic influence of Sulfolobus metallicus in the bioleaching of chalcopyrite at 70℃ [J]. Hydrometallurgy,2006,83:55-62.
    [62]Vilcaez J., Inoue C. Mathematical modeling of thermophilic bioleaching of chalcopyrite [J]. Minerals Engineering,2009,22:951-960.
    [63]Klauber C. A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution [J]. International Journal of Mineral Processing,2008,86:1-17.
    [64]Parker A. J., Paul R. L., Power G. P. Electrochemistry of the oxidative leaching of copper from chalcopyrite [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry.1981,118:305-16.
    [65]Havlik T., Skrobian M., Balaz P., et al. Leaching of chalcopyrite concentrate with ferric chloride [J]. International Journal of Mineral Processing,1995,43:61-72.
    [66]Hope G. A., Woods R., Munce C. G. Raman microprobe mineral identification [J]. Minerals Engineering,2001,14:1565-1577.
    [67]Parker G. K., Woods R., Hope G. A. Raman investigation of chalcopyrite oxidation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,318: 160-168.
    [68]Zhu W., Xia J. L., Yang Y., et al. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite [J]. Bioresource Technology,2011,102:3877-3882.
    [69]d'Hugues P., Foucher S., Galle-Cavalloni P., et al. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture [J]. International Journal of Mineral Processing,2002,66:107-119.
    [70]Stott M. B., Watling H. R., Franzmann P. D., et al. Role of iron-hydroxy precipitates in the passivation of chalcopyrite during bioleaching [J]. Minerals Engineering,2000, 13:1117-1127.
    [71]van Hille R. P., van Zyl A. W., Spurr N. R. L., et al. Investigating heap bioleaching: Effect of feed iron concentration on bioleaching performance [J]. Minerals Engineering,2010,23:518-525.
    [72]Cordoba E. M., Munoz J. A., Blazquez M. L., et al. Passivation of chalcopyrite during its chemical leaching with ferric ion at 68℃ [J]. Minerals Engineering,2009,22: 229-235.
    [73]Yu R. L., Zhong D. L., Miao L., et al. Relationship and effect of redox potential, jarosites and extracellular polymeric substances in bioleaching chalcopyrite by acidithiobacillus ferrooxidans [J]. Transactions of Nonferrous Metals Society of China (English Edition),2011,21:1634-1640.
    [74]Zivkovic Z. D., Mitevska N., Savovic V. Kinetics and mechanism of the chalcopyritepyrite concentrate oxidation process [J]. Thermochimica Acta,1996, 282-283:121-130.
    [75]Mahajan V., Misra M., Zhong K., et al. Enhanced leaching of copper from chalcopyrite in hydrogen peroxide-glycol system [J]. Minerals Engineering,2007,20: 670-674.
    [76]Albor Aguilera M. L., Aguilar Hernandez J.R., Gonzalez Trujillo M.A., et al. Photoluminescence studies of p-type chalcopyrite AgInS2:Sn [J]. Solar Energy Materials and Solar Cells,2007,91:1483-1487.
    [77]Hackl R. P., Dreisinger D. B., Peters E., et al. Passivation of chalcopyrite during oxidative leaching in sulfate media [J]. Hydrometallurgy,1995,39:25-48.
    [78]Todd E. C., Sherman D. M., Purton J.A. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2-10) conditions:Cu, Fe L-and O K-edge X-ray spectroscopy [J]. Geochimica et Cosmochimica Acta,2003,67: 2137-2146.
    [79]Nazari G., Asselin E. Morphology of chalcopyrite leaching in acidic ferric sulfate media [J]. Hydrometallurgy,2009,96:183-188.
    [80]Holliday R. I., Richmond W. R. An electrochemical study of the oxidation of chalcopyrite in acidic solution [J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry,1990,288:83-98.
    [81]Buckley A. N., Woods R. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite [J]. Australian Journal of Chemistry,1984,37:2403-2413.
    [82]Harmer S. L., Thomas J. E., Fornasiero D., et al. The evolution of surface layers formed during chalcopyrite leaching [J]. Geochimica et Cosmochimica Acta,2006, 70:4392-4402.
    [83]Dutrizac J. E. Elemental sulphur formation during the ferric sulphate leaching of chalcopyrite [J]. Canadian Metallurgical Quarterly,1989,28:337-344.
    [84]Yin Q., Kelsall G. H., Vaughan D. J., et al. Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2) [J]. Geochimica et Cosmochimica Acta,1995,59:1091-1100.
    [85]Ahmadi A., Schaffie M., Petersen J., et al. Conventional and electrochemical bioleaching of chalcopyrite concentrates by moderately thermophilic bacteria at high pulp density [J]. Hydrometallurgy,2011,106:84-92.
    [86]Sasaki K., Nakamuta Y., Hirajima T., et al. Raman characterization of secondary minerals formed during chalcopyrite leaching with Acidithiobacillus ferrooxidans [J]. Hydrometallurgy,2009,95:153-158.
    [87]中国矿床委员会.中国矿床[M].北京:地质出版社,1994:1185-1192.
    [88]赵一鸣,吴良士,等.中国主要金属矿床成矿规律[M].北京:地质出版社,2004:402-408.
    [89]中国地质矿产信息研究院.国外矿产资源[M].北京:地质出版社,1996:89-95.
    [90]黄崇轲,白冶,朱裕生,等.中国铜矿床[M].北京:地质出版社,2001:100-210.
    [91]Vilcaez J., Suto K, Inoue C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence [J]. Int. J. Miner. Process,2008,88(1-2):37-44.
    [92]白静,温建康,黄松涛,等.不同成矿条件下黄铜矿微生物浸出研究概况[J].稀有金属,2012,36(4):644-650.
    [93]傅开彬,林海,莫晓兰,等.不同成因类型黄铜矿细菌浸出钝化[J].中南大学学报,2011,42(11):3245-3250.
    [94]Sainctavit P., Petiau J., Flank A., et al. XANES in chalcopyrites semiconductors: CuFeS2, CuGaS2, CuInSe2 [J]. Physica B:Condensed Matter,1989,158:623-624.
    [95]Kono S., Okusawa M. X-ray photoelectron study of the valence bands in I-III-VI2 compounds [J]. Journal of the Physical Society of Japan,1974,37:1301-1304.
    [96]Oguchi T., Sato K., Teranishi T. Optical Reflectivity Spectrum of a CuFeS2 Single Crystal [J]. Journal of the Physical Society of Japan,1980,48:123-128.
    [97]Nesbitt H. W., Bancroft G. M., Pratt A. R., et al. Sulfur and iron surface states on fractured pyrite surfaces [J]. American Mineralogist,1998,83:1067.
    [98]Xia L., Liu X., Zeng J., et al. Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite [J]. Hydrometallurgy,2008,92:95-101.
    [99]Dopson M., Lindstrom E. B. Analysis of community composition during moderately thermophilic bioleaching of pyrite, arsenical pyrite, and chalcopyrite [J]. Microbial Ecology,2004,48(1):19-28.
    [100]陈勃伟.生物浸矿过程中微生物多样性及动态变化规律研究[D].北京有色金属研究总院,2008.
    [101]Weisburg W. G., Barns S. M., Pelletier D. A., et al.16S ribosomal DNA amplification for phylogenetic study [J]. Journal of Bacteriology,1991,173(2): 697-703.
    [102]Thompson J. D., Gibson T. J., Plewniak F. The ClustalX windows inferface:flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research,1997,24:4876-4882.
    [103]陈勃伟,温建康,刘文彦.浸矿微生物鉴定研究进展[J].中国矿业,2007,16(9):103-106.
    [104]Kimura M. A. A simple method for estimating evolutionary rates base substitutions through comparative studies of nucleotide sequences [J]. Journal of Molecular Evolution,1980,16:111-120.
    [105]Saitou N., Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees [J]. Molecular Biology and Evolution,1987,4(4):406-425.
    [106]Tamura K., Dudley J., Nei M., et al. MEGA4:molecular evolutionary genetics analysis (MEGA) software version 4.0 [J]. Molecular Biology and Evolution,2007, (24):1596-1599.
    [107]Brock T. D., Brock K. M., Belly R.T., et al. Sulfolobus:a new genus of sulfur-oxidizing bacteria living at low pH and high temperature [J]. Arch. Mikrobiol, 1972,84:54-68.
    [108]和致中,彭谦,陈俊英.高温菌生物学[M].北京:科学出版社,2001:190-192.
    [109]Plumb J. J., Gibbs B., Stott M. B., et al. Enrichment and characterization of thermophilic acidophiles for the bioleaching of mineral sulfides [J]. Miner Eng.,2002, 15:787-794.
    [110]Huber G., Spinnler C, Gambacorta A., et al. Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria [J]. Systematic and Applied Microbiology,1989,12:38-47.
    [111]Peeples T. L., Kelly R. M. Bioenergetics of the metal/sulfur-oxidizing extreme thermoacidophile, Metallosphaera sedula [J]. Fuel,1993,72(12):1619-1624.
    [112]Han C. J., Kelly R. M. Biooxidation capacity of the extremely thermoacidophilic archaeon Metallosphaera sedula under bioenergetic challenge [J]. Biotechnology and Bioengineering,1998,58(6):617-623.
    [113]Han C. J., Park S. H., Kelly R. M. Acquired Thermotolerance and Stressed-Phase Growth of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Continuous Culture [J]. Applied and Environmental Microbiology,1997,63(6): 2391-2396.
    [114]Jordan M. A., Barr D. W., Phillips C. V. Iron and sulphur speciation and cell surface hydrophobicity during bacterial oxidation of a complex copper concentrate [J]. Minerals Engineering,1993,6(8-10):1001-1011.
    [115]Norris P. R., Owen J. P. Strain selection for high temperature oxidation of mineral sulfides in reactors [M]. Washington DC:American Chemical Society,1992: 445-448.
    [116]Norris P. R., Owen J. P. Mineral sulfide oxidation by enrichment cultures of novel thermoacidophilic bacteria [J]. FEMS Microbiol Rev,1993, Ⅱ:51-56.
    [117]Liu L. J., You X. Y., Zheng H., et al. Complete genome sequence of Metallosphaera cuprina, a metal sulfide-oxidizing archaeon from a hot spring [J]. Journal of Bacteriology,2011,193(13):3387-3388.
    [118]Dutrizac J. E., MacDonald R. J. C., et al. The kinetics of dissolution of synthetic chalcopyrite in aqueous acidic ferric sulfate solutions [J]. Trans. Metall. Soc.,1969, 245:955-959.
    [119]Cordoba E. M., Munoz J. A., Blazquez M. L., et al. Leaching of chalcopyrite with ferric ion. Part Ⅱ Effect of redox potential [J]. Hydrometallurgy,2008,93:88-96.
    [120]Cordoba E. M. Nuevas evidencias sobre los mecanismos de lixiviacion quimicay biologica de la calcopirita [D]. Universidad Complutense de Madrid,2005.
    [121]杨显万,沈庆峰,等.微生物湿法冶金[M].北京:北京冶金工业出版社,2003:111-119.
    122] Barrett J., Hughes M. N., Karavaiko G. L., et al. Metal Extraction by Bacterial Oxidation of Minerals [M].New York. London. Toronto. Sydney. Tokyo. Singapore: Ellis Horwood,1993:115-116.
    [123]张雁生.细菌浸出黄铜矿过程中矿物表面化学变化的研究[D].中南大学,2011.
    [124]林俊,张桂林,梁长利,等.黄铜矿生物浸取过程中钝化层的穆斯堡尔谱学研究[A].第十一届全国穆斯堡尔谱学会议论文集[C].北京:中国核物理学会,2011:22-23.
    [125]Ono K., Ito A., Fujita T. The Mossbauer Study of the Ferrous Ion in FeCl2 [J]. J. Phys. Soc. Jpn.,1964,19:2119-2126.
    [126]Nesbitt H. W., Muir I. J. Oxidation states and speciation of secondary products on pyrite and arsenopyrite reacted with mine waste waters and air [J]. Mineralogy and Petrology,1998,62:123-144.
    [127]Nesbitt H. W., Scaini M., Hochst H., et al. Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states [J]. American Mineralogist,2000,85:850-857.
    [128]Nesbitt H. W., Muir I. J. X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air [J]. Geochimica et Cosmochimica Acta, 1994,58:4667-4679.
    [129]Mclntyre N. S., Zetaruk D. G. X-ray photoelectron spectroscopic studies of iron oxides [J]. Analytical Chemistry,1977,49:1521-1529.
    [130]Harmer S. L. Surface layer control for improved copper recovery for chalcopyrite leaching [D]. University of South Australia,2002.
    [131]Smart R. S. C. Surface layers in base metal sulphide flotation [J]. Minerals Engineering,1991,4:891-909.
    [132]Mikhlin Y. L., Tomashevich Y. V., Asanov I. P., et al. Spectroscopic and electrochemical characterization of the surface layers of chalcopyrite (CuFeS2) reacted in acidic solutions [J]. Applied Surface Science,2004,225:395-409.
    [133]Mills P., Sullivan J. A study of the core level electrons in iron and its three oxides by means of X-ray photoelectron spectroscopy [J]. Journal of Physics D:Applied Physics,1983,16:723-732.
    [134]Hufner S. Photoelectron spectroscopy:principles and applications [M]. Berlin: Springer Verlag,2003:190-220.
    [135]Nakai I., Sugitani Y., Nagashima K., et al. X-ray photoelectron spectroscopic study of copper minerals [J]. Journal of Inorganic and Nuclear Chemistry,1978,40:789-791.
    [136]Nicol M. J. Mechanism of aqueous reduction of chalcopyrite by copper, iron, and lead [J]. Trans Min Metall,1975,12:206-210.
    [137]Sui C. C., Brienne S. H. R., Ramachandra R. S., et al. Metal ion production and transfer between sulphide minerals [J]. Minerals Engineering,1995,8:1523-1539.
    [138]Urbano G., Melendez A. M., Reyes V. E., et al. Galvanic interactions between galena-sphalerite and their reactivity [J]. International Journal of Mineral Processing, 2007,82:148-155.
    [139]Petersen J., Dixon D. G. Competitive bioleaching of pyrite and chalcopyrite [J]. Hydrometallurgy,2006,83(1-4):40-49.
    [140]Natarajan K. A. Electrochemical aspects of bioleaching multisulfideminerals [J]. Miner Metall Process,1988,5(2):61-68.
    [141]李宏煦,邱冠周,胡岳华,等.原电池效应对混合硫化矿细菌浸出的影响[J].中国有色金属学报,2003,13(5):1283-1287.
    [142]Dutrizac J. E., MacDonald R. A. J. The effect of some impurities on the rate of chalcopyrite dissolution [J]. Canadian Metallurgical Quarterly,1973,12:409-420.
    [143]Nazari G., Dixon D. G., Dreisinger D. B. Enhancing the kinetics of chalcopyrite leaching in the Galvanox(TM) process [J]. Hydrometallurgy,2011,105:251-258.
    [144]张冬艳,张通.细菌浸出黄铜矿过程中黄铁矿的影响行为[J].内蒙古工业大学学报,1997,16(1):16-21.
    [145]张杰,吴爱祥.排土场黄铁矿促进黄铜矿浸出研究[J].金属矿山,2008(3):38-41.
    [146]Dxion D. G., Mayne D. D., Baxter K. G. Galvanox?:a novel galvanically assisted atmospheric leaching technology for copper concentrates [J]. Can Metall Q,2008, 47(3):327-336.
    [147]莫晓兰,林海,傅开彬,等.黄铁矿促进黄铜矿微生物浸出影响因素[J].北京科技大学学报,2012,34(7):33-40.
    [148]Rodriguez Y., Ballester A., Blazquez M. L., et al. New information on the chalcopyrite bioleaching mechanism at low and high temperature [J]. Hydrometallurgy,2003,71(1-2):47-56.
    [149]傅开彬.硫化铜矿微生物浸出规律及其机理研究[D].北京科技大学,2011.
    [150]Subrahmanyam T. V., Forssberg K. S. E. Mineral solution-interface chemistry in minerals engineering [J]. Minerals Engineering,1993,6:439-454.
    [151]王利沙.中等嗜热浸矿细菌在黄铁矿表面的吸附规律[D].中南大学,2011.
    [152]贾春云.微生物在硫化物矿物表面的选择性吸附[D].东北大学,2008.
    [153]陈明莲.微生物对黄铜矿表面性质的影响及其吸附机制研究[D].中南大学,2009.
    [154]荣兴民.几种细菌与土壤粘粒矿物相互作用的热力学研究[D].华中农业大学,2008.
    [155]顾帼华,锁军,柳建设,等.黄铁矿微生物浸出体系中的表面热力学和扩展DLVO理论[J].中国有色金属学报,2006,16(8):1462-1467.
    [156]程传煊.表面物理化学[M].北京:科学技术文献出版社,1995:20-109.
    [157]韩玉香,王永福.固体表面能分量的计算方法一接触角法[J].辽宁师范大学学报(自然科学版),1995,18(3):214-218.
    [158]Qiu G. Z., Liu J. S., Hu Y. H. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans [J]. Trans Nonferrous Met Soc China,2000,10(1):23-25.
    [159]Azeredo J., Visser J., Oliveira R. Exopolymers in bacterial adhesion interpretation in terms of DLVO and XDLVO theoties [J]. Colloids Surf,1999,14(2):141-148.
    [160]Hanumantha R. K., Vilinska A. Surface thermodynamics and extended DLVO theory of acidithiobacillus ferrooxidans cells adhesion on pyrite and chalcopyrite [J]. The Open Colloid Science Journal,2009, (2):1-14.
    [161]Sharma P. K., Hanumantha R. K. Adhesion of paenibacillus polymyxaon chalcopyrite and pyrite:surface thermodynamics and extended DLVO theory [J]. Colloids and Surfaces B:Biointerfaces,2003,29(1):21-38.
    [162]Nicol M. J., Lazaro I. The role of non-oxidative processes in the leaching of chalcopyrite [M]. Canada:Canadian Institute of Mining,2003 367-381.
    [163]李宏煦.硫化铜矿的生物冶金[M].北京:北京冶金工业出版社,2007:123-133..
    [164]Arce E. M., Gonzalez I. A comparative study of electrochemical behavior of chalcopyrite, chalcocite and bomite in sulfuric acid solution [J]. International Journal of Mineral Processing,2002,67(1-4):17-28.
    [165]Gomez C., Figueroa M., Munoz J., et al. Electrochemistry of chalcopyrite [J]. Hydrometallurgy,1996,43(1-3):331-344.
    [166]Biegler T., Swift D. A. Anodic electrochemistry of chalcopyrite [J]. Journal of Applied Electrochemistry,1979,9:545-554.
    [167]Biegler T., Swift D. A. The electrolytic reduction of chalcopyrite in acid solution [J]. Journal of Applied Electrochemistry,1976,6:229-235.
    [168]Nava J. L., Oropeza M. T., Gonzalez I. Electrochemical characterismion of sulphur species formed during anodic dissolution of galena concentrate in perchlorate at pH 0 [J]. Electrochimica Acta,2002,47(10):1513-1525.
    [169]Lopez-Juarez A., Gutierrez-Arenas N., Rivera-Santillan R.E. Electrochemical behaviour of massive chalcopyrite bioleached electrodes in presence of silver at 35℃ [J]. Hydrometallurgy,2006,83(1-4):63-68.
    [170]Li H. X., Qiu G. Z., Hu Y. H., et al. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans [J]. Transactions of Nonferrous Metals Society of China,2006,16(5):1240-1245.
    [171]李啊林.黄铜矿的嘈热菌浸出及过程机理研究[D].北京有色金属研究总院,2012.
    [172]曾伟民.黄铜矿生物浸出过程中钝化膜的形成机制及其消除方法探讨[D].中南大学,2011.
    [173]Velasquez P., Leinen D., Pascual J., et al. XPS, SEM, EDX and EIS study of an electrochemically modified electrode surface of natural chalcocite(Cu2S) [J]. Journal of Electroanalytical Chemistry,2001,510(1-2):20-28.
    [174]梁长利.黄铜矿高温生物浸出机理和硫形态转化研究[D].中南大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700