平行钢丝斜拉索全寿命安全评定方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥是大跨度桥梁的主要桥型,斜拉索是斜拉桥最关键的受力构件之一,起着牵一发动全身的重要作用,但斜拉索易遭受腐蚀损伤和疲劳累积损伤,严重威胁着斜拉桥服役安全。结构健康监测技术是保障大型桥梁服役安全的有效手段之一,基于健康监测的桥梁结构安全评定理论和全寿命设计理论是近年来土木工程领域研究的热点和前沿问题。本文充分利用健康监测系统监测的数据和实际服役的斜拉索,系统研究基于健康监测的桥梁车辆荷载模型、斜拉桥拉索车辆荷载效应模型、腐蚀拉索力学和疲劳性能及平行钢丝拉索全寿命安全评定方法。
     本文的主要研究内容包括:
     首先,根据Hasofer-Lind可靠指标的几何意义,建立可靠指标的优化模型,提出采用计算效率高的粒子群优化算法(PSO)对可靠指标优化模型进行求解,研究优化过程中随机变量候选解的统计特性,提出基于可靠度指标的随机变量敏感性分析的“相对收敛率法”,并采用优化策略组保证相对收敛率的一致性。与传统随机变量敏感性分析方法计算结果比较表明,本文方法能求解更复杂的优化问题。
     其次,结合山东滨州黄河公路大桥健康监测系统实测车辆荷载数据,根据轻型车辆与重型车辆不同的出现概率、不同的分布参数,建立一般高速公路桥梁车辆荷载的概率分布分析模型;根据车辆荷载的概率分布研究一般运行状态下车辆荷载的极值分布及其参数;基于线性累积损伤理论建立高速公路桥梁疲劳荷载谱,根据高速公路服务交通量、服务水平和通行能力,采用Logistic模型建立交通流量预测模型,并采用健康监测数据对Logistic模型、进而对桥梁疲劳荷载谱车流量进行更新。形成系统的基于健康监测技术的高速公路桥梁车辆荷载建模方法和车辆荷载模型,为桥梁结构的设计及服役期内安全评定奠定基础。
     第三,利用国内某斜拉桥健康监测系统中智能拉索实测的拉索荷载效应数据,建立斜拉索荷载效应的概率分布和极值分布及其参数,提出基于Bayes理论的荷载效应概率分布更新方法;建立智能拉索等效疲劳荷载效应分析方法,分析智能拉索疲劳累积损伤发展规律;分析长索和短索荷载效应及其极值、以及疲劳累积损伤的特点。
     第四,对国内某斜拉桥换下服役18年的腐蚀斜拉索的腐蚀程度、力学性能、疲劳性能进行系统的试验研究。研究斜拉索钢丝的均匀腐蚀程度和点蚀程度及其概率分布;研究腐蚀对钢丝弹性模量、屈服强度、极限强度、极限应变、延伸率、反复弯曲性能的影响,建立腐蚀钢丝应力-应变本构关系模型及其模型特征点的概率分布模型,研究腐蚀拉索的荷载-应变本构关系;研究腐蚀钢丝及拉索的疲劳寿命,揭示腐蚀对钢丝和拉索疲劳寿命的影响。
     第五,利用各种钢丝强度试验数据和智能拉索现场监测数据,采用纤维束强度模型,研究平行钢丝斜拉索安全评定方法。研究新的、未腐蚀和腐蚀三种钢丝和拉索的强度概率分布参数及拉索承载力可靠度,分析拉索长度和钢丝数量对拉索强度的影响规律,揭示腐蚀导致钢丝截面减小和相关长度减小从而降低拉索强度的机理,采用PSO方法进行基于拉索可靠度的参数敏感性分析。利用试验数据,统计分析腐蚀钢丝疲劳寿命概率分布参数和中值S-N曲线及不同保证率下的腐蚀钢丝P-S-N曲线;建立基于累积损伤理论的拉索疲劳寿命分析方法,研究长度效应、拉索S-N曲线参数、拉索内钢丝数、钢丝疲劳寿命变异性及钢丝应力不均匀性对拉索疲劳寿命的影响;统计分析不同断丝率腐蚀拉索中值S-N曲线,建议拉索终止寿命的断丝率标准;建立基于疲劳极限状态的拉索可靠度计算方法,研究新索和腐蚀拉索疲劳可靠度指标随服役时间的衰减规律,揭示腐蚀是拉索疲劳极限状态的控制因素,腐蚀后拉索的安全由疲劳极限状态控制,而腐蚀对拉索承载力极限状态影响较小。
     最后,分别以桥梁结构全寿命成本最小及全寿命收益最大为目标建立桥梁结构全寿命经济性分析模型;根据斜拉索服役期间检测和维护成本所占总成本比例较小的特点,以承载力和疲劳极限状态为约束条件,以拉索在全寿命周期内总成本最小,建立斜拉索全寿命优化设计方法;采用事件树模型对一般桥梁结构全寿命成本进行分析,研究抗力衰减规律、折现率、检测精度、失效费用、初始造价对桥梁结构全寿命周期可靠指标及总成本的影响规律。
Cable-stayed Bridge is the main bridge style for long-span bridge and stay cable is one of the most important components of the Cable-Stayed Bridge. However, stay cables are often suffered corrosion and fatigue damage and these factors threat the bridge safety in serve life. The structural health monitoring (SHM) system is becoming one of the most effective techniques for ensuring the health and safety of long-span bridge and structural safety assessment theory, as well as life-cycle design based on SHM are hot issues of civil engineering field in recent years. This dissertation focuses on systematically researching of traffic load modeling, traffic load effects modeling of stay cable, mechanical and fatigue properties of corroded cables and stay cable safety assessment methods of Cable-Stayed Bridge based on SHM by fully utilizing SHM data and actual stay cables.
     The main research contents of this dissertation are described as follow:
     Firstly, based on the geometric meaning of Hasofer-Lind reliability index which defined as the minimum distance from the origin to the limit-state surface in the standard normal space, the optimization model of reliability index is established and particles swarm optimization (PSO) is proposed to solve the optimization problem. Moreover, a structural reliability-based sensitivity analysis method namely relative convergence rate of random variables using PSO is proposed. In consideration of the fluctuation of convergence rate of a variable during the optimum process, an optimized strategy is proposed. The optimized group consists of the particles with the best fitness values. Finally, some numerical examples are studied entirely and illustrate the advantage and feasibility of the proposed method.
     Secondly, based on the vehicle load characteristic of highway bridge and field measured SHM data of Shandong Binzhou Yellow River Highway Bridge, the probabilistic distribution model of highway bridge gross vehicle load is established, and the different occurrence probabilities and different distribution parameters of light cars and heavy trucks are considered in the model. Based on the probabilistic distribution model of gross vehicle load and filtered compound Poisson Process of vehicle load under the loose traffic status, the extreme value distribution model of gross vehicle load is established. The fatigue load spectrum of highway bridge is also statistically studied in this dissertation. In addition, the Logistic Model is employed to predict the long-term traffic volume and the parameters of the Logistic Model are updated using the monitored traffic volume. The combination of the fatigue load spectrum and the traffic volume forecast using the updated Logistic Model provides a load model for estimation of fatigue damage evolution of bridges. Traffic load modeling of highway bridge is systematically studied and it is the foundation for bridge design and safety assessment in serve life.
     Thirdly, Fibre Reinforced Polymer Optical Fibre Bragg Grating (FRP-OFBG) cable a kind of fibre Bragg grating optical sensing technology-based smart cable is introduced. In addition, the application of the smart cables on a certain domestic bridge is demonstrated. The probability distribution and extreme value distribution of cable live load effects are established by using the field SHM data, and the Bayesian theory is proposed to update the live load effects based on SHM data. The equivalent fatigue stress range of cable is established. Furthermore, the characteristics of live load effects, extreme value of load effects and the fatigue cumulative damage for short cables and long cables are analyzed.
     Fourthly, the corrosion degree, mechanics and fatigue properties of corroded cables which are gotten from the dissection of actual stay cables and have been in used for 18 years are completely investigated by experiments. The corrosion degree and probability distribution of uniform corrosion and pitting corrosion are investigated. The effects of corrosion on elastic modulus, yield strength, ultimate strength, ultimate strain, elongation, reverse bend number and remaining fatigue life of wires are discussed. The constitutive relations of load and displacement are simulated by Monte Carlo simulation for corroded and uncorroded cables. The fatigue lives of corroded wires and cables are investigated by experiments and the effects of corrosion on fatigue properties of wire and cable are revealed. Fifthly, based on the wires strength experimental data and strength model of fiber bundle, the safety assessment methods of cable are investigated and the effects of corrosion, cable length and Daniels effects on cable strength are discussed. The mechanisms of cable strength reduction caused by corrosions are revealed.
     Sensitivity analysis of cable strength capacity is performed by using PSO relative convergence rate. Considering the probability distribution of wire fatigue life and linear fatigue cumulative damage theory, the cable fatigue life calculating model is established and effects of cable length, parameter of cable S-N curve, number of wires, variability of wire fatigue life and non-uniform stress of wires on cable fatigue life are discussed by Monte Carlo simulation. The effects of percent of wires broken in cable on cable fatigue life are studied. Based on results of corroded wire fatigue test and cable fatigue life calculating model, the cable S-N curves with different percent of wires broken are simulated, and compared with the results of cable fatigue test in order to illustrate the feasibility of the proposed cable fatigue life calculating model. As the foundation of cable safety assessment and life-cycle design, reliability assessment method of cable fatigue is established. The fatigue reliability decaying pattern of new cables and corroded cables with serve life are investigated. It can be seen that the corrosion is the controlled factor for cable fatigue limit-state and corrosion gives less effects on cable strength limit-state.
     Finally, as the targets of minimization of the expected life-cycle costs and maximization of expected life-cycle benefits, the economic model of bridge life-cycle design are developed. In view of the characteristics of the inspection costs and maintenance costs of cable are small, the inspection costs and maintenance costs of cable are ignored. The cable life-cycle design method is developed to satisfy the limit-state functions of cable strength and cable fatigue life, and considered the cable fatigue reliability index deterioration model in serve life. In order to minimize the life-cycle costs of cable, the optimal section area of cable is determined which provided a theoretical basis for cable design and replacement. Furthermore, the life-cycle design method for general bridge structure is established by using event tree model. The effects of resistance deterioration, discount rate, inspection accuracy, failure lost and initial cost on bridge life-cycle costs and reliability index are discussed by event tree model.
引文
1.欧进萍.重大工程结构的累积损伤与安全评定.走向21世纪的中国力学-中国科协第9次青年科学家论坛报告文集.北京:清华大学出版社. 1996: 179~189
    2. J.P. OU. Some Recent Advances of Intelligent Health Monitoring Systems for Civil Infrastructures in Mainland China. Proc. of the First Intenational Conference on Structural Health Monitoring and International Infrastructural. Tokyo, Japan, 2003: 131~144
    3.范立础.桥梁工程安全性与耐久性——展望设计理念进展.上海公路. 2004, 91(1): 1~7
    4.范立础,陈肇元,董石麟.大型建筑工程风险评价与保险研究.中国工程院咨询项目申请书. 2003
    5.李亚东.既有桥梁评估初探.桥梁建设. 1997, 27(3): 18~21
    6.王有志,王广洋,任峰,王广月.桥梁的可靠性评估与加固.北京:中国水利水电出版社. 2002
    7.王文涛.斜拉桥换索工程.北京:人民交通出版社. 1997
    8.李惠.欧进萍.斜拉桥结构健康监测系统的设计与实现(I):系统设计.土木工程学报. 2006, 39(4): 39~44
    9.周孟波.斜拉桥手册.北京:人民交通出版社. 2004
    10.林元培.斜拉桥.北京:人民交通出版社. 1994
    11.严国敏.现代斜拉桥.成都:西南交通大学出版社. 1996
    12.陈明宪.斜拉桥建造技术.北京:人民交通出版社. 2004
    13. S.C. Barton, G.W. Vermaas, P.F. Duby, A.C. West, R. Betti. Accelerated Corrosion and Embrittlement of High-Strength Bridge Wire. Journal of Materials in Civil Engineering. ASCE, 2000, 12(1): 33~38
    14.曾荣昌.桥梁的腐蚀与防护.材料保护. 2000, 33(10): 38~40
    15. K. Suzumura, S. Nakamura. Environmental Factors Affecting Corrosion of Galvanized Steel Wires. Journal of Materials in Civil Engineering. ASCE, 2004, 16(1): 1~7
    16.黄跃平,胥明,姜益军,顾成军,段永胜,朱绍庄.拉索局部腐蚀检测与评估分析.腐蚀科学与防护技术. 2006, 18(2): 132~135
    17.王从曾,主编.材料性能学.北京:北京工业大学出版社. 2001
    18.唐清华,郑史雄.斜拉桥与悬索桥的防腐.四川建筑. 2005, (1): 125~128
    19.何祖发.斜拉桥钢索的腐蚀防护.材料保护. 2002, 35(2): 54~55
    20.张正基,孙金茂,张伟君.斜拉索用PC钢丝钢绞线的种类与防腐分析.金属制品. 2003, 29(2): 1~5
    21.叶觉明,钟建驰.大桥斜拉索腐蚀防护技术的应用和探讨.腐蚀与防护. 2003, 24(5): 221~223
    22.刘元泉,陈惟珍,徐俊,唐涛,杜宪亭.拉索劣化性能研究.公路. 2004, (9): 28~32
    23.叶觉明,钟建驰.桥梁缆索系统的腐蚀与防护.钢结构. 2005, 20(2): 85~89
    24.苏达根,韩大建,谭哲东,廖景娱,唐红雁,陈志雄.斜拉桥拉索钢丝腐蚀失效研究.华南理工大学学报. 1996, 24(8): 108~112
    25.廖景娱,苏达根.斜拉桥钢索坠落事故原因分析.腐蚀与防护. 1999, 20(2): 83~85
    26.易圣涛.斜拉桥拉索防护的现状.重庆交通学院学报. 2000, 19(2): 11~14+26
    27.王力力,易伟建.斜拉索的腐蚀案例与分析.中南公路工程. 2007, 32(1): 93~98
    28. W. Weibull. A Statistical theory of the Strength of Materials. Ing. Vetenskaps Akad. Handl (Royal Swedish Institute Engineering Research Proceedings). 1939, 151: 5~45
    29. W. Weibull. The Phenomenon of Rupture in Solids. Ing. Vetenskaps Akad. Handl. 1939, 153: 17
    30. H.E. Daniels. The Statistical Theory of the Strength of Bundles of Threads, Part I. Preceedings of the Royal Society of London, Series A. 1945, 183: 405~435
    31. H.E. Daniels. The Maximum Size of a Closed Epidemic. Advances in Applied Probability. 1974, 6: 607~621
    32. V.V. Bolotin. Initial Flaws distribution and Size Effect of Fatigue Fracture. Length Effect on Fatigue of Wires and Strands. IABSE Workshop, El Paular, Madrid, Spain, 1992: 75~88
    33. M.H. Faber, S. Engelund, and R. Rackwitz. Aspects of Parallel Wire Cable Reliability. Structural Safety. 2003, 25: 201~225
    34. B.D. Coleman. Statistics and Time Dependence of Mechanical Breakdown in Fibers. Journal of Applied Physics. 1958, 29(6): 968~983
    35. S.L. Phoenix. Stochastic Strength and Fatigue of Fiber Bundles. International Journal of Fracture. 1978, 14(3): 327~344
    36. J.M. Stallings, K.H. Frank. Cycle Fatigue Life of Cables. Engineering Fracture Mechanics. 1991, 38(4/5): 341~347
    37. J.M. Stallings, K.H. Frank. Stay-Cable Fatigue Behavior. Journal of Structural Engineering. ASCE, 1991, 117(3): 938~950
    38. A. Cunha, E. Caetano. Dynamic Measurements on Stay Cables of Cable-Stayed Bridges Using an Interferometry Laser System. Experimental Techniques. 1999, 23(3): 38~43
    39. J.R. Barton, C.M. Teller, and S.A. Suhler. Design, Develop, and Fabricate a Prototype Nondestructive Inspection and Monitoring System for Structural Cables and Strands of Suspension Bridges. Report FHWA-RD-89-158, Federal Highway Administration. Washington, D.C., 1989
    40. H.R. Weischedel. H.-W. Hohle. Quantitative Nondestructive In-Service Evaluation of Stay Cables of Cable Stayed Bridges: Methods and Practical Experience. Proceeding of SPIE for Nondestructive Evaluation of Aging Bridges and Highways. 1995, 2546: 226~236
    41. M. Kitagawa, S. Suzuki, and M. Okuda. Assessment of Cable Maintenance Technologies for Honshu-Shikoku Bridges. Journal of Bridge Engineering. ASCE, 2001, 6(6): 418~424
    42. N.M. Telang, C.A. Ligozio, and A.B. Mehrabi. Luling Bridge ? Phase II Structural Evaluation of Luling Bridge Stay Cable Array ? Tasks 1, 2, and 3. Report to the Louisiana Department of Transportation and Development, State Project No. 700-45-0107, Construction Technology Laboratiories, Skokie, III., July 2004
    43. D.W. Akers, C.A. Rideout. Innovative Nondestructive Inspection Technology for Quantifying Deterioration in Bridge Structures and Cables Using Induced Positron Annihilation Technologies. Proceeding of Structural Materials Technology (SMT): NDE/NDT for Highways and Bridges. Buffalo, N.Y., September 2004
    44. N. Suzuki, H. Takamatsu, S. Kawashima, K. Sugii, M. Iwasaki. Ultrasonic Detection Method for Wire Breakage. Kobelco Technology Review. 1988, (4): 23~26
    45. C.A. Prato, M.A. Ceballos, P.J.F. Huerta, C.F. Gerbaudo, C.E. Grunbaum, andD.L. Hommel. Diagnosis, Construction Procedures, and Design Recommendations for Replacement of Cables in Cable-Stayed Bridges: Experience from Two Current Cases in Argentina. Proceedings of the US-Canada Workshop of Bridge Engineering. July 1997: 303~316
    46. A.T. Ciolko, W.P. Yen. An Immediate Payoff from FHWA’s NDE Initiative. Public Roads. 1999, 62(6): 10~17
    47. NCHRP SYNTHESIS 353. Inspection and Maintenance of Bridge Stay Cable Systems– A Synthesis of Highway Practice. Transportation Research Board. Washington, D.C., 2005
    48. N.F. Casey, J.T. Taylor. The Evaluation of Wire Ropes by Acoustic Emission Techniques. British Journal of NDT. 1985, 27(6): 351~356
    49.欧进萍,周智.纤维增强塑料-光纤光栅复合筋.中国专利: CN1484456A, 2004
    50. ISO2394: General Principles on Reliability for Structures. 1998
    51.贡金鑫,仲伟秋,赵国藩.结构工程可靠性基本理论的发展与应用(1).建筑结构学报. 2002, 23(4): 2~9
    52.赵国藩.工程结构可靠性理论与应用.大连:大连理工大学出版社. 1996
    53.赵国藩,金伟良,贡金鑫.结构可靠度理论.北京:中国建筑工业出版社. 2000
    54. A.M. Freudenthal. The Safety of Structrues. Transaction. ASCE, 1947, 112: 125~128
    55. A.M. Hasofer, N.C. Lind. Exact and Invariant Second-moment Format. Journal of Engineering Mechanics Division. ASCE, 1974, 100(1): 111~121
    56. K. Breitung. Asymptotic Approximations for Multinormal Integrals. Journal of Engineering Mechanics. ASCE, 1984, 110(3): 357~366
    57. M. Shinozuka. Basic Analysis of Structural Safety. Journal of Structural Engineering. ASCE, 1983, 109(3): 721~739
    58. R.E. Melchers. Importance Sampling in Structural Systems. Structural Safety. 1989, 6: 3~10
    59. Y. Ibrahim. Observations on Applications of Importance Sampling in Structural Reliability Analysis. Structural Safety. 1991, 9: 269~281
    60.金伟良.结构可靠度数值模拟的新方法.建筑结构学报. 1996, 17(3): 63~72
    61. A. Olsson, G. Sandberg, O. Dahlblom. On Latin Hypercube Sampling for Structural Reliability Analysis. Structural Safety. 2003, 47~68
    62. M. Beer. Model-Free Sampling. Structural Safety. 2007, 29: 49~65
    63. C.G. Bucher. Adaptive Sampling― An Iterative Fast Monte Carlo Procedure. Structural Safety. 1988, 5: 119~126
    64. T.J. Sweeting, A.F. Finn. A Monte Carlo Method Based on First- and Second-Order Reliability Approximations. Structural Safety. 1992, 11: 203~212
    65. S. Engeleund, R. Rackwitz. A Benchmark Study on Importance Sampling Techniques in Structural Reliability. Structural Safety. 1993, 12(4): 255~276
    66. S.K. Au, J.L. Beck. First Excursion Probabilities for Linear Systems by Very Efficient Importance Sampling. Probabilistic Engineering Mechanics. 2001, 16: 193~207
    67. Y. Ben-Haim. A Non-Probabilistic Concept of Reliability. Structural Safety. 1994, 14(4): 227~245
    68. Y. Ben-Haim. A Non-Probabilistic Measure of Reliability of Linear Systems Based on Expansion of Convex Models. Structural Safety. 1995, 17(2): 91~109
    69. Y. Ben-Haim. Robust Reliability in The Mechanical Sciences. Berlin: Springer-Verlag, 1996
    70.郭书祥,吕震宙.结构非概率可靠性方法和概率可靠性方法的比较.应用力学学报. 2003, 20(3): 107~110
    71.刘宁.可靠度随机有限元法及其工程应用.北京:中国水利水电出版社. 2001
    72.刘宁,吕泰仁.三维结构可靠度对随机变量的敏感性研究.工程力学. 1995, 12(2): 119~128
    73. G.I. Schueller. A State-of-the-art Report on Computational Stochastic Mechaniscs. Probabilistic Engineering Mechanics. 1997, 12(4): 197~321
    74. H.O. Madsen, S. Krenk, and N.C. Lind. Methods of Structural Safety. New York: Springer Verlag, 1986: 70~90
    75. M. Hohenbichler, R. Rackwitz. Sensitivities and Importance Measures Instructural Reliability. Civil Engineering System. 1986, 3(4): 203~209
    76. N. Liu. Sensitivity Analysis of 3-D Elasto-Plastic Structural Reliability. Acta Mechanica Solida Sinica. 1996, 9(4): 296~305
    77.欧进萍,段忠东,肖仪清.海洋平台结构安全评定:理论、方法与应用.北京:科学出版社. 2003
    78. P. Maydl. Towards“Sustainable”Engineers. Preface of Sustainable Engineering. Structural Engineering Interational. 2004, 14(3): 175
    79.项海帆,陈艾荣,葛耀君.中国大桥.北京:人民交通出版社. 2003
    80.葛耀君,李惠,沈锐利,李建中,朱尔玉.大型桥梁全寿命结构设计理论与方法.《建筑、环境与土木工程II(土木工程卷)》,北京:科学出版社, 2006
    81. International Association for Bridge and Structual Engineering. IABSE Declaration for Sustainable Development. Structural Engineering Interational. 2004, 14(3): 229
    82. International Association for Bridge and Structual Engineering. Ethical Principles for the Practice of Structual Engineering. www.iabse.org, 2002
    83. International Association for Bridge and Structual Engineering. Structural Engineering Interational. 2004, 14(3): 175~247
    84. P. Maydl. Sustainable Engineering: State-of-the-Art and Prospects. Structural Engineering Interational. 2004, 14(3): 176~180
    85. K. Ozbay, N.A. Parker, D. Jawad, and S. Hussain. Guidelines for Life Cycle Cost Analysis: Final Report. U.S. Department of Transportation Faderal Highway Administration, FHWA-NJ-2003-012, 2003
    86. M.A. Ehlen. BridgeLCC 2.0 Users Manual: Life-Cycle Costing Software for the Preliminary Design of Bridges. U.S. Department of Commerce Technology Administration, National Institute of Standards and Technology, NIST GCR 03-853. 2003
    87. H. Bonstedt. Life Cycle Cost Analysis for Bridges: In Search of Better Investment and Engineering Decisions. http://www.pcap.org/presentations, 2003
    88. E.Gabler. Transportation Asset Management: The Role of Engineering Economic Analysis. Faderal Highway Administration. 2003
    89. M. Hastak, A. Mirniran, and R. Deepak. A Framework for Life-Cycle Cost Assessment of Composites: in Construction. Journal of Reinforced Plastics and Composites. 2003, 22(15): 1409~1422
    90. R.F. Chandler. Life-Cycle Cost Model for Evaluating the Sustainability of Bridge Decks: A Comparison of Conventional Concrete Joints and Engineered Cementitious Composite Link Slabs. University of Michigan, Report No. CSS04-06, 2004
    91. P.D. Thompson, E.P. Small, M. Johnson, and A.R. Marshall. The Points Bridge Management System. Structural Engineering Interational. 1998, 8(4): 303~308
    92. H. Hawk, E.P. Small. The BRIDGIT Bridge Management System. Structural Engineering Interational. 1998, 8(4): 309~314
    93. D.M. Frangopol, J.S.Kong, and E.S. Gharaibeh. Reliability-Based Life-Cycle Management of Highway Bridges. Journal of Computing in Civil Engineering. ASCE, 2001, 15(1): 27~34
    94. H. Li, W.S. Zhou, and J.P. Ou. System Integration Technique of Health Monitoring Systems for Binzhou HuangHe River Highway Bridge. Proceedings of the 3rd International Symposium on Instrumentation Science and Technology, Xi’an China, 2004, 1218~1226
    95.周文松,李惠,欧进萍,杨永顺.大型桥梁健康监测系统的数据采集子系统设计方法.公路交通科技. 2006, 23(3): 83~87
    96.李惠,周文松,欧进萍,杨永顺.大型桥梁结构智能健康监测系统集成技术研究.土木工程学报. 2006, 39(2): 46~52
    97.李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(II):系统实现.土木工程学报. 2006, 39(4): 45~53
    98. M.A. Hassanain, R.E. Loov. Cost Optimization of Concrete Bridge Infrastructure. Canadian Journal of Civil Engineering. 2003, 30(5): 841~849
    99. D.M. Frangopol, K.Y. Lin, and A.C. Estes. Life-Cycle Cost Design of Deteriorating Structures. Journal of Structural Engineering. ASCE, 1997,123(10): 1390~1401
    100. J.S. Kong, D.M. Frangopol. Cost-Reliability Interaction in Life-Cycle Cost Optimizaiton of Deteriorating Structures. Journal of Structural Engineering. ASCE, 2004, 130(11): 1704~1712
    101. L.C. Neves, D.M. Frangopol. Condition, Safety and Cost Profiles for Deteriorating Structures with Emphasis on Bridges. Reliability Engineering and System Safety. 2005, 89: 185~198
    102. D.M. Frangopol, E.S. Gharaibeh, J.S. Kong, M. Miyake. Optimal Network-Level Bridge Maintenance Planning Based on Minimum Expected Cost. Journal of Transportation Research Board. 2000, 2: 26~33
    103.中华人民共和国国家标准.工程结构可靠度设计统一标准(GB50153-92).北京:中国计划出版社. 1992
    104. M. Rosenblatt. Remarks on a Multivariate Transformation. Annals of Math Statistics. 1952, 23(3): 470~472
    105. J. Kennedy, R.C. Eberhart. Particle Swarm Optimization. Proceeding of the1995 IEEE International Conference on Neural Network. Perth, Australia, 1995: 1942~1948
    106. J. Kennedy, R.C. Eberhart. A New Optimization Using Particle Swarm. Proceeding of Sixth International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995: 39~43
    107. K.E. Parsopoulos, M.N. Vrahatis. Recent Approaches to Global Optimization Problems through Particle Swarm Optimization. Natural Computing. 2002, 1(2): 235~306
    108. B. Al-kazemi, C.K. Mohan. Training Feed Forward Neural Networks Using Multi-phase Particle Swarm Optimization. Proceeding of the 9th International Conference on Neural Information Processing. Singapore, 2002: 2616~2619
    109. H. Yoshida, K. Kawata, and Y. Fukuyama. A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment. IEEE Trans. On power Systems. 2000, 15(4): 1232~1239
    110. R.C. Eberhart, Y. Shi. Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary Computing. IEEE Service Center, 2000: 84~88
    111. Charles Elegbede. Structural Reliability Assessment based on Particles Swarm Optimization. Structural Safety. 2005, 27: 171-186
    112. K.E. Parsopoulos, M.N. Vrahatis. Particle Swarm Optimization Method for Constrained Optimization Problems. Proceeding of the Euro-International Symposium on Computational Intelligence 2002. Slovakia. 2002: 2~7
    113. T. Ray, K.M Liew. A Swarm with an Effective Information Sharing Mechanism for Unconstrained and Constrained Single Objective Optimization Problem. Proceedings of IEEE Congress on Evolutionary Computation (CEC 2001). Seoul, Korea. 2001: 75~80
    114. X. Hu, R.C. Eberhart. Solving Constrained Nonlinear Optimization Problems with Particle Swarm Optimization. Proceedings of Sixth World Multiconference on Systemics Cybernetics and Informatics 2002. Orlando, USA. 2002: 203~206
    115. P. Bjerager, S. Krenk. Parametric Sensitivity in First Order Reliability Theory. Journal of Engineering Mechanics. ASCE, 1989, 115(7): 1577~1582
    116.贡金鑫.结构可靠指标求解的一种新的迭代方法.计算结构力学及其应用. 1995, 12(3): 369~373
    117.李典庆,周建方.结构可靠度计算方法述评.河海大学常州分校学报. 2000, 14(1): 34~42
    118.沈惠申,高峰.斜拉桥索塔的可靠性分析.中国公路学报. 1994, 7(4): 40~43
    119. G. Girmscheid. Statische und Dynamische Berechnung von Schr?gseilbrücken. Bautechnik. 1987, 10: 340~347
    120.“公路桥梁车辆荷载研究”课题组.公路桥梁车辆荷载研究.公路. 1997, (3): 8~12
    121. T.J. Miao. Bridge Live Load Models with Special Reference to Hong Kong. Ph.D. Thesis. Hong Kong Polytechnic University. 2001: 101~102
    122. H.C. Tijms. A First Course in Stochatic Models. John Wiley & Sons Ltd, Chichester. 2003
    123.邓永录,梁之舜.随机点过程及其应用.北京:科学出版社. 1992
    124.童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱.土木工程学报. 1997, 30(5): 20~27
    125. British Standards Institution. British Standards BS 5400: Steel, Concrete and Composite Bridge, Part 10. Code of Practice for Fatigue. 1980
    126.盖春英,裴玉龙.公路建设项目可行性研究中的交通量预测方法.交通运输工程学报. 2002, 2(1): 51~54
    127.王炜,邓卫,杨琪.公路网络规划建设与管理方法.北京:科学出版社. 2001
    128.邓年春,欧进萍,周智,龙跃,黄日金.一种新型平行钢丝智能拉索.公路交通科技. 2007, 24(3): 82~85
    129.南开大学数学系统计预报组.概率与统计预报及在地震与气象中的应用.北京:科学出版社. 1978
    130. A.H-S. Ang, W.H. Tang. Probability Concepts in Engineering Planning and Design (II): Decision, Risk, and Reliability. John Wiley & Sons, Inc. 1984
    131.希德尔著.陈立周等译.工程概率设计——原理与应用.北京:科学出版社. 1989
    132. M.P. Enright, D.M. Frangopol. Condition Prediction of Deteriorating Concrete Bridges Using Bayesian Updating. Journal of Structural Engineering. ASCE, 1999, 125(10): 1118~1125
    133. R.X. Zhang, S. Mahadevan. Model Uncertainty and Bayesian Updating in Reliability-Based Inspection. Structural Safety. 2000, 22: 145~160
    134. T. Igusa, S.G. Buonopane, B.R. Ellingwood. Bayesian Analysis of Uncertaintyfor Structual Engineering Applications. Structural Safety. 2002, 24: 165~186
    135.姚继涛.现有结构材料强度的统计推断.西安建筑可以大学学报. 2003, 35(4): 307~311
    136.王剑,刘西拉.基于多层Bayes先验抗力模型的结构信息更新.上海交通大学学报. 2004, 38(6): 937~940
    137.刘西拉,左勇志.基于Bayes方法的结构可靠性评估和预测.上海交通大学学报. 2006, 40(12): 2137~2141
    138.茆诗松.贝叶斯统计.北京:中国统计出版社. 1999
    139.董聪.现代结构系统可靠性理论及其应用.北京:科学出版社, 2001
    140. ASTM E1049-85(Reapproved 1997), Standard Practices for Cycle Counting in Fatigue Analysis, in: Annual Book of ASTM Standards, Vol.03.01, Philadelphia 1999: 710~718
    141. Y.E. Zhou. Assessment of Bridge Remaining Fatigue Life through Field Strain Measurement. Journal of Bridge Engineering. ASCE, 2006, 11(6): 737~744
    142. M.A. Miner. Cumulative Damage in Fatigue. Journal of Applied Mechanics. 1945, 12(3): 159~164
    143. K. Takena, C. Miki, H. Shimokawa, K. Sakamoto. Fatigue Resistance of Large-Diameter Cable for Cable-Stayed Bridges. Journal of Structural Engineering. ASCE, 1992, 118(3): 701~715
    144. K. Tuutti. Corrosion of Steel in Concrete, Swedish Cement and Concrete Research Institute, Fo 4.82. Stockholm, 1982
    145. J.A. Gonzalez, C. Andrade, C. Alonso, and S. Feliu. Comparison of Rates of General Corrosion and Maximum Pitting Penetration on Concrete Embedded Steel Reinforcement. Cement and Concrete Research. 1995,25(2): 257~264
    146.张九渊,卢建树,吴国章,洪明庚.应用统计理论中极值分布对钝态金属小孔腐蚀的研究.浙江工学院学报. 1991, 53(4): 1~7
    147.张九渊,洪明庚,卢建树,蔡鹏.孔蚀统计规律的对比研究.中国腐蚀与防护学报. 1994, 8(1): 161~167
    148. D.E. Hawn. Extreme Value Prediction of Maximum Pits on Pipelines. Mater Performance. 1977, (March): 29~32
    149. A.K. Sheikh, J.K. Boah, and D.A. Hansen. Statistical Modeling of Pitting Corrosion and Pipeline Reliability. Corrosion-NACE, 1990, 46(3): 190~197
    150. M.G. Stewart. Spatial Variability of Pitting Corrosion and Its Influence on Structural Fragility and Reliability of RC Beams in Flexure. Structural Safety.
    2004, 26(4): 453~470
    151. D.V. Val, R.E. Melchers. Reliability of Deteriiorating RC Slab Bridges. Journal of Structural Engineering. ASCE, 1997, 123(12): 1638~1644
    152. Nakamura Shun-Ichi, Suzumura Keita, and Tarui Toshimi. Mechanical Properties and Remaining Strength of Corroded Bridge Wires. Structural Engineering International. 2004, 14(1): 50~54
    153.崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社. 1998
    154.曾攀.材料的概率疲劳损伤特性及现代结构分析原理.北京:科学技术文献出版社. 1993
    155. S. Beretta, S. Matteazzi. Short Crack Propagation in Eutectoid Steel Wires. Interational Journal of Fatigue. 1996, 18(7): 451~456
    156. S. Beretta, M. Boniardi. Fatigue Strength and Surface Quality of Eutectoid Steel Wires. Interational Journal of Fatigue. 1999, 21(4): 329~335
    157. J. Toribio, M. Toledano. Fatigue and Fracture Performance of Cold Drawn Wires for Prestressed Concrete. Construction and Building Materials. 2000, 14(1): 47~53
    158.李丹,丁一峥.高强钢丝和钢铰线拉索的分析比较.公路交通技术. 2005, (6): 78~81+85
    159.陈政清.斜拉索风雨振现场观测与振动控制.建筑科学与工程学报. 2005, 22(4): 5~10
    160.邰扣霞,丁大钧.中国桥梁建设新飞跃.建筑科学与工程学报. 2006, 23(2): 30~40
    161. S. Gollwitzer, R. Rackwitz. On the Reliability of Daniels Systems. Structural Safety. 1990, 7: 229~243
    162. R. Rackwitz, M.H. Faber. Reliabiity of Parallel Wire Cable under Fatigue. Proceedings of the ICASP6 Conference. Mexico, 1991, 1: 166~175
    163. E. Castillo, M. López-Aenlle, A. Ramos, A. Fernández-Canteli, R. Kieselbach, V. Esslinger. Specimen length effect on parameter estimation in modelling fatigue strength by Weibull distribution. International Journal of Fatigue. 2006, 28: 1047~1058
    164.曾超.钢桥构件按疲劳寿命服从威布尔分布的可靠度计算.西南交通大学学报. 1993, 93(5): 20~23
    165.胡文忠,金国梓,王存. Weibull参数的估计方法.内蒙古大学学报(自然科学版). 1988, 19(3): 472~477
    166. A.H.-S. Ang, M.C. Cheung, T.A. Shugar, and J.D. Fernie. Reliability-Based Fatigue Analysis and Design of Floating Structures. Marine Structures. 2001, 14: 25~36
    167. A.H-S. Ang, W.S. Munge. Practical Reliability Basis for Structural Fatigue. Preprint 2494 for ASCE National Structural Engineering Conference. New Oricans, La., 1975
    168.程育仁,缪龙秀,侯炳麟.疲劳强度.北京:中国铁道出版社. 1990
    169.王光远,欧进萍.结构随机振动.北京:高等教育出版社. 1998
    170.范立础.桥梁工程.北京:人民交通出版社, 2005
    171.許鎧麟,林主潔,張國鎮,黃榮堯,彭康瑜.橋梁生命週期工程技術開發中設計流程之探討. http://www.tcri.org.tw, 2003
    172. J.S. Kong, D.M Frangopol. Prediction of Reliability and Cost Profiles of Deteriorating Bridges under Time- and Performance-Controlled Maintenance. Journal of Structural Engineering. ASCE, 2004, 130(12): 1865~1874
    173.邵旭东,彭建新,晏班夫.桥梁全寿命设计方法框架性研究.公路. 2006, (1): 44~49
    174. M.G. Stewart, A.C. Estes, and D.M. Frangopol. Bridge Deck Replacement for Minimum Expected Cost under Multiple Reliability Constraints. Journal of Structural Engineering. ASCE, 2004, 130(9): 1414~1419
    175. M. Liu, D.M. Frangopol. Optimal Bridge Maintenance Planning Based on Probabilistic Performance Prediction. Engineering Structures. 2004, 26: 991~1002
    176. D.M. Frangopol, M. Liu. Mainteance and Management of Civil Infrastructure Based on Condition, Safety, Optimization, and Life-Cycle Cost. Structure and Infrastructure Engineering. 2007, 3(1): 29~41
    177. P. Thoft-Christensen. Reliability Profiles for Concrete Bridge. Structural Reliability in Bridge Engineering. New York: McGraw-Hill. 1996: 239~244
    178. P. Thoft-Christensen. Assessment of Reliability Profiles for Concrete Bridge. Engineering Structures. 1998, 20(11): 1004~1009
    179. A.S. Nowak, C.H. Park, and M.M. Szerszen. Lifetime Reliability Profiles for Steel Girder Bridges. Optimal Performance of Civil Infrastructure System. ASCE, Reston, Va, 1998: 139~154
    180. J.S. Kong, D.M. Frangopol. Life-Cycle Reliability-Based Maintenance Cost Optimization of Deteriorating Structures with Emphasis on Bridges. Journal ofStructural Engineering. ASCE, 2003, 129(6): 818~828
    181. J.S. Kong, D.M. Frangopol. Life-Cycle Performance Prediction of Steel/Concrete Composite Bridges. Interational Journal of Steel Structures. 2002, 2(1): 13~19
    182. A. Petcherdchoo, J.S. Kong, D.M. Frangopol, L.C. Neves. NLCADS(New Life-Cycle Analysis of Deterioraing Structures) ? User’s Manual; A Program to Analyze the Effects of Multiple Actions on Reliability and Condition Profiles of Groups of Deteriorating Structures. Structural Engineering and Structural Mechanics Research Series No. CU/SR-04/3, Department of Civil, Environmental, and Architectural Engineering, University of Colorado, Boulder, 2004
    183. D.M. Frangopol, M.J. Kallen, J.M. Noortwijk. Probabilistic Models for Life-Cycle Performance of Deteriorating Structures: Review and Future Directions. Progress in Structural Engineering and Materials. 2004, 6(4): 197~212
    184. A.C. Estes, D.M. Frangopol. Updating Bridge Reliability Based on Bridge Management Systems Visual Inspection Results. Journal of Bridge Engineering. ASCE, 2003, 8(6): 374~382
    185. Y. Mori, B.R. Ellingwood. Maintaining Reliability of Concrete Structures. II: Optimum Inspection/Repair: Journal of Structural Engineering. ASCE, 1994, 120(3): 846~862

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700