上向分层全尾砂胶结充填法采场结构参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对矿产品需求的不断增加,矿产资源变得越来越少。如何合理、高效、经济、安全地进行矿产资源开发利用,降低资源的损失,减少矿石的贫化,提高矿石的质量,是矿产资源开发者共同关心的问题。充填采矿法以其高回收率、低贫化率的优点,在开采较高价值的难采矿床中取得了突破性进展,出现了无轨机械化胶结充填采矿法,点柱充填采矿法,分段充填采矿法,大孔径阶段空场嗣后尾砂胶结(块石胶结)充填采矿法等。同时,计算机广泛应用于充填体与围岩互相力学作用机理方面的研究,为设计和生产提供依据。本文结合河北某金矿采矿工艺技术改造工程,寻求适合该矿山高品位、高价值的急倾斜薄中厚贵金属矿体的采矿方法。采用理论分析、数值模拟等方法,对采矿方法转变时的采场结构参数进行优化。论文的主要成果有:
     (1)通过分析国内外岩石力学及胶结充填采矿方法方面的研究成果,阐述了地下深部采场顶板冒落的的原理、确定充填体设计强度的方法及充填体的作用机理。
     (2)为降低矿石的损失率和贫化率,根据矿体的赋存状况、开采技术条件,结合矿山现状,通过经济技术比较选取了上向分层全尾砂胶结充填法,并在180m中段采场进行试验,沿走向布置采场连续回采。
     (3)为确定充填体满足生产要求的强度,从采场充填体的力学特性出发,在实验室进行了充填材料配比试验,通过实验分析出了该金矿全尾砂胶结充填体的物理力学性质,总结出影响充填体强度的主要因素,即灰砂比和料浆浓度,灰砂比越大浓度越高,充填体的强度越大。根据该矿的具体情况,选取该金矿自产尾砂作充填骨料,水泥作胶凝剂,灰砂比为1:6的料浆进行充填。
     (4)由于所采用的上向水平分层采矿法没有划分矿房和矿柱,造成顶板的大面积暴露,为确保安全高效的回采矿石,运用FLAC-3D数值模拟软件对不同的采场结构参数进行模拟计算,得出该金矿采用上向分层全尾砂胶结充填时合理的采场结构参数,为矿山以后的生产、设计提供一定的依据。
With the constant increase of the mankind demanding the mineral products, the mineral resource becomes fewer and fewer. How to carry on the development and utilization of mineral products resources rationally, high-efficiently, frugally, safely and reduce losses of resource and dilution of ore and enhance quality of ore is the question of the mineral resources developer caring about. Filling mining technology has made a break through in our mining mineral deposit of high value with high ore recovery and low dilution and appeared no-trolley mechanized to filling method of stabilized tailing (upward bed and downward pathway), dot-post filling method, subsection filling method, large aperture open stope (mining) method and filling empty with stabilized tailing filling (block stabilized) and so on. Meanwhile, the computer applied to research filling body and mechanics function mechanism provides the basis for the design and production. This paper combinations mining technology transformation projects of the gold mine in Hebei, to seek suitable mining method for the mine of high grade, high value of steeply inclined thin and medium-thick orebody of noble metal. By theoretical analysis, numerical simulation method, this paper optimizations the stope structure parameter. The main results:
     (1)By analyzing the research results of rock mechanics at home and abroad and cemented fill mining method on the deep underground stope roof down principles to determine the mechanism of action of the backfill design strength and backfill.
     (2) In order to reduce the loss rate and dilution rate of the ore occurrence conditions of the ore body, mining conditions, mine the status quo, layered on to the tailings backfill method selected by economic and technological, and mining within180m middle of the field test, continuous along the strike of the layout of stope mining.
     (3) Determine the backfill to meet the production requirements of strength, starting from the stope backfill the mechanical properties of the ratio test of the filling material in the laboratory by experimental analysis of the gold mine full of tailings cement filling the physical and mechanic summed up the main factors affecting the strength of the backfill, sand-lime ratio and the concentration of slurry, sand-lime than the higher the greater the concentration, the greater the intensity of the backfill. According to the actual situation of the gold, the paper select tailings for filling aggregate, cement for the gelling agent, sand-lime ratio of the1:4,1:6the slurry filling.
     (4) Because of the mine having no division level hierarchical mining stope and pillar, resulting in the exposure of the large area of the roof, ensuing safety and effective mining ore using FLAC-3D numerical simulation software on a different face structure parameters reasonable stope structure parameters and the simulation obtained to the the stratification whole tailings filling the gold mine after the production, designed to provide a basic.
引文
[1]解世俊.金属矿床地下开采[M].北京:冶金工业出版社,2006.
    [2]古德生,李夕兵.现代金属矿床开采科学技术[M].北京:冶金工业出版社.2006,77-105,127-146.
    [3]周爱民.矿山废料胶结充填[M].北京:冶金工业出版社,2007.
    [4]万海涛,方勇,肖广哲,秦杨.充填采矿法的应用现状及发展方向[J].世界有色金属,2009,8:26-28.
    [5]吴金荣,吴贤振.某铜矿上向水平分层尾砂充填采矿法工艺优化研究[J].矿业快报,2005,5(5):32-33.
    [6]蔡嗣经.矿山充填材料的优化试验研究[J],赣州:江西有色金属.1987,2:1-6.
    [7]张忠,李钱坤,巩克生.翟镇煤矿综采充填设备配套优化研究[J]山东煤炭科技,2010,(6):171-173.
    [8]Brcakbusch,F.W. Basics of paste back fill systems[J]. Mining Engineering.1994,10,1175-1178.
    [9]廖亮.下向胶结充填采矿法采场结构参数优化及稳定性研究[D].江西理工大学硕士学位论文,2011,6.
    [10]崔栋梁,李夕兵.数值模拟在新城金矿V#矿体开采中的应用[J].有色金属,2006,11.
    [11]曾照凯,张义平,吴刚.基于正交优化的胶结充填体强度试验研究[J].有色金属,2010,5:15-18.
    [12]李飞,乔登攀.上向分条分层废石充填采矿法试验研究[J].金属矿山,2010,4:20-23.
    [13]孙书伟,林杭,任连伟.FLAC3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011.
    [14]谢文兵,陈晓祥,郑百生.采矿工程数值模拟研究与分析[M].北京:中国矿业大学出版社,2005,65-88.
    [15]钱鸣高,石平五.矿山压力与岩层控制[M].北京:中国矿业大学出版社,2003.
    [16]郑永学,笠盂.采场地压及边坡工程[M].东北工学院出版社,1992(5).
    [17]沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006.
    [18]高延法,张庆松.矿山岩体力学[M].北京:中国矿业大学出版社,2005,87-171.
    [19]邹连军.充填体对采场稳定性的影响[D].昆明理工大学硕士学位论文,2003,6
    [20]黄艳利,张吉雄,张强,聂守江,安百富.充填体压实率对综合机械化固体充填采煤岩层移动控制作用分析[J].采矿与安全工程学报2012,29(2):161-167.
    [21]Sellers EJ, Klerck P.Modeling of the effect of discontinuities on extent of the fracture zone surrounding deep tunnel[J].Tunning and Undergroud Space Technology,2000,15(4):463-469.
    [22]Kidybinski A, Dubinski J. Strata Control in Deep Mines[M]. Rotterdam:A,A.Balkema.1990.
    [23]Fairhursr C. Deformation, yield, up rure and stability of ex-cavations at great depth[A].In:Fairhurst Ced. Rockburst and Seismacity in Mines[C]. Rotterdam:A,A.Balkema,1990.1103-1114.
    [24]卢平.确定胶结充填体强度的理论与实践[J]。长春:黄金.1992,3:23-25.
    [25]蔡嗣经.矿山充填力学基础[M].北京:冶金工业出版社,2009.
    [26]丁金刚,徐世荣.某矿区Ⅳ号采空区治理.爆破[J].2006.3:105-108
    [27]刘志祥,李夕兵,戴塔根,曹平.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,2006,27(9):1442-1446;
    [28]Diering D H.Tunnels under pressure in an ultra-deep gold mine[J] Journal of the South African Institute of Mining and Metallurgy,2000,100:319-324.
    [29]Kirzhner F, Rosenhouse G. Numerical analysis of tunnel dynamic response to earth motions[J].Tunnelling and Underground Space Technolo- gy,2000,15(3):249-258.
    [30]赵勇,张花,张兆林,林永新.上向分层胶结充填采矿法在侯庄矿区的应用[J].矿业快报,2006,6(6):38-40
    [31]赵奎.岩金矿山采空区及残留矿柱回采稳定性研究[D].北京科技大学博士学位论文,2002,6.
    [32]Malan D F,Spottiswoode S M.Time-dependent fracture zone behavior and seismicity surrounding deep level stopping operation[A].In:Rockburst and Seismicity in Mines[C]. Rotterdam:A,A.Balkema,1997.173-177.
    [33 Sun J, Wang S J. Rock mechanic sand rock engineering in China:developments and current state-of-the-art [J]. International Journal of Rock Mechanices and Mining Science, 2000,(37):447-465.
    [34]顾春宏,李海洪.分层充填采矿法顶板安全问题分析[J].采矿技术,2004,12,4(4):33-34.
    [35]韦华南,古德生.某矿分段凿岩阶段矿房嗣后联合充填采矿法试验研究[J].黄金,2010,31(6):23-28.
    [36]Vogel M, Andras H P.Alp transit-safety in construction as a challenge,health and safety as pects in very deep tunnel construction [J]. Tunneling and Underground Space Technology, 2000,15(4):481-484.
    [37]Paterson M S.Experimental deformation and faulting in Wombeyan marble[J].Bull.Geol.Soc.Am.,1958,69:465-467.
    [38]Singh J. Strength of rocks at depth[A].In:Rock at Great Depth [C]. Rotterdam: A.A.Balkema,1989.37-44.
    [39]王方汉,曹为勤,张文如.无间柱阶梯式连续回采分层充填采矿法试验研究[J].采矿技术,2008,8(4):4-6;
    [40]Gurtunca R G,Keynote L. Mining below 3000 m and challenges for the South African gold mining industry[A].In:Proceedings of Mechanics of Jointed and Fractured Rock[C].Rotterdam:A.A.Balkema,1998,3-10.
    [41]王方汉,曹为勤,张文如.无间柱阶梯式连续回采分层充填采矿法试验研究[J].采矿技术, 2008,7 (4):4-6.
    [42]MaNianjie, LiuHongtao, ShiHaoyu.eta. Numerical simulation research of coal pillar safety in ShangwanMine[A].Asia Pacific Symposium on Safety[C],2005.
    [43]Smith, J.D.I;Mitchell,R.J. Design and control of large hydranlic Backfill pours[J]. Canadian Mining and Metallurgical Bulletin.1986,2,102-111.
    [44]周旭.水压支柱护顶大进路上向水平分层充填采矿工艺技术研究[D].中南大学硕士学位论文,2009,5.
    [45]Johnson R A S.Mining at ultra-depth, evaluation of alternatives. In:Proceedings of the 2nd North America Rock Mechanics Symposium [C].Montreal:NARMS'96,1996.359-366.
    [46]Ortlepp W.D. High ground displacement velocities associated with rock burst damage[A].In: Rockburst and Seismicity in Mines[C]. Rotterdam:A.A.Balkema,1993.101-106.
    [47]Kidybinski A. Bursting liability indice sofcoal[J].Int J Rock MechMin Sci &Geomech Abstr,1981,18(2):295-304.
    [48]Jaeger J C, Cookn G W. Fundamentals of rockmechanics [M].Beijing: Science Press,1981.
    [49]于永智.上向进路式尾砂胶结充填采矿法采场结构参数优化研究[D].昆明理工大学硕士学位论文,2005,7.
    [50]Hu K X, Kemeny J. Fracture mechanics analysis of the effect of backfill on the stability of cut and fill and Mining workings[J]. International Journal of Rock Mechanics and Mining Sciences 1994,31(3):231-241.
    [51]彭文兵.FLAC 3D实用教程[M].机械工业出版社,2009.
    [52]FLAC-3D(Fast Lagrangian Analysis of Continua in 3Dimensions). Vesion2.0User's Manual[K], USA:Itasca Consuliting Group,Inc., 1997.
    [53]贺发运.金川二矿区充填工艺优化及效益评价[J].采矿技术,2005,12(4):6-8.
    [54]李庶林,桑玉发.尾砂胶结充填体的破坏机理及其损伤本构方程[J].黄金,1997.18(1):24—29.
    [55]李海港.下向分级尾砂胶结充填法采场结构参数优化试验与数值模拟[D].江西理工大学硕士学位论文,2005,7.
    [56]淡永富.凡口铅锌矿盘区上向分层充填采矿法采矿工艺的优化[J].工程设计与研究1998,9:1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700