β-1,4半乳糖基转移酶和PSD-95相关分子在神经损伤修复中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、 β-1,4半乳糖基转移酶-I和V在坐骨神经损伤后大鼠腓肠肌中的表达及意义
     目的:观察β-1,4-半乳糖基转移酶I和V(β1,4galactosyltransferase I、V,β-1,4-GalT-I、V)在大鼠坐骨神经夹伤和切断后腓肠肌中的表达变化,探讨其在坐骨神经损伤后腓肠肌萎缩和再生过程中可能存在的生物学作用。
     方法:制备大鼠坐骨神经夹伤和切断模型;测定坐骨神经功能指数;实时荧光定量PCR检测β-1,4-GalT-I mRNA和β-1,4-GalT-V mRNA在坐骨神经夹伤和切断后不同时间腓肠肌中的表达变化;荧光原位杂交技术观察β-1,4-GalT-ImRNA和β-1,4-GalT-V mRNA的定位情况。
     结果:
     (1)坐骨神经功能指数检测发现随着夹伤时间的延长,坐骨神经功能指数逐渐升高,至夹伤4w时基本恢复至至正常水平。而坐骨神经切断后坐骨神经功能指数均为-100。
     (2)在坐骨神经夹伤模型中,实时荧光定量PCR结果显示β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA在正常大鼠腓肠肌中表达量较高。坐骨神经夹伤后6h开始逐渐下降,至伤后2w时达到最低水平,第4w时才恢复至相对正常水平。原位杂交结果表明:在正常情况及坐骨神经夹伤后4w时β-1,4-GalT-ImRNA、β-1,4-GalT-V mRNA定位于大量肌细胞及肌卫星细胞中。
     (3)在坐骨神经切断模型中,实时荧光定量PCR结果显示,β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA在伤后6h开始逐渐下降,至伤后4w仍维持在低水平。原位杂交结果表明:4w时检测到β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA定位于少许肌卫星细胞中。
     结论:β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA在坐骨神经夹伤和切断后不同时间腓肠肌中的表达水平不同,提示β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA的表达与坐骨神经损伤类型及损伤时间有关,且β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA主要表达于肌卫星细胞中,说明β-1,4-GalT-I mRNA、β-1,4-GalT-V mRNA在坐骨神经损伤后腓肠肌再生过程中发挥重要的作用。
     二、β-1,4-糖苷键在坐骨神经损伤后大鼠腓肠肌中的表达及意义
     目的:观察β-1,4-糖苷键(Galβ1,4-N-acetylglucosamine, Galβ-1,4-GlcNAc)在大鼠坐骨神经夹伤和切断后腓肠肌中的表达情况,探讨其在坐骨神经损伤后腓肠肌萎缩和再生过程中可能存在的生物学作用。
     方法:制备大鼠坐骨神经夹伤和切断模型;采用凝集素印迹分析(Lectin blot)和RCA免疫荧光染色(RCA immunofluorescent staining,RCA-I)技术观察Galβ-1,4-GlcNAc在正常及坐骨神经损伤后大鼠腓肠肌中的表达变化及定位情况。
     结果:
     (1)凝集素印迹分析表明Galβ-1,4-GlcNAc的表达在坐骨神经夹伤后6h开始逐渐下降,至伤后2w时达到最低水平,第4w时恢复至相对正常水平。与β-1,4-GalT-I和V mRNA的表达趋势相一致。
     (2)利用特异性结合Galβ-1,4-GlcNAc的RCA-I研究证实:在正常情况及坐骨神经夹伤后4w时Galβ-1,4-GlcNAc定位于大量肌细胞及肌卫星细胞中,而在坐骨神经夹伤后2w以及坐骨神经切断后2w和4w时可检测到Galβ-1,4-GlcNAc定位于少许肌卫星细胞中。
     结论: Galβ-1,4-GlcNAc在坐骨神经夹伤和切断后不同时间腓肠肌中的表达水平不同,提示Galβ-1,4-GlcNAc表达与坐骨神经损伤类型及损伤时间有关,且Galβ-1,4-GlcNAc主要表达于肌卫星细胞中,说明Galβ-1,4-GlcNAc在坐骨神经损伤后腓肠肌再生过程中发挥着重要的作用。
     三、Kv4.2与PSD-95在慢性坐骨神经损伤后大鼠脊髓及坐骨神经的表达及意义
     目的:探讨电压门控型钾通道4.2(Voltage gated potassium channel4.2, Kv4.2)与突触后致密区蛋白95(Post-synaptic density protein-95, PSD-95)在慢性坐骨神经损伤后大鼠脊髓及坐骨神经的表达变化及在脊髓中的共定位情况,观察是否参与了疼痛传导过程。
     方法:制备大鼠慢性坐骨神经压迫性损伤模型(Chronic constriction injury, CCI),通过逆转录聚合酶链反应(Reverse transcription polymerase chain reaction,RT-PCR)及免疫印迹(Western Blotting)等方法分别测定Kv4.2与PSD-95在坐骨神经及脊髓中的mRNA和蛋白水平的表达变化,采用免疫荧光双标技术探讨Kv4.2和PSD-95与胶质细胞及神经元在脊髓中的共定位情况。
     结果:
     (1) Kv4.2mRNA在正常坐骨神经组织中度表达,坐骨神经损伤后1d到5d下降,随后升高,7d达到峰值;蛋白水平未检测出。
     (2) Kv4.2mRNA在正常脊髓中高度表达,坐骨神经损伤后1d到5d下降,7d后增高,但总体水平较正常水平低;蛋白水平在正常脊髓中度表达,在损伤后3d降到最低点,5d开始缓慢上调,持续到14d仍显著增加。
     (3) PSD-95mRNA在正常坐骨神经中度表达,损伤后5d显著上调持续到10d,14d有下降趋势,但仍比正常水平高;蛋白水平在损伤后1d到3d时明显降低,而在损伤后5d时明显增加,一直持续到14d。
     (4) PSD-95mRNA在正常脊髓中高度表达,坐骨神经损伤后缓慢下降,损伤后7d开始上调,10d达到高点;蛋白水平在损伤后显著下调,10d后开始上调,并且变化趋势基本与Kv4.2相似。
     (5)在腰脊髓切片中,荧光免疫双标发现Kv4.2与PSD-95共定位于神经元,并且在损伤后集中在脊髓背侧角区域,与疼痛相关,而与星型胶质细胞无共定位。
     结论:Kv4.2、PSD-95在慢性坐骨神经损伤后不同时间坐骨神经及脊髓中的表达水平不同,提示Kv4.2、PSD-95的表达与坐骨神经损伤时间有关,且Kv4.2与PSD-95共定位于神经元,并且在损伤后集中在脊髓背侧角区域,与疼痛相关,而与星型胶质细胞无共定位,说明慢性坐骨神经损伤后,坐骨神经本身及其上游脊髓中的Kv4.2及PSD-95表达水平明显改变,二者共同参与了慢性疼痛过程,并且与感受伤害性刺激神经元兴奋性有关。
1. The expression and significance of β-1,4-GalT I, V ingastrocnemius muscles after sciatic nerve injury
     Objective: To observe the expression of β-1,4-Galactosyltransferase I and V in ratgastrocnemius muscles after sciatic nerve crush and transection, as well as toexplore their potential biological roles during the atrophy and regeneration ofgastrocnemius muscles.
     Methods: Sprague-Dawley (SD) rat sciatic nerve crush and transection injury modelswere established. Sciatic nerve funtion index was detected. Gene expression of β-1,4-Galactosyltransferase I and V were detected in gastrocnemius muscles aftersciatic nerve crush and transection by Real-time fluorescence quantitative PCR aswell as in situ hybridization.
     Results:
     (1) Sciatic nerve function index assay showed that the higher sciatic nerve functionindex, the longer time, and recovered to the normal level at4weeks after sciaticnerve crush. The sciatic nerve function index keeps with-100after sciatic nervetransection.
     (2) In the sciatic nerve crush model, real time PCR analysis revealed that β1,4-GalT Iand V mRNAs expressed at a high level in normal gastrocnemius muscles anddecreased gradually from6hours, reached the lowest level at2weeks, thenrestored gradually to relatively normal level at4weeks after sciatic nerve crush.In situ hybridization indicated that β-1,4-GalT I and V mRNAs localized innumerous myocytes and muscle satellite cells under normal conditions and at4weeks after sciatic nerve crush.
     (3) In the sciatic nerve transection model, β-1,4-GalT I and V mRNAs decreasedgradually from6hours, and remained on a low level at4weeks in gastrocnemiusmuscles after sciatic nerve transection. In situ hybridization indicated that β- 1,4-GalT I and V mRNAs localized in numerous myocytes and muscle satellitecells under normal conditions and in a few muscle satellite cells at4weeks aftersciatic nerve transection.
     Conclusions: The expression of β-1,4-GalT I and V mRNAs are different in ratgastrocnemius muscles in different time after sciatic nerve crush and transection,which indicate that the expression of β-1,4-GalT I and V mRNAs are associatedwith the type and time of sciatic nerve injury. They localize mainly in musclesatellite cells. The expression of β-1,4-GalT I and V mRNAs are involved in theprocess of denervation and reinnervation, which suggests that β-1,4-GalT I andV mRNAs may play an important role in the muscle regeneration.
     2. The expression and significance of Galβ-1,4-GlcNAcgroup in gastrocnemius muscles after sciatic nerve injury
     Objective: To observe the expression and significance of Galβ-1,4-GlcNAc group inrat gastrocnemius muscles after sciatic nerve crush and transection, as well as toexplore its potential biological role during the atrophy and regeneration ofgastrocnemius muscles.
     Methods: Sprague-Dawley (SD) rat sciatic nerve crush and transection injury modelswere established. Lectin blot and Lectin-fluorescent staining with RCA-I, wereperformed to investigate the expression and significance of Galβ-1,4-GlcNAcgroup in gastrocnemius muscles after sciatic nerve injury.
     Results:
     (1) Lectin blot analysis showed that the expression level of the Galβ-1,4-GlcNAcgroup decreased from6hours, reached the lowest level at2weeks, and restoredto relatively normal level at4weeks after sciatic nerve crush, which wasconsistent with the expression of β1,4-GalT I and V mRNAs.
     (2) RCA-I lectin histochemistry analysis demonstrated that Galβ1–4GlcNAc grouplocalized in numerous membranes of myocytes and muscle satellite cells innormal and at4weeks after sciatic nerve crush, and in a few muscle satellitecells at2and4weeks after sciatic nerve transection.
     Conclusions: The expression level of the Galβ-1,4-GlcNAc group is different in ratgastrocnemius muscles in different time after sciatic nerve crush andtransection, which indicates that the expression of Galβ-1,4-GlcNAc group isassociated with the type and time of sciatic nerve injury. Galβ-1,4-GlcNAcgroup localizes in muscle satellite cells. The expression of Galβ-1,4-GlcNAcgroup is involved in the process of denervation and reinnervation, whichsuggests that Galβ-1,4-GlcNAc group may play an important role in the muscleregeneration.
     3. The expression and significance of Kv4.2and PSD-95insciatic nerve and spinal cord during CCI
     Objective: To investigate the expression of the voltage gated potassium channel4.2(Kv4.2)and post-synapic density protein (PSD-95) in sciatic nerve and spinalcord during the process of chronic constriction injury(CCI) of the rat sciaticnerve. Then, observe the colocalization of Kv4.2and PSD-95in spinal cordduring this process.
     Methods: Sprague-Dawley (SD) rat chronic constriction injury(CCI) models wereestablished. Reverse transcription PCR and Western Blotting were used toinvestigate the changes of Kv4.2and PSD-95at mRNA and the protein levelsrespectively. The colocalization of Kv4.2with PSD-95was investigated byimmunofluorescence double staining.
     Results:
     (1) The expression of Kv4.2mRNA in sciatic nerve was moderate, decreased from1d to5d after injury and peaked at7d; And protein was not detected.
     (2) The expression of Kv4.2mRNA in spinal cord was high, decreased from1d to5d after injury and increased at7d, but the overall level was low; The proteinlevel was moderate in spinal cords, decreased to the lowest point at3d afterinjury, increased slowly at5d, increased significantly at14d.
     (3) The expression of PSD-95mRNA in sciatic nerve was moderate, increased from5d to10d, decreased at14d, but was still higher than normal; The protein leveldecreased from1d to3d after injury, increased significantly at5d, up to14d.
     (4) The expression of PSD-95mRNA in spinal cord was high, decreased after injury,increased from7d, reached a high point at10d; The protein level decreasedafter injury, increased significantly at10d, which was similar to Kv4.2.
     (5) In the lumbar spinal cord slices, immunofluorescence double staining resultsshowed that PSD-95colocalized with Kv4.2.They both colocalized with neuronin spinal dorsal horn, but not with astrocytes, which were involved in paintransmission.
     Conclusion: The expressions of Kv4.2and PSD-95mRNAs are different in ratsciatic nerve and spinal cord in different time after chronic constriction injury, which indicates that the expressions of Kv4.2and PSD-95mRNAs areassociated with the time of chronic constriction injury and expression sites.Kv4.2and PSD-95both colocalized with neuron in spinal dorsal horn, but notwith astrocytes, which were involved in pain transmission. All these suggest thatthe expressions of Kv4.2and PSD-95in the sciatic nerve itself and its upstreamcentral nervous system spinal cord change significantly; they may participate inthe process of chronic pain and relate to the neuronal excitability.
引文
1. Sun H, Liu J, Ding F, et al. Investigation of differentially expressed proteins in ratgastrocnemius muscle during denervation-reinnervation[J]. J Muscle Res CellMotil,2006,27(3-4):241–250.
    2. Zhang D, Liu M, Ding F, et al. Expression of myostatin RNA transcript andprotein in gastrocnemius muscle of rats after sciatic nerve resection[J]. J MuscleRes Cell Motil,2006,27(1):37–44.
    3. Stanley P. Golgi glycosylation[J]. Cold Spring Harb Perspect Biol,2011,3(4).pii:a005199.
    4. Lee PL, Kohler JJ, Pfeffer SR. Association ofbeta-1,3-N-acetylglucosaminyltransferase1and beta-1,4-galactosyltransferase1,trans-Golgi enzymes involved in coupled poly-N-acetyllactosamine synthesis[J].Glycobiology,2009,19(6):655-64.
    5. Schaub BE, Berger EG, Rohrer J. Dissection of a novel molecular determinantmediating Golgi to trans-Golgi network transition[J]. Cell Mol Life Sci.2008,65(22):3677-87.
    6. Shur BD, Rodeheffer C, Ensslin MA, et al. Identification of novel gametereceptors that mediate sperm adhesion to the egg coat[J]. Mol Cell Endocrinol,2006,250(1-2):137-48.
    7. Shen A, Qian J, Liu L, et al. The role of beta-1,4-galactosyltransferase-I in theskin wound-healing process[J]. Am J Dermatopathol,2008,30(1):10-15.
    8. Zhu X, Jiang J, Shen H, et al. Elevated beta1,4-galactosyltransferase I in highlymetastatic human lung cancer cells. Identification of E1AF as importanttranscription activator[J]. J Biol Chem,2005,280(13):12503-16.
    9. Hu L, Yang H, Chen J, et al. β-1,4-Galactosyltransferase-involved inlipopolysaccharide-induced adhesion of Schwann cells[J]. Inflamm Res.2011,60(2):169-74.
    10. Han Y, Zhou X, Ji Y, et al. Expression of beta-1,4-galactosyltransferase-I affectscellular adhesion in human peripheral blood CD4+T cells[J]. Cell Immunol.2010,262(1):11-7.
    11. Shi X, Amindari S, Paruchuru K, et al. Cell surfacebeta-1,4-galactosyltransferase-I activates G protein-dependent exocytoticsignaling[J]. Development,2001,128(5):645-54.
    12. Cheng X, Wang X, Han Y, et al. The expression and function ofβ-1,4-galactosyltransferase-I in dendritic cells[J]. Cell Immunol,2010,266(1):32-9.
    13. Eckstein DJ, Shur BD. Cell surface beta-1,4-galactosyltransferase is associatedwith the detergent-insoluble cytoskeleton on migrating mesenchymal cells[J].Exp Cell Res,1992,201(1):83-90.
    14. Runyan RB, Versalovic J, Shur BD. Functionally distinct laminin receptorsmediate cell adhesion and spreading: the requirement for surfacegalactosyltransferase in cell spreading[J]. J Cell Biol,1988,107(5):1863-71.
    15. Yuan Q, Yang H, Cheng C, et al. β-1,4-Galactosyltransferase I involved inSchwann cells proliferation and apoptosis induced by tumor necrosis factor-alphavia the activation of MAP kinases signal pathways[J]. Mol Cell Biochem,2012,365(1-2):149-58.
    16. Shen A, Yan J, Ding F, et al. Overexpression of beta-1,4-galactosyltransferase I inrat Schwann cells promotes the growth of co-cultured dorsal root ganglia[J].Neurosci Lett,2003,342(3):159-62.
    17. Lo NW, Shaper JH, Pevsner J, et al. The expanding beta4-galactosyltransferasegene family: messages from the databanks[J].Glycobiology,1998,8(5):517-26.
    18. Furukawa K, Sato T. Beta-1,4-galactosylation of N-glycans is a complexprocess[J].Biochim Biophys Acta,1999,1473(1):54-66.
    19. Liedtke S, Geyer H, Wuhrer M, et al. Characterization of N-glycans from mousebrain neural cell adhesion molecule[J]. Glycobiology,2001,11(5):373-84.
    20. Razmi A, Jahanabadi S, Sahebgharani M, et al. EPAC-STX interaction may playa role in neurodevelopment/neurogenesis[J]. Med Hypotheses,2013,81(2):216-8.
    21. Jakovcevski I, Filipovic R, Mo Z, et al. Oligodendrocyte development and theonset of myelination in the human fetal brain. Front Neuroanat,2009,1:3-5.
    22. Shen A, Zhu D, Ding F, et al. Increased gene expression ofbeta-1,4-galactosyltransferase I in rat injured sciatic nerve[J]. J Mol Neurosci,2003,21(2):103-10.
    23. Nakamura N, Yamakawa N, Sato T, et al. Differential gene expression ofbeta-1,4-galactosyltransferases I, II and V during mouse brain development[J]. JNeurochem,2001,76(1):29-38.
    24. Sasaki N, Manya H, Okubo R, et al. beta4GalT-II is a key regulator ofglycosylation of the proteins involved in neuronal development[J]. BiochemBiophys Res Commun,2005,333(1):131-7.
    25. Jiang J, Chen X, Shen J, et al. Beta1,4-galactosyltransferase V functions as apositive growth regulator in glioma[J]. J Biol Chem,2006,281(14):9482-9.
    26. Jiang J, Gu J. Beta1,4-galactosyltransferase V A growth regulator in glioma[J].Methods Enzymol,2010,479:3-23.
    27. Nakajima C, Kulik A, Frotscher M, et al. Low Density LipoproteinReceptor-related Protein1(LRP1) Modulates N-Methyl-D-aspartate (NMDA)Receptor-dependent Intracellular Signaling and NMDA-induced Regulation ofPostsynaptic Protein Complexes[J]. J Biol Chem,2013,288(30):21909-23.
    28. Zhang HJ, Li C, Zhang GY, et al. ATPA induced GluR5-containing kainitereceptor S-nitrosylation via activation of GluR5-Gq-PLC-IP(3)R pathway andsignalling module GluR5·PSD-95·nNOS[J]. Int J Biochem Cell Biol,2012,44(12):2261-71.
    29. Hida Y, Fukaya M, Hagiwara A, et al. Prickle2is localized in the postsynapticdensity and interacts with PSD-95and NMDA receptors in the brain[J]. JBiochem,2011,149(6):693-700.
    30. Yao JJ, Sun J, Zhao QR, et al. Neuregulin-1/ErbB4signaling regulatesKv4.2-mediated transient outward K+current through the Akt/mTOR pathway[J].Am J Physiol Cell Physiol,2013,305(2): C197-206.
    31. Truchet B, Manrique C, Sreng L, et al.Kv4potassium channels modulatehippocampal EPSP-spike potentiation and spatial memory in rats[J]. Learn Mem,2012,19(7):282-93.
    32. Angelova PR, Müller WS. Arachidonic acid potently inhibits bothpostsynaptic-type Kv4.2and presynaptic-type Kv1.4IA potassium channels[J].Eur J Neurosci,2009,29(10):1943-50.
    33. Klemmer P, Smit AB, Li KW. Proteomics analysis of immuno-precipitatedsynaptic protein complexes[J]. J Proteomics,2009,72(1):82-90.
    34. Wong W, Schlichter LC. Differential recruitment of Kv1.4and Kv4.2to lipidrafts by PSD-95[J]. J Biol Chem,2004,279(1):444-52
    1. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy[J].Am J Physiol Cell Physiol,2004,287: C834–C843.
    2. Zhu F, Shen F, Fan Y, et al. Osteopontin increases the expression of β1,4-galactosyltransferase-I and promotes adhesion in human RL95-2cells[J].Glycoconj J,2012,29(5-6):347-56.
    3. Yang H, Yuan Q, Chen Q, et al. β-1,4-galactosyltransferase I promotes tumornecrosis factor-α autocrine via the activation of MAP kinase signal pathways inSchwann cells[J]. J Mol Neurosci,2011,45(2):269-76.
    4. SKumagai T, Sato T, Natsuka S, et al. Involvement of murineβ-1,4-galactosyltransferase V in lactosylceramide biosynthesis[J]. Glycoconj J,2010,27(7-9):685-95.
    5. Liedtke S, Geyer H, Wuhrer M, et al. Characterization of N-glycans from mousebrain neural cell adhesion molecule[J].Glycobiology,2001,11(5):373-84.
    6. Nakamura N, Yamakawa N, Sato T, et al. Differential gene expression ofbeta-1,4-galactosyltransferases I, II and V during mouse brain development[J].JNeurochem,2001,76(1):29-38.
    7. de Medinaceli L, Freed WJ, Wyatt RJ. An index of the functional condition of ratsciatic nerve based on measurements made from walking tracks[J].ExP Neurol,1982,77(3):634.
    8. Carlton JM, Goldberg NH. Quantitating integrated muscle function followingreinervation[J]. Surg Forum,1986,37:611.
    9. Bain JR, Mackinnon SE, Hunter DA. Functional evaluation of completesciatic,peroneal,and posterior tibial nerve lesions in the rat[J]. Plast Reconstr Surg,1989,83(1):129-38.
    10.沈宁江,朱家恺.坐骨神经功能指数在神经功能评价中的应用[J].中华显微外科杂志,1993,16(4):284-287.
    11. Jonsson S, Wiberg R, McGrath AM,et al. Effect of delayed peripheral nerverepair on nerve regeneration, Schwann cell function and target muscle recovery[J].PLoS One,2013,8(2): e56484.
    12. Meinen S, Lin S, Rüegg MA, et al. Fatigue and muscle atrophy in a mouse modelof myasthenia gravis is paralleled by loss of sarcolemmal nNOS[J]. PLoS One,2012,7(8): e44148.
    13. Sun H, Liu J, Ding F,et al. Investigation of differentially expressed proteins in ratgastrocnemius muscle during denervation-reinnervation[J].J Muscle Res CellMotil,2006,27(3-4):241-50.
    14. Collins CA, Olsen I, Zammit PS,et al. Stem cell function, self-renewal, andbehavioral heterogeneity of cells from the adult muscle satellite cell niche[J].Cell,2005,122(2):289-301.
    15. Ehrhardt J, Morgan J. Regenerative capacity of skeletal muscle[J].Curr OpinNeurol,2005,18(5):548-53.
    16.田涛,吴朝晖,金惠铭,等.大鼠失神经肌萎缩后成肌细胞增殖动力学的变化[J].中华手外科杂志,1999,15(1):36-38.
    1. Geissler M, Gottschling C, Aguado A, et al. Primary hippocampal neurons, whichlack four crucial extracellular matrix molecules, display abnormalities of synapticstructure and function and severe deficits in perineuronal net formation[J]. JNeuro sci,2013,33(18):7742-55.
    2. Dobrovi B, Curi G, Petanjek Z, et al.Dendritic morphology and spine density isnot altered in motor cortex and dentate granular cells in mice lacking theganglioside biosynthetic gene B4galnt1-A quantitative Golgi cox study[J]. CollAntropol,2011,35Suppl1:25-30.
    3. Yoshihara Y, Mizuno T, Nakahira M, A genetic approach to visualization ofmultisynaptic neural pathways using plant lectin transgene[J]. Neuron,1999,22(1):33-41.
    4. Ioffe E, Stanley P. Mice lacking N-acetylglucosaminyltransferase I activity die atmid-gestation, revealing an essential role for complex or hybrid N-linkedcarbohydrates[J]. Proc Natl Acad Sci U S A,1994,91(2):728-32.
    5. Livingston BD, De Robertis EM, Paulson JC. Expression of beta-galactosidealpha2,6sialyltransferase blocks synthesis of polysialic acid in Xenopusembryos[J]. Glycobiology,1990,1(1):39-44.
    6. Furukawa K, Sato T. Beta-1,4-galactosylation of N-glycans is a complexprocess[J]. Biochim Biophys Acta,1999,1473(1):54-66.
    7.徐建广,顾玉东.缺血对失神经支配骨骼肌萎缩影响的研究[J].中华手外科杂志,1999,15(3):175-177.
    8. Ashley Z, Salmons S, Boncompagni S, et al. Effects of chronic electricalstimulation on long-term denervated muscles of the rabbit hind limb[J]. J MuscleRes Cell Motil,2007,28(4-5):203-217.
    9. Viguie CA, Lu DX, Huang SK, et al. Quantitative study of the effects oflong-term denervation on the extensor digitorm longus muscle of the rat[J]. AnatRec,1997,248(3):346-354.
    10. Dedkov EI, Kostrominova TY, Borisov AB, et al. Reparative myogenesis inlong-term denervated skeletal muscles of adult rats results in a reduction of thesatellite cell population[J]. Anat Rec,2001,263(2):139-154.
    1. Shari G, Andrew W, Yuan L, et al. Stucture and function of Kv4-family transientpotassium channels[J]. Physiol Rev,2006,84(10):803-833.
    2. Hu HJ, Carrasquillo Y, Karim F, et al. The Kv4.2potassium channel subunit isrequired for pain plasticity[J]. Neuron,2006,50(1):89-100.
    3. Cui H, Hayashi A, Sun HS, et al. PDZ protein interactions underlying NMDAreceptor mediated excitotoxicity and neuroprotection by PSD-95inhibitors[J].The Journal of Neuroscience,2007,27(37):9901-9915.
    4. Wong W, Newell EW, Jugloff DG, et al. Cell surface targeting and clusteringinteractions between heterologously expressed PSD-95and the shal voltage-gatedpotassium channel Kv4.2[J]. J Biol Chem,2002,277(23):20423-20430.
    5. Gardoni F, Mauceri D, Marcello E, et al. SAP97directs the localization of Kv4.2to spines in hippocampal neurons [J]. J Biol Chem,2007,282(39):28691-28699.
    6. Shen M, Pak D. Ligand-gated ion channel interactions with cytoskeletal andsignaling proteins[J]. Annu Rev Physiol,2000,62:755-778.
    7. Cheng C, Gao S, Zhao J, et al. Spatiotemporal patterns of postsynaptic density(PSD)-95expression after rat spinal cord injury[J]. Neuropathol Appl Neurobiol,2008,34(3):340-356.
    8. Gao S, Fei M, Cheng C, et al. Saptiotemporal expression of PSD-95and nNOSafter rat sciatic nerve injury[J]. Neurochem Res,2008,33(6):1090-1100.
    9. Gao S, Cheng C, Zhao J, et al. Development regulation of PSD-95and nNOSexpression in lumbar spinal cord of rats [J]. Neurochem,2008,52(3):495-501.
    10.解小丽,周青山,刘先义,等.坐骨神经结扎大鼠脊髓神经元凋亡与痛敏的关系[J].中国疼痛医学杂志,2006,12(2):98-102.
    11.高尚峰,程纯,陈梦玲,等.突触后密度蛋白-95在大鼠坐骨神经损伤后的表达[J].神经解剖学杂志,2007,23(2):150-154.
    12.罗爱林,金小高,张广雄,等.神经病理性疼痛大鼠脊髓突触后致密物质-95mRNA的表达[J].中华麻醉学杂志,2005,25(11):857-859.
    13. Ji R, Woolf C. Neuronal plasticity and signal transduction in nociceptive neurons:implications for the initiation and maintenance of pathological pain[J]. NeurobiolDis,2001,8(1):1-10.
    14. Tsai SJ, Hong CJ, Cheng CY, et al. Association study of polymorphisms inpost-synaptic density protein95(PSD-95) with schizophrenia[J]. J NeuralTransm,2007,114(4):423–426.
    15.项红兵,招伟贤,陈敏.坐骨神经慢性压迫性损伤对大鼠脊髓星型胶质细胞增生和突触重塑的影响[J].中华实验外科杂志,2005,22(9):1116-1117.
    16. Jergova S, Cizkova A. Microglial activation in different models of peripheralnerve injury of the rat[J]. J Mol Histol,2007,38:245–251.
    17.孙涛,棕文阁,徐清贵,等.神经病理性疼痛大鼠脊髓星型胶质细胞增殖活化的变化[J].中华麻醉学杂志,2006,26(9):842-845.
    18. Elias GM, Funke L, Stein V, et al. Synapse-specific and developmentallyregulated targeting of AMPA receptors by a family of MAGUK scaffoldingproteins[J]. Neuron,2006,52(2):307-320.
    19. Vickers CA, Stephens B, Bowen J, et al. Neurone specific regulation of dendriticspines in vivo by post synaptic density95protein (PSD-95)[J]. Brain Res,2006,1090(1):89-98.
    20. Kollo M, Holderith NB, Nusser Z. Novel subcellular distribution pattern ofA-Type K+channels on neuronal surface[J]. J Neurosci,2006,26(10):2684-2691.
    21.胡道松,曹福元,徐清贵,等.外周神经损伤后对大鼠脊髓运动神经元及背根节感觉神经元的影响[J].同济医科大学学报,1999,6(28):478-481.
    22.金小高,罗爱林,王金韬,等.脊髓神经元和胶质细胞激活在三种神经病理性疼痛大鼠模型脊髓水平致痛机制中的作用[J].中华麻醉学杂志,2006,26(1):71-74.
    23.董静静,武胜昔,周亮,等.周围神经损伤性病理疼痛模型的研究与进展[J].中国临床康复,2004,8(19):3864-3865.
    24. Hu P, Bembrick AL, Keay KA, et al. Immune cell involvement in dorsal rootganglia and spinal cord after chronic constriction or transection of the rat sciaticnerve[J]. Brain Behav Immun,2007,21(5):599-616.
    25. Chen X, Yuan LL, Zhao C, et al. Deletion of Kv4.2gene eliminates dendriticA-Type K+current and enhances induction of long-term potentiationinhippocampal CA1pyramidal neurons[J]. J Neurosci,2006,26(47):12143–12151.
    26. Hughes DI, Scott DT, Riddell JS, et al. Upregulation of substance P inlow-threshold myelinated afferents is not required for tactile allodynia in thechronic constriction injury and spinal nerve ligation models[J]. J Neurosci,2007,27(8):2035-2044.
    27. Sattler R, Xiong Z, Lu WY, et al. Specific coupling of NMDA receptor activationto nitric oxide neurotoxicity by PSD-95protein[J]. Science,1999,28:1845-1848.
    28. Gong N, Bodi I, Zobel C, et al. Calcineurin increases cardiac transient outwardK+currents via transcriptional up-regulation of Kv4.2channel subunits[J]. J BiolChem,2006,50:38498-38506.
    1. Varki A. Biological roles of oligosaccharides: all of the theories are correct[J].Glycobiology,1993,3(2):97-130.
    2. Hughes RC. Galectins as modulators of cell adhesion[J]. Biochimie,2001,83(7):667-676.
    3. Patel KD, Cuvelier SL, Wiehler S. Selectins: critical mediators of leukocyterecruitment[J]. Semin Immunol,2002,14(2):73-81.
    4. Stanley P. Golgi glycosylation[J]. Cold Spring Harb Perspect Biol,2011,3(4).pii:a005199.
    5. Berger EG, Rohrer J. Galactosyltransferase-still up and running[J]. Biochimie,2003,85(3-4):261-274.
    6. Shur BD, Rodeheffer C, Ensslin MA, et al. Identification of novel gametereceptors that mediate sperm adhesion to the egg coat[J]. Mol Cell Endocrinol,2006,250(1-2):137-48.
    7. Shen A, Qian J, Liu L, et al. The role of beta-1,4-galactosyltransferase-I in theskin wound-healing process[J]. Am J Dermatopathol,2008,30(1):10-15.
    8. Zhu X, Jiang J, Shen H, et al. Elevated beta1,4-galactosyltransferase I in highlymetastatic human lung cancer cells. Identification of E1AF as importanttranscription activator[J]. J Biol Chem,2005,280(13):12503-16.
    9. Lo NW, Shaper JH, Pevsner J,et al. The expanding beta4-galactosyltransferasegene family: messages from the databanks[J].Glycobiology,1998,8(5):517-26.
    10. Almeida R, Levery SB, Mandel U,et al. Cloning and expression of a proteoglycanUDP-galactose:beta-xylose beta1,4-galactosyltransferase I. A seventh member ofthe human beta4-galactosyltransferase gene family[J]. J Biol Chem,1999,274(37):26165-71.
    11. Amado M, Almeida R, Schwientek T, et al. Identification and characterization oflarge galactosyltransferase gene families: galactosyltransferase for all functions[J].Biochim Biophys Acta,1999,1473(1):35-53.
    12. Xu C, Liu B, Hu B, et al. Biochemical characterization ofUDP-Gal:GlcNAc-pyrophosphate-lipidβ-1,4-Galactosyltransferase WfeD, a newenzyme from Shigella boydii type14that catalyzes the second step in O-antigenrepeating-unit synthesis[J]. J Bacteriol.2011,193(2):449-59.
    13. Joziasse DH. Mammalian glycosyltransferases:genomic organization and proteinstructure[J]. Glycobiology,1992,2(4):271-277.
    14. Qasba PK, Ramakrishnan B, Boeggeman E. Structure and function of beta-1,4-galactosyltransferase[J]. Curr Drug Targets,2008,(4):292-309.
    15. Ramakrishnan B, Boeggeman E, Qasba PK. Mutation of arginine228to lysineenhances the glucosyltransferase activity of bovinebeta-1,4-galactosyltransferaseI[J]. Biochemistry,2005,44(9):3202-10.
    16. Boeggeman E, Qasba PK. Studies on the metal binding sites in the catalyticdomain of beta1,4-galactosyltransferase[J]. Glycobiology,2002,12(7):395-407.
    17. Colley KJ. Golgi localization of glycosyltransferases: more questions thananswers[J]. Glycobiology,1997,7(1):1-13.
    18. Nilsson T, Lucocq JM, Mackay D,et al. The membrane spanning domain ofbeta-1,4-galactosyltransferase specifies trans Golgi localization[J]. EMBO J,1991,10(12):3567-75.
    19. Yamaguchi N, Fukuda MN. Golgi retention mechanism ofbeta-1,4-galactosyltransferase. membrane-spanning domain-dependenthomodimerization and association with alpha-and beta-tubulins[J]. J Biol Chem,1995,270(20):12170-6.
    20. Shur BD, Neely CA. Plasma membrane association, purification, and partialcharacterization of mouse sperm beta1,4-galactosyltransferase[J]. J Biol Chem,1988,263(33):17706-14.
    21. Nguyen TT, Hinton DA, Shur BD. Expressing murine beta1,4-galactosyltransferase in HeLa cells produces a cell surfacegalactosyltransferase-dependent phenotype[J]. J Biol Chem,1994,269(45):28000-9.
    22. Hathaway HJ, Evans SC, Dubois DH,et al. Mutational analysis of the cytoplasmicdomain of beta1,4-galactosyltransferase I influence of phosphorylation on cellsurface expression[J]. J Cell Sci,2003,116(Pt21):4319-30.
    23. Rodeheffer C, Shur BD.Targeted mutations in beta1,4-galactosyltransferase Ireveal its multiple cellular functions[J]. Biochim Biophys Acta,2002,1573(3):258-70.
    24. Zhang SW, Lin WS, Ying XL, et al.Effect of suppression of TGF-betalexpression on cell-cycle and gene expression of beta-1,4-galactosyltransferase l inhuman hepatocarcinoma celIs[J]. Biochem Biophys Res Commun,2000,273(3):833-838.
    25. Zhang SW, Fu XY, Cao SL, et al. Down-regulation ofbeta-1,4-galactosyltransferase gene expression by cell cycle suppressor genep16[J]. Biochim Biophys Acta,1999,1444(1):49-54.
    26. Yan M, Xia C, Niu S, et al. The role of TNF-alpha and its receptors in theproduction of beta-1,4-galactosyltransferase I mRNA by rat primary type-2astrocytes[J]. Cell Mol Neurobiol,2008,28(2):223-36.
    27. Liu X, Cheng C, Shao B, et al. The functional interaction between CDK11p58and β-1,4-galactosyltransferase I involved in astrocyte activation caused bylipopolysaccharide[J]. Inflammation,2012,35(4):1365-77.
    28. Ji YH, Ben ZY, Wang XY, et al. The role of PKC to TNF-alpha induced beta-1,4-galactosyltransferase-I expression in endothelial cells[J]. Xi Bao Yu Fen ZiMian Yi Xue Za Zhi,2010,26(7):653-6.
    29. Shao B, Li C, Yang H, et al. The relationship between Src-suppressed C kinasesubstrate and β-1,4galactosyltransferase-I in the process oflipopolysaccharide-induced TNF-α secretion in rat primary astrocytes[J]. CellMol Neurobiol,2011,31(7):1047-56.
    30. Villegas-Comonfort S, Serna-Marquez N, Galindo-Hernandez O, et al.Arachidonic acid induces an increase of β-1,4-galactosyltransferase I expressionin MDA-MB-231breast cancer cells[J]. J Cell Biochem,2012,113(11):3330-41.
    31. Krupicka M, Tvaroska I. Hybrid quantum mechanical/molecular mechanicalinvestigation of the beta-1,4-galactosyltransferase-I mechanism[J]. J Phys ChemB,2009,113(32):11314-9.
    32.顾建新,江建海,徐洁杰,等.将β-1,4半乳糖基转移酶I活性作为肝癌诊断指标,专利号:200910197379.
    33. Shur BD, Evans S, Lu Q. Cell surface galactosyltransferase: current issues[J].Glycoconj J,1998,15(6):537-48.
    34. Ramakrishnan B, Shah PS, Qasba PK. alpha-Lactalbumin (LA) stimulates milkbeta-1,4-galactosyltransferase I (beta4Gal-T1) to transfer glucose fromUDP-glucose to N-acetylglucosamine. Crystal structure of beta4Gal-T1x LAcomplex with UDP-Glc[J]. J Biol Chem,2001,276(40):37665-71.
    35. Rodeheffer C, Shur BD. Characterization of a novel ZP3-independentsperm-binding ligand that facilitates sperm adhesion to the egg coat[J].Development,2004,131(3):503-12.
    36. Lu Q, Shur BD. Sperm from beta1,4-galactosyltransferase-null mice arerefractory to ZP3-induced acrosome reactions and penetrate the zona pellucidapoorly[J]. Development,1997,124(20):4121-31.
    37. Ward CR, Kopf GS. Molecular events mediating sperm activation[J]. Dev Biol,1993,158(1):9-34.
    38. Ward CR, Storey BT, Kopf GS. Activation of a Gi protein in mouse spermmembranes by solubilized proteins of the zona pellucida, the egg's extracellularmatrix[J]. J Biol Chem,1992,267(20):14061-7.
    39. Shi X, Amindari S, Paruchuru K, et al. Cell surfacebeta-1,4-galactosyltransferase-I activates G protein-dependent exocytoticsignaling[J]. Development,2001,128(5):645-54.
    40. Hathaway HJ, Shur BD. Cell surface beta1,4-galactosyltransferase functionsduring neural crest cell migration and neurulation in vivo[J]. J Cell Biol,1992,117(2):369-82.
    41. Huang Q, Shur BD, Begovac PC. Overexpressing cell surface beta
    1.4-galactosyltransferase in PC12cells increases neurite outgrowth on laminin[J].J Cell Sci,1995,108(Pt2):839-47.
    42. Runyan RB, Versalovic J, Shur BD. Functionally distinct laminin receptorsmediate cell adhesion and spreading: the requirement for surfacegalactosyltransferase in cell spreading[J]. J Cell Biol,1988,107(5):1863-71.
    43. Shen A, Zhu D, Ding F, et al. Increased gene expression ofbeta-1,4-galactosyltransferase I in rat injured sciatic nerve[J]. J Mol Neurosci,2003,21(2):103-10.
    44. Shen A, Yan J, Ding F, et al. Overexpression of beta-1,4-galactosyltransferase Iin rat Schwann cells promotes the growth of co-cultured dorsal root ganglia[J].Neurosci Lett,2003,342(3):159-62.
    45. Qian J, Cheng C, Liu H, et al. Expression of beta-1,4-galactosyltransferase-I inrat during inflammation[J]. Inflammation,2007,30(1-2):59-68.
    46. Niu S, Fei M, Cheng C, et al. Altered beta-1,4-galactosyltransferase I expressionduring early inflammation after spinal cord contusion injury[J]. J ChemNeuroanat,2008,35(3):245-56.
    47. Yang H, Yan M, Cheng C, et al. Expression of beta-1,4-galactosyltransferase I inrat Schwann cells[J]. J Cell Biochem,2009,108(1):75-86.
    48. Yang H, Yuan Q, Chen Q, et al. β-1,4-galactosyltransferase I promotes tumornecrosis factor-α autocrine via the activation of MAP kinase signal pathways inSchwann cells[J]. J Mol Neurosci,2011,45(2):269-76.
    49. Shur BD. Glycosyltransferases as cell adhesion molecules[J].Curr Opin Cell Biol,1993,5(5):854-63.
    50. Hinton DA, Evans SC, Shur BD. Altering the expression of cell surface beta1,4-galactosyltransferase modulates cell growth[J]. Exp Cell Res,1995,219(2):640-9.
    51.沈爱国,丁斐,顾晓松. β-1,4-半乳糖基转移酶-I对施万细胞增殖的影响[J].解剖学报,2003,34(3):323-326.
    52. de la Cruz L, Steffgen K, Martin A, et al. Apoptosis and involution in themammary gland are altered in mice lacking a novel receptor, beta1,4-GalactosyltransferaseI[J]. Dev Biol,2004,272(2):286-309.
    53. Li Z, Zong H, Kong X,et al. Cell surface beta1,4-galactosyltransferase1promotes apoptosis by inhibiting epidermal growth factor receptor pathway[J].Mol Cell Biochem,2006,291(1-2):69-76.
    54. Li Z, Wang H, Zong H,et al. Downregulation of beta1,4-galactosyltransferase1inhibits CDK11(p58)-mediated apoptosis induced by cycloheximide[J]. BiochemBiophys Res Commun,2005,327(2):628-36.
    55. Gabius HJ, van de Wouwer M, André S, et al. Down-regulation of the epidermalgrowth factor receptor by altering N-glycosylation: emerging role ofβ1,4-galactosyltransferases[J]. Anticancer Res,2012,32(5):1565-72.
    56. Yuan Q, Yang H, Cheng C, et al. β-1,4-Galactosyltransferase I involved inSchwann cells proliferation and apoptosis induced by tumor necrosis factor-alphavia the activation of MAP kinases signal pathways[J]. Mol Cell Biochem,2012,365(1-2):149-58.
    57. Penno MB, Passaniti A, Fridman R,et al. In vitro galactosylation of a110-kDaglycoprotein by an endogenous cell surface galactosyltransferase correlates withthe invasiveness of adrenal carcinoma cells[J].Proc Natl Acad Sci USA,1989,86(16):6057-61.
    58. Appeddu PA, Shur BD. Control of stable lamellipodia formation by expression ofcell surface beta1,4-galactosyltransferase cytoplasmic domains[J].J Cell Sci,1994,107(Pt9):2535-45.
    59. Johnson FM, Shur BD. The level of cell surface beta1,4-galactosyltransferase Iinfluences the invasive potential of murine melanoma cells[J]. J Cell Sci,1999,112(Pt16):2785-95.
    60. Keusch J, Lydyard PM, Delves PJ. The effect on IgG glycosylation of alteringbeta1,4-galactosyltransferase-1activity in B cells[J]. Glycobiology,1998,8(12):1215-20.
    61. Lemaire S, Derappe C, Pasqualetto V, et al. T lymphocyte activation results in anincreased expression of beta-1,4-galactosyltransferase:phorbol ester induces asimilar enhancement in the absence of mitosis[J]. Glycoconj J,1998,15(2):161-168.
    62. Asano M, Nakae S, Kotani N, et al. Impaired selectin-ligand biosynthesis andreduced inflammatory responses in beta-1,4-galactosyltransferase-I-deficientmice[J]. Blood,2003,102(5):1678-85.
    63. Han Y, Zhou X, Ji Y, et al. Expression of beta-1,4-galactosyltransferase-I affectscellular adhesion in human peripheral blood CD4+T cells[J]. Cell Immunol,2010,262(1):11-7.
    64. Cheng X, Wang X, Han Y, et al. The expression and function ofβ-1,4-galactosyltransferase-I in dendritic cells[J]. Cell Immunol,2010,266(1):32-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700