微生物酶对机械法制浆磨浆能耗的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保意识的增强和环境法规的实施,生物制浆技术和生物处理技术逐渐在制浆造纸行业得到了迅速研究和发展。经过生物处理的纸浆比未处理的浆料,制浆能耗降低,纸张物理性能好,对环境污染少,后续可漂性好。因此生物制浆技术日益受到国内外专家学者的重视,逐渐成为解决能源消耗,提高纸张质量,减少环境污染的有效途径之一。为此国内外科研人员对造纸工业充分利用生物技术降低制浆能源消耗等进行了广泛、深入地研究,并取得了一定的成果。微生物酶在生物制浆工艺技术中,发挥着重要的作用,对能耗的减少、纸浆性能的改善,产生了很好的效果。
     本论文对白腐菌和其他生物酶生物处理杨机械浆料进行了研究和探索。主要进行了利用白腐菌在适宜的温度和时间条件下进行培养、优化和接种:温度为28~30℃,时间为4~5天,进行白腐菌的固体扩大培养或者转接;在温度28~30℃,时间10天左右,在水浴振荡器里进行白腐菌的粗酶液的液体培养。粗酶液中含有白腐菌产生的漆酶、木素过氧化物酶和锰过氧化物酶等生物酶。利用白腐菌或白腐菌产粗酶液,及工业生产的商品酶-纤维素酶(绿色木霉产纤维素酶)、半纤维素酶(AU-PE89木聚糖酶)分别制定处理条件来生物处理杨木机械浆降低磨浆能耗、改善纤维性能以及提高浆料后续可漂性进行了研究。采用扫描电镜、纤维分析仪等仪器对于生物处理的杨木机械浆纤维改性或变化的作用机理和理论进行研究和讨论;生物机械法制浆已有较多的研究,但生物处理大都放在磨浆前对纤维原料(木片、稻麦草等)进行预处理。本论文中,杨木机械浆生物处理过程是在第一段磨浆和第二段磨浆之间,便于微生物酶能进入纸浆的纤维细胞壁中,直接同纤维原料进行接触降解或反应,微生物酶在此能够起很好的作用。
     结果表明,采用适宜的生物处理条件进行处理纸浆,能够明显降低磨浆和打浆能耗,纸浆打浆度比对照浆料明显提高5 oSR~15 oSR;还能显著改善纸浆的耐破指数、撕裂指数和裂断长等强度性能,特别是耐破指数最好效果能提高100%左右;纸浆的光学性能也得到优化,白度指标随生物处理条件的不同而不同,白腐菌及其粗酶液处理白度明显下降1%ISO~3%ISO左右,商品酶处理条件,白度都明显提高1%ISO~7%ISO左右。此外,采用适宜的生物处理条件对纸浆进行处理能够明显提高纸浆的后续过氧化氢可漂性,浆料最终白度性能提高1%ISO~6%ISO左右,撕裂指数、耐破指数和裂断长等强度性能也继续增加。酶处理对于纸浆耐破指数的提高贡献较大,能够使纸浆耐破指数提高50%以上。生物白腐菌处理中以BYBF白腐菌和Pc-5白腐菌为较佳的白腐菌。各种粗酶液中以Sdu-4粗酶液和洁丽香菇粗酶液处理效果较佳。纤维素酶和木聚糖酶分别是以温度60℃、酶用量20 IU/g为最优处理条件,而混合酶液(纤维素酶和木聚糖酶)是以温度45℃、酶用量20 IU/g为最优处理条件。
With the intensified consciousness of environment protection and the implement of the environment protection law, bio-pulping and bio-treatment technology have been gradually studied and developed in the pulp and paper industry. And the bio-treated pulp had lower pulping energy consumption, better paper physical properties, less environmental pollution and better subsequent pulp bleachability than the untreated pulp. Therefore, bio-pulping technology has been increasingly paid more attention by more and more experts and professors in China and overseas, and is gradually becoming a way to reduce pulping energy consumption, improve the pulp qualities and reduce environmental impacts. Many researchers have made an extensive and deep studies on utilizing bio-technology to reduce pulping energy consumption and they have got certain achievements. It has been found that Microbe and enzyme, for bio-pulping technologies, had significant effectiveness in reducing energy consumption and improving pulp properties.
     In this thesis, white-rot fungi and other enzymes treated aspen mechanical pulps were studied. It utilized white-rot fungi to isolate, optimize and inoculate in the feasible temperature and time condition: temperature 28~30℃, time 4~5 days, solid enlarged isolating or grafting white-rot fungi; temperature 28~30℃, time 10 days, isolating crude enzyme solution from white-rot fungi in a constant temperature shaker water bath. The crude enzyme solution from white-rot fungi contained manganese peroxidase-MnP, lignin peroxidase-LiP, laccase and so on. White-rot fungi, white-rot fungi isolating crude enzyme solutions and commercial enzymes including cellulose enzyme (Trichoderma viride cellulase) and hemicellulase (AU-PE89 xylanase) were used to treat triploid aspen mechanical pulp for reducing energy consumption and improving pulp properties and subsequent pulp bleachability. With scanning electron microscopy (SEM) and Fiber quality analysis (FQA), the mechanism and theory of aspen mechanical pulp fibers modification or changes during bio-treatment were researched and discussed. There were many researches on bio-mechanical pulping, but most of the bio-treatments were used to pretreated the fibers or pulps (wood chips and rice wheatstraw) before the refining stage. In this paper, bio-treatments of aspen mechanical pulp were carried out between the first and the second refining stage, which can make microbe and enzyme come into cell wall of fibers easily and react with fibers directly and indirectly to give the resultant pulp better properties. The results indicated that the appropriate bio-treatments can remarkly reduce refining energy consumption. The beating degree of treated pulp can be improved 5 oSR~15 oSR higher than that of the untreated pulp. Additionally, the bio-treatment can improve pulp strength properties such as breaking length, burst index and tear index, especially the burst index was improved by about 100%. Pulp optical properties had been improved, and the brightness depended on the specific treatment conditions, the brightness was remarkly reduced 1%ISO~3%ISO or so with white-rot fungi treatment or white-rot fungi isolating crude enzyme solution treatment. However, the other commercial enzymes obviously improved the brightness 1%ISO~7%ISO or so. Furthermore, the appropriate bio-treatments also can remarkly improve pulp subsequent peroxide bleachability. The resultant brightness can be increased 1%ISO~6%ISO or so as well as improved pulp strength properties. The enzyme treatment had much contributions to burst index improvement, and the burst index can be improved by 50%. It was found that BYBF and Lentinus lepideus white-rot fungi had better treatment effectivness than other white-rot fungi. It also was found that Sdu-4 and Lentinus lepideus isolated crude enzyme solutions had better treatment effectivness than other ones. The best results of cellulase and xylanase treatment were gotten at temperature 60℃and enzyme dosage 20 IU/g, while the best results of mix enzyme treatment came out at temperature 45℃and enzyme dosage 20 IU/g.
引文
[1] 谢来苏, 詹怀宇. 制浆原理与工程[M]. 第二版. 北京: 中国轻工业出版社, 2001: 1-3
    [2] 陈嘉川, 杨桂花, 刘玉. 速生杨制浆造纸技术与原理[M]. 北京: 科学出版社, 2006: 1-2
    [3] 曹朴芳, 曹振雷, 邝仕均. 我国造纸工业原料结构调整战略研究[J]. 中国造纸, 2003, 22(5): 55-63
    [4] 杨淑蕙. 植物纤维化学[M]. 第三版. 北京: 中国轻工业出版社, 2001: 65
    [5] 张盆, 胡惠仁, 刘廷志. 生物制浆的探讨[J] .黑龙江造纸, 2005(3): 26-28
    [6] 谢来苏. 制浆造纸的生物技术[M]. 北京:化学工业出版社, 2003: 12-13
    [7] 吴贵辉. 中国能源现状及发展趋势[J] .农电管理, 2007: 10-11
    [8] 刘秉钺, 曹光锐, 制浆造纸节能技术[M]. 北京: 中国轻工业出版社, 1999: 1
    [9] 隋晓飞. 制浆工艺生物技术的研究和进展[J]. 天津造纸, 2007, 29(109): 19-24
    [10] 余惠生, 付时雨, 秦文娟. 生物技术在制浆造纸工业应用及其最新进展[J]. 广东造纸, 1999,(5): 30-35
    [11] 曲音波. 制浆造纸生物技术研究进展[J]. 技术通报, 1998(6): 14-19
    [12] 张厚民, A.M.Stomp, T.K.Kir. 生物技术与制浆造纸工业(上)[J]. 中国造纸, 1994(4): 51-56
    [13] 张盆, 胡惠仁, 刘廷志. 生物制浆的探讨[J]. 黑龙江造纸, 2005(3):26-28
    [14] A. SETHURAMAN, D.E.AKIN, K-EL ERIKSSON. Production of Ligninolytic Enzymes and Synthetic Lignin Mineralization by the Bird’s Nest Fungus Cyathus Stercoreus[J]. Appl Microbial Biotechnol ,1999, (52): 689-697
    [15] MASOOD AKHTAR, G..M.SCOTT, R.E.SWANEY, et al.Biomechanical Pulping: A Mill-scale Evaluation[J]. Resources,Conservation and Recycling, 2000, (28): 241-252.
    [16] Jose Dorado, Frank W Claassen, Gilles Lenon, et al. Degradation and Detoxification of Softwood Extractives by Sapstain Fungi[J]. Bioresource Technology, 2000,(71): 13-20.
    [17] T.K.HAKALA, P.MAIJALA, J.KONN, et al. Evaluation of Novel Wood-rotting Polypores and Corticioid Fungi for the Decay and Biopulping of Norway Spruce (Picea abies) wood[J]. Enzyme and Microbial Technology, 2004, (34): 255-263.
    [18] 陈嘉翔. 生物技术在制浆工业应用的前景[J]. 中国造纸, 1993, 12(6): 50-57
    [19] 凌永龙. 生物技术在制浆造纸工业的应用与发展[J]. 上海造纸, 1996, 27(3):117-123
    [20] Brush,T,S., Forrell, R.L.and Ho,C., Biodegradation of Wood Extractives from Southern Yellow Pine by Ophiostoma Piliferum[J]. Tappi, 1994, 77(1): 155-159,
    [21] White T, et al. Protein Engineering of Xylanase for Pulp Bleaching Applications[A]. Proc.7thIntern.conf.Biotechnol.Pulp Paper Ind, (A):21-25
    [22] 李汉全, 何江浔, 陈胜军. 造纸工业中生物制浆和生物漂白技术研究[J]. 九江师专学报, 2003, (6): 20-24
    [23] 黄峰, 陈嘉祥, 余家鸾, 林鹿. 制浆造纸工业中的微生物及其酶[J]. 中国造纸学报, 1997, 12(1): 109-116
    [24] 王萍, 付时雨, 张友能. 生物技术在纸浆漂白中的应用[J]. 湖南造纸, 2000, (4): 22-24
    [25] Putz H.J, Renner K,Gottsching L, et al. Enzymatic Deinking in Comparison with Conventional Deinking of Offset News Paper[A]. Proceedings of TAPPI Pulping Conference.Atlanta, 1994:877
    [26] Jackson L.S., et al. Enzymatic Modifications of Secondary Fiber[J]. Tappi J., 1993, 76(3): 147
    [27] Pere J ,et al.Effects of purified Tricboderma recsei cellulases on the fiber properties of Kraft pulp J.Tappi J.,1995,78(6):71
    [28] 顾琪萍, 勇强, 尤纪雪. 几种酶脱墨性能及机理研究[J]. 纤维素科学与技术, 2003, 11(4): 8
    [29] 武书彬, 刘焕彬, 蔡亲荫, 李秉涌, 赵向阳, 黄锦新. 旧报纸生物脱墨生产应用研究[J]. 中国造纸, 2004, 23(11):1-3
    [30] THEODORE J.H. Fundamentals of Flotation Deinking[J]. Tappi, 1999, 82(3): 115-124.
    [31] 吴星娥, 周景辉. 酶法废纸脱墨研究进展[J]. 黑龙江造纸, 2004,(2): 21-24
    [32] Franks N. E., Holm H.C., Munk N., Enzymatic Facilitated Deinking of Mixed Office Waste:the Use of Alkaline Celluloses.[A]. London,UK paper Recycling’94 conference, 1994:8-10
    [33] Ow S.S.K., and Eom T.J., Additives, Pigments and Fillers in the Pulp and Paper Industry[J]. In Barcelona Proc.EUCUPA Symp, 1990:85-94
    [34] Jeffries T.W., Sykes M.S., Cropsey K.R., Klungness J.H.,and Abubakr S., Inhanced Removal of Toners from Office Waste Papers by Microbial Cellulases[J]. Biotechnology in Pulp and Paper Industry proc.6th Int.Conf. Biotechnol. Pulp and Paper Industry, Facultas-Uni.Verl.Vienna, Austria, 1995:141-144
    [35] 陈冠军, 秦梦华, 曲音波, 高培基. 纤维素酶脱墨机理的研究进展[J]. 生物工程进展, 2001, 21(3): 17-22
    [36] 柳荣展, 王广建. 白腐菌在制浆造纸工业中的应用进展[J]. 青岛大学学报, 2001, 16(3): 46-50
    [37] 李慧蓉. 白腐真菌的研究进展[J]. 环境科学进展, 1996, 4(6): 69-77.
    [38] 秦梦华, 高培基. 制浆造纸工业中的生物技术[J]. 中华纸业, 1999, (2): 6-9.
    [39] Setliff E.C.,Renata Marton, Granzow S.G..ad et al.Biomechanical Pulping with White-rot Fungi [J]. Tappi J.,1990, 73(8): 141-147.
    [40] Kashino Y. Biomechanical Pulping Using White-rot Fungus IZU-154[J]. Tappi J.,1993, 76(12): 167
    [41] Meyers G C. Fungao Pretreatment of Aspen Chips Improves Strength of Refiner Mechanical Pulp[J]. Ta ppi J., 1988, 71(50): 105.
    [42] A Khtar M. Biomechanical Pulping of Loblly Pine with Different Strains of the White-rot Fungus Ceriporiopsis Subvermispora[J]. Tappi J., 1992,75(2): 105.
    [43] 张东成, 郑书敏. 生物预处理对机械浆能耗及纸张性能的影响[J]. 国际造纸, 1994, 13(6): 34-37
    [44] Patrick C, Torotter. Biotechnology in the Pulp and Paper Industry:A Review Part 1: Tree Improvement,Pulping and Bleaching,and Dissolving Pulp Applications[J]. Tappi J., 1990, 73(4): 198-204.
    [45] 林云琴, 周少奇. 白腐菌降解纤维素和木质素的研究进展[J]. 环境技术, 2003, (4): 29-33
    [46] Crawford R.L. Liglin Biodegration and Transformation[J]. N.Y, 1981: 42-47.
    [47] .Leisola, S.Carois. The Mechanism of Lignin Degradation,Ligno-cellulose[J]. Science,Technology,Development and Use, 1992: 89-99
    [48] P.J>Kersten, et al. Glyoxal Oxidase and the Extracellular Peroxidases[J]. International Conference on Bio-technology in Pulp and Paper Industry, 1998: 457-463
    [49] H.E>Schoemaker. The Oxidation of Veratryl Alcohol,Diametric Lignin Models and Lignin by Lignin Peroxidase[J]. The redoxcyde revisited,PENS Micro, 1994,(13): 321-332
    [50] Hatakka. Lignin-modifying Enzymes from Selected White-rot Fungi Production and Role in Lignin Degradation[J]. PENS Micro, 1994(13): 125-135
    [51] J.A.Field. Acryalcohols in the Physiology of Ligninolytic Fungi[J]. FEMS.Micro, 1994(13): 297-312
    [52] P.Aader. The cellobiose-oxidizing Anzymes CBQ and CBO as Related to Ligninand Cellulose Degration-a Review[J]. FEMS.Micro, 1994, (13): 297-312
    [53] 郝月, 杨翔华,洪新. 纤维素酶的应用研究[J]. 青海科技, 2005, (3): 31-35
    [54] 涂启梁, 付时雨, 詹怀宇. 纤维素酶和半纤维素酶在制浆造纸工业中的应用[J]. 西南造纸, 2006, 35(3): 27-29
    [55] Akhtar M. Biochemical Pulping of Aspen Wood Chips with Threestrains of Ceriporiopsis Subvermi-spora[J]. Holzforschung, 1994, (48): 199-202.
    [56] Pere J, Paavilainen L, Siika-Aho M, Cheng Z,Viikari L. Potential Use of Enzymes in Drainagecontrol of Nonwood Pulps[J]. In: Proceedings of 3rd International Non-wood fibre pulping and paper making conference,Beijing, 1996, (2): 421-430
    [57] Pommier J C, Goma G, Fuentes J L, Rousset C, Jokinen O. Using Enzymes to Improve the Process and the Product Quality in the Recycled Paper industry[J]. Industrial Applications.Tappi J, 1990, (73): 197-202.
    [58] Oksanen T, Pere J, Buchert J, Viikari L. The effect of T. reesei Cellulases and Hemicellulases on the Paper Technical Properties of Never-dried Bleached Kraft Pulp[J]. Cellulose, 1997, (4): 329-339.
    [59] 刘亮伟, 王明道, 高玉千, 刘新育. 木聚糖酶研究进展[J]. 河南农业科学, 2006, (6): 14-18
    [60] 曲音波, 高培基, 陈嘉川. 制浆造纸用木聚糖酶的研究进展[J]. 生物工程进展, 1998, 18(6): 36-40
    [61] Subramaniyan S, Prema P. Cellulase-free Xylanases from Bacillus and Other Microorganisms[J]. FEMS MicrobiolLett, 2000, (183): 1-7.
    [62] Subramaniyan S, Prema P. Biotechnology of Microbial Xylanase:Enzymology, Molecular Biology, and Appllication[J]. Crit Rev Biotechnol, 2002, (22): 33-64.
    [63] Garg A P, RobertsJ C, McCarthy A J. Bleach Roosting Effect of Cellulose-Free Xylanase of Streptomyces Thermoviolaceus and Its Comparison with Two Commercial Enzyme Preparationson Birchwood Kraft Pulp[J]. Enzyme Microb Technol, 1998, (22): 594-598
    [64] 陈嘉川, 李昭成. 麦草浆的生物漂白与酶法改性[J]. 中华纸业, 2001, 22(4): 13-15
    [65] 张潇, 张大同, 李忠正, 高培基. 半纤维素酶 E-An-76 在桦木硫酸盐浆漂白中的作用[J]. 中国造纸, 1996, (5): 38-43
    [66] 张潇, 张大同, 李忠正, 高培基. E-An-76 在桦木 KP 浆及麦草 Soda-AQ 浆CEH 三段漂中的应用[J].林产化学与工业, 1995, 15(4): 39-44
    [67] 王伟, 陈嘉翔, 高培基. 桉木、蔗渣 KP 浆生物漂白的研究[J]. 中国造纸学报,1995, 10: 22-25
    [68] 王伟, 陈嘉翔, 高培基. 半纤维素酶和木素酶用于 KP 浆漂白的探索[J]. 中国造纸, 1995, (3): 45-48
    [69] 陈嘉川, 王保民, 曲音波. An-76 真菌木聚糖酶漂白 NaOH-AQ 麦草浆的研究[J]. 中国造纸学报, 1996.11(增刊): 15-18
    [70] Jiachuan Chen, et al. Pre-bleaching of Wheat Straw Pulps with Xylanase An-76[J]. In Proceedings of the Third International Non-wood Fiber Pulping and Papermaking Conference[C]. International Academic Publishers Beijing, 1996: 393- 401
    [71] 池玉杰, 伊洪伟. 木材白腐菌分解木质素的酶系统-锰过氧化物酶、漆酶和木质素过氧化物酶催化分解木质素的机制[J]. 菌物学报, 2007, 26(1): 153-160
    [72] 刘娜, 石淑兰. 漆酶在造纸工业中应用的最新研究[J]. 纤维素科学与技术, 2005, 13(3): 56-60
    [73] 赵玉林, 陈中豪, 王福君. 木素酶在制浆造纸工业中的应用研究进展[J]. 黑龙江造纸, 2001, (3): 3-6.
    [74] 钞亚鹏, 钱世钧. 真菌漆酶及其应用[J]. 生物工程进展, 2001, 21(5): 23-28.
    [75] 张爱萍, 秦梦华, 徐清华. 酶对纤维改性的研究进展[J]. 中国造纸, 2005, 24(9): 57-60
    [76] 刘梦茹, 付时雨, 詹怀宇, 林鹿. 锰过氧化物酶应用的研究进展[J]. 林产化学与工业, 2006, 26(2): 112-116
    [77] PAICEM G, REID ID, BOURBONNAISR, et al. Manganese Peroxidase, Produced by Trametes Versicolor Duringpulp Bleaching, Demethylates and Delignifies Kraft Pulp[J]. Appl EnvironMicrobiol, 1993,59 (1): 260-265
    [78] MOREIRA M T, FEIJOO G, MESTER T, et al. Biobleaching of Oxygen Delignified Kraftpulp by Severalwhite Rot Fungal Strains[J]. Journal of Biotechnology, 1997, 53(2/3): 237-251.
    [79] MOREIRA M T, FEIJOO G, SIERRA R, et al. Reevaluation of the Manganese Requirement for the Biobleaching of Kraft Pulp by White-rot Fungi[J]. Bioresource Technology, 1999, 70(3): 255-260
    [80] TIMOFEEVSKISL, NIE G, READINGN S, et al. Substrate Specificity of Lignin Peroxidase and a S168W Variant of Manganese Peroxidase[J]. Arch Biochem Biophys, 2000, 373(1): 147-153
    [81] 8]SASAKI T, KAJINO T, LIB, et al. New Pulp Biobleaching System Involving Manganese Peroxidase Immobilized in a Silica Support with Controlled PoreSizes [J]. Appl EnvironMicrobio1, 2001, 67(5): 2208-2212
    [82] 黄峰, 方靖, 卢雪梅. 纤维二糖脱氢酶对锰过氧化物酶降解木质素的促进作用[J]. 科学通报, 2001, 46(18): 1523-1528
    [83] WARRISHIH, VALLIK, RENGANATHAN V, et al. Thiol-mediated Oxidation of Nonphenolic Lignin Model Compounds by Manganeseperoxidase of Phanerochaete Chrysosporium[J]. Journal of Biological Chemistry, 1989, 264(24): 14185-14191.
    [84] BERMEK H, LI K CH, ERIKSSON K. Studies on Mediators of Manganese Peroxidase for Bleaching of Wood Pulps[J]. Bioresource Technology, 2002, 85(3): 249-252
    [85] 邓耀杰, 林鹿, 詹怀宇, 黎振球. 木素酶生物漂白的研究进展[J]. 中华纸业, 1998, (3): 21-24
    [86] 林鹿, 陈嘉翔, 余家鸾, 高扬. 高效产生降解木素酶和降解聚木糖酶的菌种选育[J]. 中国造纸学报, 1996,(增刊)61-68
    [87] 赵德清, 林鹿, 蒋李萍. 白腐菌对纸浆漂白的研究进展[J]. 微生物学通报, 2003, 30(6): 97-100
    [88] 谢响明, 何晓青. 微生物的木聚糖酶及其生物漂白研究进展[J]. 北京林业大学学报, 2003, 25(3): 111-116
    [89] EkSSon O., Lindgren, B.O. About the Linkage Between Lignin and Hemicelluloses in Wood[M]. Svensk Paperstiding, 1997, 80: 59-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700