罗伦隐球酵母脂肪酶纯化与ANS快速测定脂肪酶热稳定性方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂肪酶作为一种重要的工业用酶,在造纸、医药、食品、日用化工、能源开发等领域有着广泛的研究与应用。作者通过过离子交换柱Sepharose Fast Flow纯化了罗伦隐球酵母B40 (Cryptococcus laurentii B40)脂肪酶,获得了纯度超过95%的脂肪酶液,SDS-PAGE电泳显示其相对分子质量约为44.3KDa,该脂肪酶测序结果显示N端的12个氨基酸序列为:D-F-G-P-I-T-I-Y-T-P-P-A。酶学性质分析表明该脂肪酶是一种中低温碱性脂肪酶,较适作用温度为25℃,最适作用pH为10.2,Tm为40.90℃,能够催化水解中短碳链(12碳以下)的甘油三酯,对混合碳类甘油三酯也有一定的催化作用。分析了不同金属离子和表面活性剂对该酶的影响,发现重金属离子对该酶活性的发挥有较强的抑制作用,而能促进脂质溶解的试剂则能较好地提高酶的催化效用。
     脂肪酶的热稳定性是脂肪酶的重要性质之一,热稳定性好意味着储存方便,便于运输,能够耐受工业生产应用中的高温环境等。寻找一种简单快速的脂肪酶热稳定性测定法对筛选热稳定脂肪酶的工作有着重要的作用,它能够大大节省实验成本,提高实验效率,缩短研究到生产实践的周期。本文报道了一种简捷、高通量的脂肪酶热稳定性测定法——ANS脂肪酶稳定性快速测定方法的建立,该方法可将测定时间由传统的NaOH滴定法的几天缩短为几小时,而且非常适合高通量脂肪酶热稳定性的测定。
As one of the most widely use industry enzyme, lipase (EC 3.1.1.3) was used in medicine, food, daily chemical industry and other industrial fields. The lipase from Cryptococcus laurentii B40, which was reported as a lipase, was purified by DEAE Sepharose fast flow ion exchange column. The purified protein shows a single band on SDS-PAGE with the molecular about 44.3KDa estimated by SDS-PAGE electrophoresis. The N-terminal sequence of it is D-F-G-P-I-T-I-Y-T-P-P-A. The optimum pH and temperature are 10.2 and 25℃respectively. The enzyme could catalyse triglyceride below 12 carbon and could activated by some reagents like Sodium Dehydrocholate, but inhibited by many heavy metal such as Hg2+
     Lipase is a widely used industry enzyme but usually with poor thermo-stability. One of the methods to improve the thermo-stability is generating mutations by mutagenesis or DNA Shuffling and selecting the useful mutants from a mutant library. It is necessary to develop a rapid method to measure the thermo-stability of lipases since the traditional reaction activity analysis. Here we develop a rapid and high throughput ANS Fluorescence signal measurement to evaluate the thermo-stability of the lipases:incubate lipase at 25-65℃for 30min, then combine 0.20mg/mL lipase,0.05mM 1,8-ANS (8-Anilino-l-naphthalenesulfonic acid, ANS) in the buffer of 20mM Tris-HCl, 100mM-500mM NaCl, pH7.2. Read fluorescence signal at EX 378nm, EM 465nm with fluorescence photometer or plate reader. Then calculate the Tm with GraphPad Prism5.0. We tested PEL (Penicillium expansum lipase, mutant PEL-ep8-K115R and PEL-ep8-K202A with above method and got the similar Tm value that measured by traditional method.
引文
[1]Stephane Ransac, E. R., Youssef Gargouri, et al. Stereoselectivity of lipase:I Hydrolysis of enantiomeric glyceride analogues by gastricand pantreatic lipase, a kinetic study using the monomolecular film technique. The Journal of Biological Chemistry,1990,265(33):20263-20270.
    [2]Rollof J, H.S.A., Nilsson-ehle P, Postitonal specificity and substrate preference of purified staphylococcus aureus lipase. Biochimica et Biophysica Acta,1987, 921(2):370-377.
    [3]Hiromasa Tojo, T.I., Mitsuhiro Okamoto, Purification and Characterization of a Catalytic Domain of Rat Intestinal Phospholipase B/Lipase Associated with Brush Border Membranes. The Journal of Biological Chemistry,1998,273(4): 2214-2221.
    [4]Blow, D., More of the catalytic triad. Nature,1990.343:694-695.
    [5]Suzanne DURAND, F.C., Jean-Paul THOUVENOT, et al, A lipase with high phospholipase activity in guinea pig pancreatic juice. Biochimie,1978,60: 1215-1217.
    [6]FAUVEL J, B.M.-J., SARDA L Purification of 2 lipases with high phospho lipase A-1 EC-3.1.1.32 activity from guine-pig pancreas. Biochimica et Biophysica Acta, 1981,663(2):446-456.
    [7]Jensen, G, Triacylglycerol lipase, monoacylglycerol lipase and phospholipase activities of highly purified rat hepatic lipase. Biochimica et Biophysica Acta, 1982,710(3):464-470.
    [8]VAN OORT M G, D.A.M.T.J., DIJKMAN R Purification and substrate specificity of staphlococcus-hyicus lipase. Biochemistry,1989,28(24):9278-9285.
    [9]Thirstrup, K., Evidence for a pancreatic lipase subfamily with new kinetic properties. Biochemistry,1994,33(10):2748-2756.
    [10]Ralf Rosenstein, F.G., Staphylococcal lipases:Biochemical and molecular characterization. Biochimie,2000,82(11):1005-1014.
    [11]Robert L. Ory, A.J.S.A., Aaron M. Altschul The acid lipase of the castor bean Properties and substrate specificity. Journal of Lipid Research,1962,3(1): 99-105.
    [12]Nabil Mileda, S.C., Liliane Dupuis, Digestive lipases:From three-dimensional structure to physiology Biochimie,2000,82(11):973-986.
    [13]Ory RL, Y.L., Kircher HW, Association of lipase activity with the spherosomes of Ricinus communis. Arch Biochem Biophys,1968,123(2):255-264.
    [14]Yon-Hui Lin, A.H.C.H., Lipase in lipid bodies of cotyledons of rape and mustard seedlings. Archives of Biochemistry and Biophysics,1983,225(1):360-369.
    [15]Shoshi Muto, H.B., Lipase Activities in Castor Bean Endosperm during Germination Plant Physiology 1974.54:23-28.
    [16]Inge Rosnitschek, R.R.T., Properties of a membrane-bound triglyceride lipase of rapeseed (Brassica napus L.) cotyledons Planta,1980.148(3):193-198.
    [17]Ncube, I., Fatty acid selectivity of a lipase purified from Vernonia galamensis seed. Biochimica et biophysica acta,1995.1257(2):149-156.
    [18]Morgana K. Pierozan, R.J.d.C., Octvio A. C. Antunes, Optimization of Extraction of Lipase from Wheat Seeds (Triticum aestivum) by Response Surface Methodology. J. Agric. Food Chem.,2009.57:9716-9721.
    [19]Kanchan Bhardwaj, A.R., Ram Rajasekharan, Identification, Purification, and Characterization of a Thermally Stable Lipase from Rice Bran. A New Member of the (Phospho) Lipase Family. Plant Physiology,2001.127:1728-1738.
    [20]Masayoshi Maeshima, H.B., Purification and Properties of Glyoxysomal Lipase from Castor Bean. Plant Physiology,1985.79:489-493.
    [21]Yon-Hui Lin, A.H.C.H., Purification and Initial Characterization of Lipase from the Scutella of Corn Seedlings. Plant Physiology 1984.76:719-722.
    [22]Pinyaphong, P.P., Suree Synthesis of Cocoa Butter Equivalent from Palm Oil by Carica papaya Lipase-Catalyzed Interesterification. Chiang Mai Journal of Science,2009.36(3):359-368.
    [23]Shoshi Muto, H.B., Lipase Activities in Castor Bean Endosperm during Germination. Plant Physiology,1974.54:23-28.
    [24]Kan Satoa, H.S.S., Toshihiko Kamada, Tissue distribution of lipase genes related to triglyceride metabolism in laying hens (Gallus gallus) Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2010. 155(1):62-66.
    [25]Juan A. Noriega-Rodriguez, N.G.-M., Argentina Alanis-Villa, Extraction and fractionation of lipolytic enzyme from viscera of Monterey sardine (Sardinops sagax caerulea). International Journal of Food Science and Technology,2009.44:1223-1228.
    [26]Wen-Jun Shen, S.P., Hideaki Miyoshi, Functional interaction of hormone-sensitive lipase and perilipin in lipolysis. Journal of Lipid Research, 2009.50:2306-2313.
    [27]Fabio Cristiano Angonesi Brod, M.R.P., Jean Borges Bertoldo, et al, Heterologous Expression and Purification of a Heat-Tolerant Staphylococcus xylosus Lipase. Molecular Biotechnology,2009.44(2):110-119.
    [28]Martins, V., Lipases and biosurfactant production by solid state fermentation for utilization in bioremediation of vegetable oils and hydrocarbons QUIMICA NOVA,2008.31(8):1942-1947.
    [29]汪小锋,王俊,杨江科,等,微生物发酵生产脂肪酶的研究进展.生物技术通报,2008(4):47-53.
    [30]Deive, F.J., Angeles Sanroman, M., Longo, Maria A., Evaluation of a novel Bacillus strain from a north-western Spain hot spring as a source of extracellular thermostable lipase. Journal of Chemical Technology & Biotechnology,2009. 84(10):1509-1517.
    [31]Liu, S., Screening and identification of a novel organic solvent-stable lipase producer. Annals of microbiology,2009.59(3):539-543.
    [32]郭诤,张根旺,脂肪酶的结构特征和化学修饰.中国油脂,2003.28(7):5-10.
    [33]Winkler, F.D.A.A., Hunzuker, W, Structure of human pancreatic lipase. Nature, 1990.343:771-774.
    [34]R. Gupta, N.G., P. Rathi, Bacterial lipases:An overview of production, purification and biochemical properties. Appl Microbiol Biotechnol,2004.64: 763-781.
    [35]Theil, F., Lipase-supported synthesis of biologically active compounds. Chem Rev, 1995.95:2203-2227.
    [36]G. J. Robert, A.D.F., C. M. Richard, Detection and determination of lipase activity from various sources. Lipids,1983.18:650-657.
    [37]M. Matori, T.A., Y. Ota, Reaction conditions influencing positional specificity index (PSI) of microbial lipases. J Ferment Bioeng,1991.72:413-415.
    [38]Cao, S.G., The substrate specificity of lipase and its application potentiality. Prog Biochem Biophys,1995.22:9-13.
    [39]K. Stransky, M.Z., Z. Kejik, et al, Substrate specificity, regioselectivity and hydrolytic activity of lipases activated from Geotrichum sp. Biochem Eng J.,2007. 34:209-216.
    [40]A. M. Cyberg, P.A., Cipase specificity towards eicosapentaenoic acid and docosahexanoic acid depends on substrate structure. Biochim Biophys Acta,2008. 1742:343-350.
    [41]C. Hiraoka, M.M., Y. Suzuki, Screening, substrate specificity and stereoselectivity of yeast strains, which reduce sterically hindered isopropyl ketones. J Biosci Bioeng,2006.101:496-500.
    [42]S. Parida, J.S.D., Substrate structure and solvent hydrophobicity control lipase catalysis and enantioselectivity in organic media. J Am Chem Soc,1991.113: 2253-2259.
    [43]S. Parida, J.S.D., Tailoring lipase specificity by solvent and substrate chemistries. J Org Chem,1993.58:3238-3244.
    [44]A. E. M. Janssen, A.M.V., P. J. Hailing, Substrate specificity and kinetics of Candida rugosa lipase in organic media. Enzyme Microb Technol,1996.18: 340-346.
    [45]Ivana Lescic, B.V., Maja Majeric-Elenkov, Substrate specificity and effects of water-miscible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus. Enzyme and Microbial Technology 2001.29:548-553.
    [46]Sangeetha M. Chandrasekaran, S.B., Pramod P. Wangikar Substrate specificity of lipases in alkoxycarbonylation reaction:QSAR model development and experimental validation. Biotechnol Bioeng,2006.94:554-564.
    [47]J.C.Mateos, K.R., J.A.Rodriguez, et al, Mapping substrate selectivity of lipases from thermophilic fungi. Journal of Molecular Catalysis. B, Enzymatic,2007.49: 104-112.
    [48]Y. Gao, C.B., Properties and substrate specificities of an extracellular lipase purfied from Ophiostoma piceae. World Journal of Microbiology and Biotechnology,1998.14(3):421-429.
    [49]S. Chen, V.S.P., Phospholipid and fatty acid specificity of endothelial lipase: Potential role of the enzyme in the delivery of docosahexaenoic acid (DHA) to tissues. Biochim Biophys Acta,2007.1771:1319-1328.
    [50]Xin Song, X.Q., Bin Hao, et al Studies of substrate specificities of lipases from different sources. European Journal of Lipid Science and Technology,2008. 110(12):1095-1101.
    [51]Kane, J., DL Hardey, Formation of recombinam protein inclusion bodies in E. coli. Trends Biotech,1988.6:95-101.
    [52]Maraki, A., J. Kmg, Protein folding intermediates and inclusion body formation. Biotechnology,1989.2:690-697.
    [53]Pigiet, V., BJ Schoster, Thioredoxin-catalyzed refolding of disulphidecontaining proteins. Proc Natl Acad Sci,1986.83:7643-7647.
    [54]Haase-Pertingell, C., J. King, Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike manaration:A Model for inclusion body fomation. Biol Chem,1988.263:4977-4983.
    [55]Kroeger, J., AM Stock, CE Schutt, et al, Protein folding:Deciphering the second half of the geneic code, in American association for the advancement of science. 1990:Washington, DC.136-142.
    [56]汪家政,范明,等,蛋白质技术手册.2000,北京:科学出版社.
    [57]Xie Y, W.D., Control of aggregation in protein refolding:the temperature-leap tactic. Protein Sci,1996.5(3):517-523.
    [58]Werner, M., Clore GM, Refolding proteins by gel filtration chromatography. FEBS letters,1994.345(2-3):125-130.
    [59]Harris, E., S Angal eds, Separation based on structure. Protein purification methods:A Practical Approach.1989, New York:IRL Press.
    [60]蔡少丽,林琳,叠加突变改善扩展青霉脂肪酶的热稳定性.2007,福州:福建师范大学.
    [61]沈琼,黄滨,邵嘉亮,运用圆二色谱研究酶与化合物相互作用的机理.中山大学学报(自然科学版),2006.45(4):62-64.
    [62]林家永,李歆,封雯瑞,葡萄糖氧化酶与脂肪酶改善面粉质量的作用.粮油食品,1999.7-8(1):3-4,16-18.
    [63]Bloksma, A., Thiol and disulfide groups in dough rheology. Cereal Chem, 1975(52):171-183.
    [64]Elkassabany, M., Honseney, RC, Ascorbic acid as oxidant in wheat flour dough. Cereal Chem,1980(57):88-91.
    [65]Danno, G., Honseney, RC, Effect of sodium chloride and sodium dodecyl sulfate on mixograph proteries. Cereal Chem,1982(59):202-204.
    [66]Deleochio, A., Emulsifies and their use in soft wheat products. Bakers'Dig,1975. 49(4):28-35.
    [67]Anderson, D., Water-soluble food gums and their role in product decelopment. Cereal Food World,1988(33):844-858.
    [68]X Xu, L.F., C Cakoh, Modification of menhaden oil by enzymatic acidolysis to produce structured lipids. JAM Oil Soc,2000.77:171-176.
    [69]张中义,吴.,脂肪酶的研究进展.食品与药品,2007.9(12A):54-56.
    [70]顾琪萍,勇强,尤纪雪,等,几种酶脱墨性能比较及机理探讨.纤维素科学与技术,2003.11(4):8-15,21.
    [71]顾琪萍,勇.,尤纪雪,等,脂肪酶用于废旧报纸脱墨的研究.中国造纸,2003.22(4):7-10.
    [72]王治艳,脂肪酶控制树脂障碍的研究进展.上海造纸,2009.40(3):41-46.
    [73]Kamal A, S.A., Sandbhor M, et al, Synthesis of enantiopure beta-azidoalcohols from their ketoazides by reduction with NaBH4 in the presence of alumina and in situlipase resolution Tetrahedron,2004.15(6):935-939.
    [74]Gonzalo, G, Brieva R, Sanchez VM, et al, Enzymatic Resolution of trans-4-(4'-Fluorophenyl)-3-hydroxymethylpiperidines, Key Intermediates in the Synthesis of (-)-Paroxetine. J. Org. Chem,2001.66(26):8947-8953.
    [75]S. Tamalampudi, M.T., S. Hama, et al, Enzymatic production of biodiesel from Jatropha oil:A comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J,2008.39:185-189.
    [76]H. J. Berchmans, S.H., Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol,2008.99: 1716-1721.
    [77]GJ Piazza, T.F., Rapeseed oil for oleochemical usage. Eur J Lipid Sci Technol, 2001.103:450-454.
    [78]P Winayanuwattikun, C.K., K Piriyakananon, et al, Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioeng,2008.32: 1279-1286.
    [79]Q Li, W.D., D Liu, Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol,2008.60:749-756.
    [80]HM Alvarez, A.S., Triacylglycerols in prokaryotic microorganisms. Appl Microbiol Biotechnol,2002.60:367-376.
    [81]Chisti, Y, Biodiesel from microalgae. Biotechnol Adv,2007.25:294-306.
    [82]S Saraf, B.T., Influence of feedstock and process chemistry on biodiesel qauality. Process Saf Environ Prot,2007.85:360-364.
    [83]M Canakci, H.S., Biodiesel production from various feedstocks and their effects on the fuel properties. J Ind Microbiol Biotechnol,2008.35:431-441.
    [84]Marek Adamczak, U.T.B., Wlodzimierz Bednarski, The application of biotechnological methods for the synthesis of biodiesel. Eur J Lipid Sci Technol, 2009.111:808-813.
    [85]李宇扬,孙佩慧,胡基埂,等,脂肪酶催化制备生物柴油的研究进展.中国生物工程杂志,2008.28(10):136-140.
    [86]W Xie, N.M., Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy Fuels,2009.23:1347-1353.
    [87]Wenlei, X., Ning, Ma, Immobilized Lipase on Fe3O4 Nanoparticles as Biocatalyst for Biodiesel Production. Energy Fuels,2009.23:1347-1353.
    [88]王海燕,李富伟,高秀华,脂肪酶的研究进展及其在饲料中的应用.饲料工业,2007.28(6):14-17.
    [89]Enberg RM, H.M., Leser TD, et al, Efect of zinc bacitracin and salinomycin on intestinal microflora and performan ce of broilers. Pouh Sci,2000.79(9): 1311-1319.
    [90]Li Zhengping, L.C., Su Yuqin, et al, Study on the interaction between protein and 8-anilino-1-naphthalenesulfonic acid by resonance light scattering technique. Chemical Journal on Internet,2005.7(12):83-92.
    [91]黄曼,卞科,蛋白质疏水性测定方法研究进展.粮油食品科技,2004.12(2):p.31-32.
    [92]阎金勇,杨江科,徐莉, 等.白地霉Y162脂肪酶基因克隆及其在毕赤酵母中的高效表达.微生物学报,2008,48(2):184-190.
    [93]江慧芳,王雅琴,刘春国.三种脂肪酶活力测定方法的比较及改进.化学与生物工程,2007,24(8):72-75.
    [94]王彩梅,林琳.罗伦隐球酵母B40脂肪酶的分离纯化及扩展青霉脂肪酶突变体的构建.2007,福州:福建师范大学.
    [95]JAY KANT YADAV, V PRAKASH. Thermal stability of α-amylase in aqueous cosolvent systems. Journal of Biosciences,2009,34(3):377-387.
    [96]Jason J Lavinder, Sanjay B Hari, Brandon J Sullivan, et al. High-Throughput Thermal Scanning:A General, Rapid Dye-Binding Thermal Shift Screen for Protein Engineering. American Chemical Society,2009,131(11):3794-3795.
    [97]Zhang Yan-Ling, Pan Xian-Ming, Zhou Jun-Mei. SURFACE HYDROPHOBICITY AND THERMAL AGGREGATION OF ADENYLATE KINASE. BIOCHEMISTRY and MOLECULAR BIOLOGY INTERNATIONAL,1998, 44(5):949-960.
    [98]Mohd Shah na waz, Khan · Bilqees Bano. Mechanism of unfolding of Goat Lung Cystatin During Urea and Guanidine Hydrochloride Induced Denaturation. International Journal of Peptide Research and Therapeutics,2009,15(1):81-86.
    [99]袁彩,林琳,施巧琴,等.扩展青霉碱性脂肪酶基因在毕赤酵母中的高效表达.生物工程学报,2003,19(2):231-235.
    [100]Slobodanka D Manceva, Marianne Pusztai-Carey, Peter Butko. Effect of pH and ionic strength on the cytolytic toxin Cyt1 A:a fluorescence spectroscopy study. Biochimica et Biophysica Acta,2004,1699(1-2):123-130.
    [101]邹有土,吴义真,林琳,等.K202A突变对扩展青霉脂肪酶热稳定性的影响.中国生物工程杂志,2007,27(12):52-56.
    [102]Van Thong Pham, Erin Ewing, Harvey Kaplan, et al. Glycation Improves the Thermostability of Trypsin and Chymotrypsin. Biotechnology and Bioengineering, 2008,101(3):452-459.
    [103]Maximiliano Figueroa, Man'a Victoria Hinrichs, Marta Bunster, et al. Biophysical studies support a predicted superhelical structure with armadillo repeats for Ric-8. PROTEIN SCIENCE,2009,18(6):1139-1145.
    [104]Shoeb Ahmad, Nalam Madhusudhana Rao. Thermally denatured state determines refolding in lipase:Mutational analysis. PROTEIN SCIENCE,2009,18(6): 1183-1196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700