Kocuria sp.3-3来源木聚糖酶基因筛选、克隆、表达、性质研究及定点突变研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木聚糖是半纤维素的主要组成部分,是自然界中第二大生物质资源。木聚糖酶是指将木聚糖水解成低聚木糖或木糖的酶系总称,其中内切p-1,4-D-木聚糖酶[EC 3.2.1.8]是其中最关键的酶。木聚糖酶在饲料、食品、造纸和纺织等领域都有广泛的应用前景。近年来,随着酶法造纸术的发展,碱性木聚糖酶引起了人们木聚糖酶的高度关注。本研究基于已经得到的一株能够产碱性木聚糖酶的放线菌,通过构建该菌株的基因组文库,筛选出木聚糖酶基因,明确了基因的结构,并将其在大肠杆菌表达系统中进行表达。在对酶进行纯化后,深入研究了该酶的酶学性质。
     1)对3-3进行菌种鉴定,包括形态观察、生理生化检测和系统发育树分析,确定菌株的分类;
     2)提取3-3的基因组DNA,对基因组DNA进行酶切,将4-9 kb范围内的酶切片段与载体相连并转化入大肠杆菌感受态中,从而构建了3-3的基因组文库,并筛选获得了1个含木聚糖酶基因Kxg的阳性转化子X-27,经测序后确定了Kxg的序列,从而得到了木聚糖酶Kxp的序列。对Kxp一系列的分析结果表明,Kxp含有389个氨基酸残基,分子量为43806.4,属于F/10家族糖苷水解酶。
     3)根据Kxg序列设计引物,以X-27提取的质粒为模板,进行PCR扩增得到木聚糖酶基因Kxg。将Kxg以正确的阅读框架连接到大肠杆菌表达载体pET-Duet上,并转化入E.coli rosetta,获得重组工程菌R32。经过IPTG诱导,在培养基上清液中得到了Kxp。
     4)采用离子交换和亲和层析的方法对得到的Kxp粗酶液进行纯化,经过两步纯化后,得到了纯度很高的终产物。对Kxp进行酶学性质分析,酶Km和Vmax分别为5.41mg/mL和202.3μmol·min-1·mg-1。Kxp的最适反应pH为8.5,在pH7-10之间保持最高活力的50%以上。Kxp具有很好的pH稳定性,在pH8-11内4℃过夜放置后,酶活残留仍在80%以上。Kxp的最适反应温度为55℃,在反应温度低于40℃C或高于60℃C时酶活性较低。Kxp具有良好的热稳定性,70℃C处理1h后酶活仍有30%残留。在反应体系中加入5 mM的各种金属离子或化合物,观察其对酶活的影响,结果表明酶活受重金属离子影响较大,而轻金属离子对酶活几乎没有影响。
     5)对木聚糖酶Kxp的H131、W135、E176、N179、H259、E288、W332、W340和H102等位点进行定点突变,并对各突变蛋白的性质进行初步研究。结果表明,前八个位点对于维持酶活具有重要作用,而H131、W135和H259也对酶和底物的结合起一定作用。为提高木聚糖酶Kxp的热稳定性,将H102用Cys残基替代。对突变蛋白KxpH102C的热稳定性研究结果表明,突变蛋白的热稳定性较之Kxp并未有提高。
Xylan is the major component of hemicellulose, and the second most abundant bioresource in the nature. Xylanolytic enzymes are a system of hydrolytic enzymes, which act cooperatively to hydrolysis xylan to its constituent sugars. Among all the enzymes, endo-β-1,4-D-xylanase [EC3.2.1.8] plays a crucial role. It has great potential applications in feed industry, food industry, pulp and paper industry and textile industry. Since the development of using xylanase to bleach alki-treated wood pulp instead of using usual environmentally damaging chemical reagents, the research for alkaline xylanase has been extensively studied. In this research, we constructed a genomic library of a strain of actinomyce (strain 3-3) capable of producing xylanase (Kxp) and screened the gene (Kxg) encoding Kxp. Thus we determined the structure of the gene, and expressed it in the E.coli expression system. The properties of the xylanase was determined after purification.
     1) Determine the classification of the strain 3-3 by means of morphologic observation, performing physiological and biochemical tests and anlysis of
     phylogenetic tress;
     2) In order to construct the genomic library of 3-3, the genomic DNA was extracted and cut. The fragments within the range of 4-9 kb was ligated to vectors and transfered into competence E.coli. A positive clon carrying Kxg, named X-27, was screened and Kxg was sequenced. The sequence of Kxp was determined by translating the sequence of Kxg. The analysis of Kxg shows that it has 389 amino acid residues and its molecular weight is 43146.4. Kxg is a member of hydrolase F/10.
     3) Kxg was obtained from by PCR amplification, using the plasmid extracted from X-27 as the template. After several steps of treatments, it was ligated into the E.coli expression vector pET-Duet with the correct open reading frame, transferred into E.coli rosetta (DE3), and finally the recombinant R32 was obtained. After induced by IPTG, Kxg was successfully expressed in R32 and Kxp was found in the supernatant.
     4) The Kxp crude enzyme was well purified by means of anion exchange. Then its properties were studied. Its optimal pH was 8.5, and it sustained above 50%of the enzyme activity between pH 7-10. Kxp showed high pH stability in 4℃overnight between pH 7.5-11.5, with more than 80%of the enzyme activity remained. Its optimal temperature was 55℃, and it showed low enzyme activity below 30℃Cor over 60℃. Kxp had high thermal stability, with 30%of the enzyme activity remaining after incubated at 70℃for 1 h. The research on the effect of 5 mM metallic ions on the enzyme activity showed that the enzyme activity was greatly affected by heavy metallic ions, while light metallic ions almost had no effects on the enzyme activity.
     5) Nine sites (H131, W135, E176, N179, H259, E288, W332, W340 and H102) were chosen for site-directed mutagenesis, and the properties of the mutanted proteins were studied. The results showed that the former eight sites palyed important roles in maintaining enzyme activity, while H131, W135 and H259 also effected the combination between the enzyme and xylan. In order to enhance the thermostability of Kxp, H102 was replaced by cysteine. The thermostability of KxpH102C was studied, and the resulted showed that the thermostability of KxpH102C wasn't enhanced compared to Kxp.
引文
1.白雪峰,木聚糖酶在饲料中的应用进展.中国畜牧兽医,2004,31(12):11-13.
    2.冯定远,张莹,余石英,付畅国,蒲英远,颜惜玲,含有木聚糖酶和p-葡聚糖酶的酶制剂对猪日粮消化性能的影响.畜禽业,2000,7:44-45.
    3.高艳华,袁建国,食品级木聚糖酶在面食制品改良中的应用研究.全国第二届功能性生物制品生产与应用技术交流会论文集,2006,151-154.
    4.顾琪萍,尤纪雪,勇强,余世袁,脂肪酶和纤维素酶/木聚糖酶混合用于ONP脱墨.中国造纸,2004,23(2):7-9.
    5.胡沂淮,邵蔚蓝,木聚糖酶.生命的化学,2002,22(3):281-285.
    6.李桂珍,生物技术在麻纺织领域的开发与应用.麻纺织技术,1998,21(3):14-18.
    7.李海龙,陈嘉川,杨桂花,木聚糖酶及其生物漂白研究进展.中国造纸学会第十二届学术年会论文集,2005,382-389.
    8.李孝辉,木聚糖酶在食品及饲料工业上的应用.粮食与饲料工业,1999,12:30-31.
    9.刘瑞田,曲音波,木聚糖酶分子的结构区域.生物工程进展,1998,18(6):26-28.
    10.刘相梅,祁蒙,曲音波,木聚糖酶基因克隆、表达与分泌及定点诱变研究进展.生物工程进展,2001,21(2):28-31.
    11.毛连山,余世袁,木聚糖酶在纸浆漂白中应用的研究现状.中国造纸学报,2006,21(3):93-98.
    12.曲音波,高培基,陈嘉川,制浆造纸用木聚糖酶的研究进展.生物工程进展,1998,18(6):36-40.
    13.石军,陈安国,木聚糖酶生产与应用研究前景.饲料工业,2001,22(9):40-43.
    14.孙振涛,赵祥颖,刘建军,杜金华,微生物木聚糖酶及其应用.生物技术,2007,17(2):93-97.
    15.汪正强,微生物木聚糖酶的生产及其在食品工业中应用的研究进展.中国食品学报,2005,5(1):1-9.
    16.王金全,蔡辉益,陈宝江,刘伟,刘国华,张姝,李建涛,田亚东,小麦日粮中添加木聚糖酶对肉仔鸡生产性能、免疫、消化器官发育和血液代谢激素水平的影响.河北农业大学学报,2005,28(1):73-76.
    17.王时良,朱劫,邬敏辰,木聚糖酶的分离纯化和性质研究.西北农林科技大学学报:自然科学版,2006,34(2):71-76.
    18.伍安国,曾辉,苏庆平,生物技术在造纸工业中的应用研究进展.西南造纸,2005,34(2):15-19.
    19.徐冬,韩玉洁,徐忠,低聚木糖的综合开发利用.食品研究与开发,2005,26(2):81-83.
    20.杨观中,真菌木聚糖酶在小麦啤酒酿造中的应用.酿酒,2007,34(1):51-53.
    21.岳晓禹,贺小营,牛天贵,刘相东,胡昊磊,刘寿春,木聚糖酶的研究进展.酿酒科技,2007,4:113-120.
    22.张世敏,刘寅,刘新育,陈红歌,王会娟,崔党群,木聚糖酶基因研究进展.微生物学杂志,2006,26(4):61-67.
    23.张素风,陈鹏,郑冬颖,木聚糖酶用于旧书刊纸脱墨的研究.中国造纸,2005,24(10):13-16.
    24.张晓元,纤维堆囊菌So9733-1木聚糖酶基因的克隆、表征与异源表达分析.博士论文,2005.
    25.周文美,胡晓瑜,黄永光,木聚糖酶的性质及其在酿酒方面的应用.酿酒科技,2006,11:68-70.
    26. Beg QK, Kapoor M, Mahajan L, Hoondal GS. Microbial xylanases and their industrial applications:a review. Applied Microbiology and Biotechnology,2001, 56:328-338.
    27. Bhat MK. Cellulases and related enzymes in biotechnology. Biotehcnology Advances,2000,18:355-383.
    28. Collins T, Gerday C, Feller G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews,2005,29:3-23.
    29. Daniel C, Pretorius IS, Willem H. Expression of a Trichoderma reesei β-Xylanase Gene(XYN2) in Saccharomyces cerevisiae. Applied and Environmental Microbiology,1996,62(3):1036-1044.
    30. Ebringerova A, Heinze T. Xylan and xylan derivatives-biopolymers with valuable properties. Macromolecular Rapid Communications,2000,21:542-556.
    31. Elizabeth P, Akatsuka H, Moriyama H, Shinmyo A, Hata Y, Kastube Y, Urabe I, Okada H. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Baculluspumilus. Biochemical,1992,288:117-121.
    32. Gilkes NR, Henrissat B, Kilburn DG, Miller RC, Warren RAJ. Domains in Microbial β-1,4-Glycanases:Sequence Conservation, Function, and Enzyme Families. Microbiological Reviews,1991,55(2):303-315.
    33. Gundlapally Reddy, Jogadhenu Prakash, Prabahar V, Matsumoto GI, Stackebrandt E, Shivaji S. Kocuria polaris sp. nov., an orange-pigmented psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. International Journal of Systematic and Evolutionary Microbiology,2003,53:183-187.
    34. Gupta N, Reddy SR, Maiti S, Ghosh A.2000, Cloning, Expression, and Sequence Analysis of the Gene Encoding the Alkali-Stable, Thermostable Endoxylanase from Alkalophilic Mesophilic Bacillus sp. Strain NG-27. Applied and Environmental Microbiology,66(6):2631-2635.
    35. Higuchi R, Krummel B, Randall K.Saiki. A general method of in vitro preparation and specific mutagenesis of DNA fragments:study of protein and DNA interactions. Nucleic Acids Research,1988,16(15):7351-7367.
    36. Hristov AN, McAllister TA, Cheng KJ. Intraruminal supplementation with increasing levels of exogenous polysaccharide-degrading enzymes:Effects on nutrient digestion in cattle fed a barley grain diet. Journal of Animal Science,2000, 78:477-487.
    37. Hu Y, Zhang Guimin, Li Aiying, Chen Jing. Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Applied Genetics and Molecular Biotechnology,2008,80: 823-830.
    38. Jiang ZQ, Li XT, Yang SQ, Li L, Tan S. Improvement of the breadmaking quality of wheat flour by the hyperthermophilic xylanase B from Thermotoga maritima. Food Research International,2004,38:37-43.
    39. Jiang ZQ, Yang SQ, Tan SS, Li LT, Li XT. Characterization of a xylanase from the new isolated thermophilic Thermomyces lanuginosus CAU44 and its application in bread making. Letters in Applied Microbiology,2005,41:69-76.
    40. Wong, Larry UL, Tan, Saddler JN. Multiplicity of β-1,4-xylanase in microorganisms:Functions and applications. Mrcrobiological Reviews,1988, 52(3):305-317.
    41. Kim DY, Han MK, Lee JS, Oh HW, Park DS, Shin DH, Bae KS, Son KH, Park HY. Isolation and characterization of a cellulose-free endo-β-1,4-xylanase produced by an invertebrate-symbiotic bacterium, Cellulosimicrobium sp. HY-13. Process Biochemistry,2009,44:1055-1059.
    42. Kim SB, Nedashkovskaya OI, Mikhailov W, Han SK, Kim KO, Rhee MS, Bae KS. Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 2004,54:1617-1620.
    43. Kleine J, Leibl W. Comparative characterization of deletion derivatives of the modular xylanase XynA of Thermotoga maritima. Extremophiles,2006,10: 373-381.
    44. Kovacs G, Burghatdt J, Pradella S, Schumann P, Stackebrandt E, Marialigeti K. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail(Typha angustifolia). International Journal of Systematic and Evolutionary Microbiology,1999,49:167-173.
    45. Krishna P, Arora A, Reddy MS. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J Microbiol Biotechnol,2008,24:3079-3085.
    46. Kulkarni N, Shendye A, Rao M. Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews,1999,23:411-456.
    47. Lapidot A, Mechaly A, Shoham Y. Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. Journal of Biotechnology,1996,51:259-264.
    48. Lee CC, Smith M, Rena E, Williams TG, Wagschal K, Robertson GH, Dominic Woog. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Current Microbiology,2006,52:112-116.
    49. Li CJ, Hong YZ, Shao ZZ, Lin L, Huang XL, Liu PF, Wu GB, Meng X, Liu ZD. Novel alkali-Stable, cellulase-free xylanase from deep-sea Kocuria sp. Mn22. Journal of Microbiology and Biotechnology,2009,873-880.
    50. Li N, Meng K, Wang YR, Shi PJ, Luo HY, Bai YG, Yang PL, Yao B. Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9. Appl Microbiol Biotechnol,2008,80: 231-240.
    51. Li N, Shi PJ, Yang PL, Wang YR, Luo HY, Bai YG, Zhou ZG, Yao B. A xylanase with high pH stability from Streptomyces sp. S27 and its carbohydrate-binding module with/without linker-region-truncated versions. Appl Microbiol Biotechnol, 2009,83:99-107.
    52. Li XT, She YL, Sun BG, Song HL, Zhu YP, Lv YG, Song HX. Purification and characterization of a cellulase-free, thermostable xylanase from Streptomyces rameus L2001 and its biobleaching effect on wheat straw pulp. Biochemical Engineering Journal,2010,71-78.
    53. Manikandan K, Bhardwaj A, Gupta N, Lokanath NK, Ghosh A, Reddy VS, Ramakumar S. Crystal structures of native and xylosaccharide-bound alkali thermostable xylanase from an alkalophilic Bacillus sp. NG-27:Structural insights into alkalophilicity and implications for adaptation to polyextreme conditions. Protein Science,2006,15:1951-1960.
    54. Ling MM, Robinson BH. Approaches to DNA Mutagenesis:An Overview. Analytical Biochemistry,1997,254:157-178.
    55. Nakamura S, Wakabayashi K, Nakai R, Aono R, Horikoshi K. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. Strain 41M-1. Applied and Environmental Microbiology,1993,59(7):2311-2316.
    56. Ninawe S, Kapoor M, Kuhad RC. Purification and characterization of extracellular xylanase from Streptomyces cyaneus SN32. Bioresource Technology, 2008,99:1252-1258.
    57. Ratanachomsri U, Sriprang R, Sornlek W, Buaban B, Champreda V, Tanapongpipat S, Eurwilaichitr L. Thermostable xylanase from Marasmius sp.: purification and characterization. Journal of Biochemistry and Molecular Biology, 2006,39(1):105-110.
    58. Roberge M, Dupont C,Morosoli R, Shareck F, Kluepfel. Asparagine-127 of xylanase A from Streptomyces lividans, a key residue in glycosyl hydrolases of superfamily 4/7:kinetic evidence for its involvement in stabilization of the catalytic intermediate. Protein Engineering,1997,10(4):399-403.
    59. Roberge M, Shareck F, Morosoli R, Kluepfel D, Dupont C. Characterization of active-site aromatic residues in xylanase A from Streptomyces lividans. Protein Engineering,1999,12(3):251-257.
    60. Roberge M, Shareck F, Morosoli R, Kluepfel D, Dupont C. Characterization of two important histidine residues in the active site of xylanase A from Streptomyce lividans, a family 10 glycanase. Biochemistry,1997,36:7769-7775.
    61.Shallom D, Yuval Shoham. Microbial hemicellulases. Ecology and Industrial Microbiology,2003,6:219-228.
    62. Singh S, Pillay B, Dilsook V, Prior BA. Production and properties of hemicellulases by a Thermomyces lanuginosus strain. Journal of Applied Microbiology,2000,88:975-982.
    63. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus:Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus. International Journal of Systematic and Evolutionary Microbiology,1995,45(4):682-692.
    64. Stockholm.1986. Biotechnology in the pulp and paper Industry.
    65. Subramaniyan S, Prema P. Biotechnology of microbial xylanases:Enzymology, molecular biology and application. Critical Reviews in Biotechnology,2002, 22(1):33-46.
    66. Teather RM, Wood PJ. Use of congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and Environmental Microbiology,1982,43(4):777-780.
    67. Turunen O, Etuaho K, Fenel F, Vehmaanpera J, Wu XY, Rouvinen J, Leisola M. A combination of weakly stabilizing mutations with a disulfide bridge in the a-helix region of Trichoderma reesei endo-1,4-β-xylanase Ⅱ increases the thermal stability through synergism. Journal of Biotechnology,2001,88:37-46.
    68. Turunen O, Vuorio M, Fenel F, Leisola M. Engineering of multiple arginines into the Ser/Thr surface of Trichoderma reesei endo-1,4-β-xylanase Ⅱ increases the thermotolerance and shifts the pH optimum towards alkaline pH. Protein Engineering,2002,15(2):141-145.
    69. Urban A, Neukirchen S, Jaeger KE. A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Research,1997, 25(11):2227-2228.
    70. Wakarchuk WW, Robert L, Campbell, Sung WL. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Science,1994,3:467-475.
    71. Wakarchuk WW, Sung WL, Campbell RL, Cunningham A, Watson DC, Yaguchi M. Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Engineering,1994,7(11):1379-1386.
    72. Wu SJ, Liu B, Zhang XB. Characterization of a recombinant thermostable xylanase from deep-sea thermophilic Geobacillus sp. MT-1 in East Pacific. Appl Microbiol biotechnol,2006,72:1210-1216.
    73. Yan QJ, Hao SS, Jiang ZQ, Zhai Q, Chen WW. Properties of a xylanase from Streptomyces mantensis being suitable for xylooligosaccharides production. Journal of Molecular Catalysis B:Enzymatic,2009,58:72-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700