Ge/Si异质结及其光电探测器特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着光通信技术的发展,制备响应波长在1.3μm和1.55μm,并具有高响应度、高量子效率、低暗电流以及高响应频率带宽的光电探测器以实现Si基光电集成接收芯片一直是人们追求的目标。InGaAs/InP等Ⅲ-Ⅴ族半导体材料制备的探测器量子效率高、暗电流小并已进入产业化阶段,但其价格昂贵、导热性能和机械性能较差以及与现有的成熟的Si工艺兼容性差等缺点限制了其在Si基光电集成技术中的应用。Ge材料的直接带隙约为0.67eV,对光通信中C波段(1528~1560nm)的光信号有较好的响应特性,并且Ge/Si异质结中外延Ge材料由于存在张应变,使其带隙变窄、吸收系数增大、吸收波长扩展至1.6μm以上,可以对光通信的L波段(1561~1620μm)的信号进行检测,满足了不断发展的波分复用技术的需求。特别是Ge材料的价格低廉以及与现有的Si工艺完全兼容,因此,研究和制备Ge/Si异质结光电探测器引起了人们极大的兴趣。然而由于Ge和Si的晶格失配度较大,在Ge/Si异质结的Ge外延材料中存在较高密度的位错,导致Ge/Si异质结光电探测器暗电流特性变差,限制了器件的发展。
     本文围绕Ge/Si异质结特性,从器件内部的物理机理上对其PIN型光电探测器和分离吸收与倍增层雪崩型(SACM-APD)光电探测器的特性做了理论研究和分析,从而为Ge/Si异质结光电探测器的设计、制造、性能优化、应用控制提供理论依据。本论文主要工作和研究成果如下:
     1.研究和分析了Ge/Si异质结中位错对光电探测器特性的影响。从Ge/Si异质结中位错的形成机理和特性出发,结合器件工作的物理机制和实际器件中存在的物理效应,分别从位错的密度分布和位错的电离能两方面对器件性能产生的影响做了调查研究,并与实验结果进行了比对验证。结果表明,Ge外延层中位错起到了复合中心的作用,使载流子发生间接复合,是形成探测器暗电流的主要机制,其间接复合率会受到位错的密度、位错的电离能以及载流子浓度的影响。因此,降低Ge外延层、特别是Ge缓冲层的位错密度可以有效的降低器件的暗电流;在高偏压下,受电场影响Ge材料的能带发生弯曲使得位错的电离能降低,暗电流增大,并随着Ge吸收层厚度的减小,影响显著增大。结合以上两方面的因素,以及Ge/Si异质结的能带结构和重掺杂Si衬底中杂质向Ge外延层的扩散,我们计算得到的PIN型和SACM-APD型Ge/Si异质结光电探测器的特性结果与实验测试结果一致。
     2.分析了Ge/Si异质结的Ge外延层中应变的形成机理及其对外延Ge材料性质和光电探测器特性的影响。由于Ge和Si的热膨胀系数不同,从较高的生长温度冷却到室温时,在弛豫的Ge外延层中形成的热应变表现为双轴张应变。受张应变的作用,外延Ge材料的轻、重空穴带分离,直接带隙减小,对入射光的吸收系数增大。因此,采用Ge/Si异质结制备的光电探测器对光信号的响应度增大,响应截止波长向长波长延伸。这种张应变主要受到工艺温度的影响,其最大值可达到0.34%。结合应变与材料参数特性的关系,我们给出了探测器响应度随应变量和波长的变化关系,并与实验结果相吻合。
     3.研究了Ge/Si异质结光电探测器的频率响应特性,并分析了器件的几何结构对频率响应的影响。光电探测器的频率响应主要受到载流子的在耗尽层中的渡越时间、在耗尽层之外的扩散时间以及RC响应时间的限制。在SACM-APD型Ge/Si异质结探测器中,频率特性在大增益的情况下还受到雪崩建立时间的影响。采用雪崩增益模型的数值计算以及频率响应的矩阵代数分析法,我们得到探测器的频率特性与实验结果一致。对于PIN型光电探测器,Ge吸收层的厚度对渡越时间和RC响应时间的影响不同,因此,在器件表面面积一定时,对某一Ge吸收层厚度下,探测器有最大3dB带宽。对于SACM-APD型Ge/Si异质结探测器,在较高的光辐射或高外加偏压的情况下,受到雪崩倍增产生的载流子形成的空间电荷效应影响,雪崩增益下降,而器件的响应频率带宽增大,在某一偏压下,探测器有最大增益带宽积。
     本论文所研究的以上主要工作,可以在较大程度上避免当前器件结构设计的盲目性,增强制造过程中技术措施的针对性,对材料、结构、工艺和特性之间的相互制约关系取得更加深入的认识,并为解决器件实际使用过程中的相关问题提供新的思路。
With the development of optical communication technology in rencent years, researchers have been interesting in production the photodetectors with high responsivity, high quantum efficiency, low dark current and large bandwidth at1.3μm and1.55μm wavelength in order to realize the monolithic Si-based photoelectronic integration. The industrialized Ⅲ-Ⅴ photodetectors have high cost and poor thermal conductivity and mechanical behavior. Additionally, they are not compatible with the existing mature Si-based complementary metal-oxide-semiconductor process technology (CMOS). Thin film Ge have high absorption coefficient at the wavelength of interest (1.3~1.55μm) and good transport properties, and compatibility with Si technology. Therefore, Ge photodetector fabricated on Si substrate are the ideal candidate for photodetectors used in low-cost monolithic transceivers for optical communications. But, the large dark current in Ge/Si heterojuction photodetector is the main limiting. In this paper, the poperties of Ge/Si heteroj unction and the physical mechanism of Ge/Si PIN photodetector and Sperate-Absorption-Charge-Multiplication avalanche photodetector (SACM-APD) are detailed investigated, which provide a theoretical basis for device design, manufacture, and optimization. The following are the details and research results:
     1. The effect of dislocations in the Ge/Si heterojunction on the characteristics of photodetecter is studied and investigated. Based on the formation mechanism and characteristics of threading dislocations in the Ge/Si heterojunction, and combined with operation mechanism and the physical effects in actual devices, the impacts of dislocation density distribution and dislocation active energy on the device performances are researched and validated by compared with experimental results. The results show that the dislocations in Ge epitaxial layer play the role of recombination centers and induce the indirect recombination of carriers, which is the main mechanism for the formation of dark current. The indirect recombination rate is influenced by the dislocation density, dislocation active energy and carrier concentration. Therefore, decreasing the dislocation density in Ge epitaxial layer, especially in Ge buffer layer, can effectively reduce the device's dark current. The band bending due to the high bias in Ge materials decrease dislocation active energy and increases dark current, and the impact is enhanced with the Ge absorption layer thickness decreasing. Combining these two factors, as well as Ge/Si heterojunction band structure and impurities out-diffusion from heavily doped Si substrate to Ge epilayer, the calculated results of Ge/Si heterojunction PIN photodetectors and SACM-APD are presented and well consistent with the experimental data.
     2. The formation mechanism of strain in film Ge on Si substrate is investigated and their impact on the performance of photodetector is detailed studied. The tensile strain in Ge epitaxial layer is generated during the cooling from high growth temperature to room temperature due to the thermal-expansion coefficients mismatch between Ge and Si, which can be0.34%as maximum. The band shringkage induced by tensile strain increase the absorption coefficient of Ge material. Thereby Ge/Si photodetectors have enhanced responsivity and extended cut-off wavelength. Considering the relationship between strain and material parameters, the responsivities of photodetector varing with wavelength are calculated and consistent with experimental results.
     3. The influence of the geometry of the Ge/Si heterojunction photodetector on frequency response characteristics is researched. The frequency response of photodetector is mainly affected by the carrier transit time in the depletion layer, the diffusion time outside the depletion layer, and RC response time, and also limited by avalanche build-up time at large gain. The results show that the3dB bandwidth of PIN photodetector is varied the thickness of with Ge absorbing layer. The3dB bandwidth of Ge/Si SACM-APD has a enhancement behavior as the result of decrease of the multiplication time limitation due to the gain drop through the space charge effect. This effect is noteble in the Ge layer at high bias voltages or large optical input powers.
     These results reached in the dissertation can largely help avoid the purblindness in device design and enhance the accuracy of technological measures of manufacturing process. With a depper understanding of mutual constraint relationship between characteristics and parameters including materials, structures, and processing, this dissertation provides novel and valuable approaches to solving the problems during the application process of Ge/Si heterojunction photodetector.
引文
[1]王启明.信息高科技领域中的半导体冠电子学[J].半导体学报.1998,19(10):721-728.
    [2]顾畹仪,李国瑞.光纤通信系统[M].北京:北京邮电大学出版社.1999.
    [3]王磊,裴丽.光纤通信的发展现状和未来[J].中国科技信息.2006(4):59-60.
    [4]Cheng, B.W., Li, C.B., et al. "Silicon membrane resonant-cavity-enhanced photodetector," Applied Physics Letters 2005,87(6):061111.
    [5]Chen, Y.H., Li, C., et al. "Room temperature photoluminescence of tensile-strained Ge/Sio.i3Geo.87 quantum wells grown on silicon-based germanium virtual substrate," Applied Physics Letters 2009,94(14):141902.
    [6]Liu, J.F, Sun, X.C., et al. "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Optics Express 2007,15(18):11272-11277.
    [7]Liu, J.F., Sun, X.C., et al. "Towards a Ge-based laser for CMOS applications," 5th IEEE International Conference on Group IVPhotonics,2008, pp.16-18.
    [8]Li, C., Yang, Q.Q., et al. "Si1-xGex/Si resonant-cavity-enhanced photodetectors with a silicon-on-oxide reflector operating near 1.3μm," Applied Physics Letters 2000,77(2): 157-159.
    [9]Li, C.B., Mao, R.W., et al. "1.55μm Ge islands resonant-cavity-enhanced detector with high-reflectivity bottom mirror," Applied Physics Letters 2004,85(14):2697.
    [10]蔡志猛,周志文,李成,赖虹凯,陈松岩.硅基外延锗金属-半导体-金属光电探测器及其特性分析[J].光电子·激光.2008,19(5):587-590.
    [11]Kang, Y., Liu, H.-D., et al. "Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product," Nature Photonics 2008,3(1):59-63.
    [12]Kuo, Y.H., Lee, Y.K., et al. "Strong quantum-confined Stark effect in germanium quantum-well structures on silicon," Nature 2005,437(7063):1334-1336.
    [13]Roth, J.E., Fidaner, O., et al. "Optical modulator on Si employing Ge quantum wells," Optics Express 2007,15(9):5851-5859.
    [14]Liu, J.F., Beals, M., et al. "Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators," Nature Photonics 2008,2(7):433-437.
    [15]Lee, M.L., Fitzgerald, E.A., et al. "Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transist- ors," Journal of Applied Physics 2005, 97(1):011101.
    [16]Kasper, E. Properties of Strained and Relaxed Silicon Germanium[M].余金中译.北京:国防工业出版社.2002.
    [17]Tersoff, J. and LeGoues, F.K. "Competing relaxation mechanisms in strained layers," Physical Review Letters 1994,72(22):3570-3573.
    [18]师昌绪,李恒德,周廉.材料科学与工程手册(下卷)半导体材料篇.化学工业出版社.2004.
    [19]材料科学技术百科全书.中国大百科全书出版社.1995.
    [20]Lee, M.L. and Fitzgerald, E.A. "Optimized strained Si/strained Ge dual-channel heterostructures for high mobility p- and n-MOSFETs," Technical Digest IEEE International Electron Devices Meeting (IEDM03) 2003, pp.429-432.
    [21]王吉坤,何蔼平.锗及其冶金[M].北京:冶金工业出版社.2008.
    [22]杨树人,王宗昌,王兢.半导体材料[M].北京:科学出版社.2004.
    [23]Blondeel, A., Clauws, P., et al. "Lifetime measurements on Ge wafers for Ge/GaAs solar cells-chemical surface passivation," Materials Science in Semiconductor Processing 2001, 4(1):301-303.
    [24]Catling, D.C. "High-sensitivity silicon capacitive sensors for measuring medium-vacuum gas pressures," Sensors and Actuators A:Physical 1998,64(2):157-164.
    [25]Lauhon, L.J., Gudiksen, M.S., et al. "Epitaxial core-shell and core-multishell nanowire heterostructures," Nature 2002,420(6911):57-61.
    [26]徐世六.SiGe微电子技术[M].北京:国防工业出版社.2007.
    [27]Ashburn, P. and Corporation, E. SiGe Heterojunction Bipolar Transistors, Wiley,2003.
    [28]Cressler, J.D. "SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications," IEEE Transactions on Microwave Theory and Techniques 1998, 46(5):572-589.
    [29]Olsen, S.H., O'Neill, A.G., et al. "High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture," IEEE Transactions on Electron Devices 2003,50(9):1961-1969.
    [30]Verdonckt-Vandebroek, S., Crabbe, E.F., et al. "High-mobility modulation-doped SiGe-channel p-MOSFETs," IEEE Electron Device Letters 1991,12(8):447-449.
    [31]Hock, G., Kohn, E., et al. "High hole mobility in SiGe channel metal-oxide-semicondctor field-effect transistors grown by plasma-enhanced chemical vapor deposition," Applied Physics Letters 2000,76:3920.
    [32]Tezuka, T., Nakaharai, S., et al. "High-mobility strained SiGe-on-insulator pMOSFETs with Ge-rich surface channels fabricated by local condensation technique," IEEE Electron Device Letters 2005,26(4):243-245.
    [33]Wey, Y., Crawford, D., et al. "Ultrafast graded double-heterostructure GaInAs/InP photodiode," Applied Physics Letters 1991,58(19):2156-2158.
    [34]Blazejewski, E., Arias, J., et al. "Bias-switchable dual-band HgCdTe infrared photodetector," Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures 1992,10(4):1626-1632.
    [35]Kimukin, I., Biyikli, N., et al. "InSb high-speed photodetectors grown on GaAs substrate," Journal of Applied Physics 2003,94:5414.
    [36]Luryi, S., Kastalsky, A., et al. "New infrared detector on a silicon chip," IEEE Transactions on Electron Devices 1984,31 (9):1135-1139.
    [37]Temkin, H., Pearsall, T., et al. "GexSi1-x strained-layer superlattice waveguide photodetec-tors operating near 1.3 μm," Applied Physics Letters 1986,48(15):963-965.
    [38]Samavedam, S. B. and Fitzgerald, E. "Novel dislocation structure and surface morphology effects in relaxed Ge/Si-Ge (graded)/Si structures," Journal of Applied Physics 1997,81: 3108.
    [39]Colace, L., Masini, G., et al. "Metal-semiconductor-metal near-infrared light detector based on epitaxial Ge/Si" Applied Physics Letters 1998,72:3175.
    [40]Buca, D., Winnerl, S., et al. "Metal-germanium-metal ultrafast infrared detectors," Journal of Applied Physics 2002,92:7599.
    [41]Halbwax, M., Rouviere, M., et al. "UHV-CVD growth and annealing of thin fully relaxed Ge films on (001) Si," Optical Materials 2005,27(5):822-826.
    [42]Liu, J., Kim, H., et al. "Ge films grown on Si substrates by molecular-beam epitaxy below 450℃," Journal of Applied Physics 2004,96:916.
    [43]Liu, J., Michel, J., et al. "High-performance, tensile-strained Ge pin photodetectors on a Si platform," Applied Physics Letters 2005,87:103501.
    [44]Dosunmu, O. I., Cannon, D.D., et al. "Resonant cavity enhanced Ge photodetectors for 1550 nm operation on reflecting Si substrates," IEEE Journal of Selected Topics in Quantum Electronics 2004,10(4):694-701.
    [45]Yin, T., Cohen, R., et al. "31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate," Optics Express 2007,15(21):13965-13971.
    [46]Kang, Y., Liu, H.D., et al. "Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product," Nature Photonics 2008,3(1):59-63.
    [1]Streetman, B. and Banerjee, S.固体电子器件[M].杨建红译.兰州:兰州大学出版社.2005.
    [2]阮刚.集成电路工艺和器件的计算机模拟[M].上海:复旦大学出版社.2007.
    [3]Ghatak, A. K. and Thyagarajan, K. Optical Electronics, Cambridge University Press,1989.
    [4]陈宏达.微电子与光电子集成技术[M].北京:电子工业出版社.2008.
    [5]Schroder, D.K. Semiconductor Material and Device Characterization, Wiley-IEEE Press, 2006.
    [6]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社.2006.
    [7]Rakic, A.D., Djurisic, A.B., et al. "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics 1998,37(22):5271-5283.
    [8]John, P.R., Graham, D., et al. The physics of low noise avalanche photodiodes, Electonics & Electrical Engineering, University of Sheffield, U.K.
    [9]史锦删,郑绳楦.光电子学及其应用[M].北京:机械工业出版社.1991.
    [10]Kato, K., Kozen, A., et al. "110-GHz,50%-efficiency mushroom-mesa waveguide pin photodiode for a 1.55 μm wavelength," IEEE Photonics Technology Letters 1994,6(6): 719-721.
    [11]Campbell, J., Dentai, A., et al. "High-performance avalanche photodiode with separate absorption 'grading' and multiplication regions," Electronics Letters 1983,19(20): 818-820.
    [12]Kasper, B., Campbell, J., et al. "SAGM avalanche photodiode optical receiver for 2 Gbit/s and 4 Gbit/s," Electronics Letters 1985,21(21):982-984.
    [13]Kuchibhotla, R., Campbell, J., et al. "InP/InGaAsP/InGaAs SAGM avalanche photodiode with delta-doped multiplication region," Electronics Letters 1991,27(15):1361-1363.
    [14]Kim, J.H., Griem, H.T., et al. "High-performance back-illuminated InGaAs/InAlAs MSM photodetector with a record responsivity of 0.96 A/W," IEEE Photonics Technology Letters 1992,4(11):1241-1244.
    [15]Sze, S., Coleman D. Jr., et al. "Current transport in metal-semiconductor-metal (MSM) structures," Solid-State Electronics 1971,14(12):1209-1218.
    [16]Sugeta, T., Urisu, T., et al. "Metal/semiconductor/metal photodetector for high-speed optoelectronic circuits," 11th International Conference on Solid State Devices Tokyo, Japan,1980, pp.459-464.
    [17]Dentai, A., Kuchibhotla, R., et al. "High quantum efficiency, long wavelength InP/InGaAs microcavity photodiode," Electronics Letters 1991,27(23):2125-2127.
    [18]Born, M. and Wolf, E. Principles of Optics. Oxford:Pergamon,1991.
    [19]Unlu, M.S. and Strite, S. "Resonant cavity enhanced photonic devices," Journal of Applied Physics 1995,78(2):607-639.
    [20]史常忻.金属-半导体-金属光电探测器[M].上海:上海交通大学出版社.2005.
    [21]Tsang, W.T.半导体光检测器[M].杜宝勋等译.北京:电子工业出版社.1992.
    [1]Cho, A. and Arthur, J. "Molecular beam epitaxy," Progress in Solid State Chemistry 1975, 10:157-191.
    [2]孔梅.影分子束外延半导体纳米材料[J].现代科学仪器.1998.1-2:55.
    [3]Wan, J., Jin, G., et al. "Band alignments and photon-induced carrier transfer from wetting layers to Ge islands grown on Si (001)," Applied Physics Letters 2001,78:1763.
    [4]Li, C., Cheng, B., et al. "Novel room temperature photoluminescence of Ge/Si islands in multilayer structure grown on silicon-on-insulator substrate," Thin Solid Films 2004, 467(1):197-200.
    [5]徐世六.SiGe微电子技术[M].北京:国防工业出版社.2007.
    [6]Fitzgerald, E., Xie, Y.H., et al. "Totally relaxed GexSil-x layers with low threading dislocation densities grown on Si substrates," Applied Physics Letters 1991,59(7): 811-813.
    [7]Bogumilowicz, Y., Hartmann, J., et al. "High germanium content SiGe virtual substrates grown at high temperatures," Journal of Crystal Growth 2005,283(3):346-355.
    [8]Currie, M., Samavedam, S., et al. "Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing," Applied Physics Letters 1998,72:1718.
    [9]Thomas, S.G., Bharatan, S., et al. "Structural characterization of thick, high-quality epitaxial Ge on Si substrates grown by low-energy plasma-enhanced chemical vapor deposition," Journal of Electronic Materials 2003,32(9):976-980.
    [10]Mooney, P., Jordan-Sweet, J., et al. "Evolution of strain relaxation in step-graded SiGe/Si structures," Applied Physics Letters 1995,66(26):3642-3644.
    [11]Mooney, P., Jordan-Sweet, J., et al. "Relaxed SiGe buffer layers for high-mobility devices" Applied Physics Letters 1995,67(16):2373.
    [12]Yang, T.H., Luo, G., et al. "Interface-blocking mechanism for reduction of threading dislocations in SiGe and Ge epitaxial layers on Si (100) substrates," Journal of Vacuum Science and Technology B:Microelectronics and Nanometer Structures 2004,22:L17.
    [13]Huang, Z., Kong, N., et al. "21-GHz-bandwidth germanium-on-silicon photodiode using thin SiGe buffer layers," IEEE Journal of Selected Topics in Quantum Electronics 2006, 12(6):1450-1454.
    [14]Liu, J., Wong, L., et al. "A novel thin buffer concept for epitaxial growth of relaxed SiGe layers with low threading dislocation density," Electrochemical and Solid-Slate Letters 2005,8:G60.
    [15]Knights, A., Gwilliam, R., et al."Growth temperature dependence for the formation of vacancy clusters in Si/SiGe/Si structures," Journal of Applied Physics 2001,89:76.
    [16]Ueno, T., Irisawa, T., et al. "Characterization of low temperature grown Si layer for SiGe pseudo-substrates by positron annihilation spectroscopy," Journal of Crystal Growth 2001, 227:761-765.
    [17]Palange, E., Gaspare, L., et al. "Real time spectroscopic ellipsometric analysis of Ge film growth on Si (001) substrates," Thin Solid Films 2003,428(1):160-164.
    [18]Kasper, E., Lyutovich, K. et al. "New virtual substrate concept for vertical MOS transistors," Thin Solid Films 1998,336(1):319-322.
    [19]Chen, H., Guo, L., et al. "Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular beam epitaxy," Journal of Applied Physics 1996, 79(2):1167-1169.
    [20]Myronov, M. and Shiraki, Y. "Strain Relaxation and Surface Morphology of Ultrathin High Ge Content SiGe Buffers Grown on Si (001) Substrate," Japanese Journal of Applied Physics 2007,46:721.
    [21]Fukuda, Y. and Kohama, Y. "High quality heteroepitaxial Ge growth on (100) Si by MSE" Journal of crystal growth 1987,81(1-4):451-457.
    [22]Zhou, G., Chen, K., et al. "Heteroepitaxial growth of Ge films on Si substrates by molecular beam epitaxy," Applied Physics Letters 1988,53(22):2179-2181.
    [23]Baribeau, J., Jackman, T., et al. "Growth and characterization of Si1-xGex and Ge epilayers on (100) Si," Journal of Applied Physics 1988,63(12):5738-5746.
    [24]Cunningham, B., Chu, J.O., et al. "Heteroepitaxial growth of Ge on (100) Si by ultrahigh vacuum, chemical vapor deposition," Applied Physics Letters 1991,59(27):3574-3576.
    [25]Luan, H.C., Lim, D.R., et al. "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters 1999,75:2909.
    [26]Hartmann, J., Abbadie, A., et al. "Reduced pressure-chemical vapor deposition of Ge thick layers on Si (001) for 1.3-1.55μm photodetection," Journal of Applied Physics 2004, 95:5905.
    [27]Halbwax, M., Bouchier, D., et al. "Kinetics of Ge growth at low temperature on Si (001) by ultrahigh vacuum chemical vapor deposition," Journal of Applied Physics 2005,97: 064907.
    [28]Nakatsuru, J., Date, H., et al. Growth of High Quality Ge Epitaxial Layer on Si (100) Substrate Using Ultra Thin Si0.5Ge0.5 Buffer, Cambridge University Press,2006.
    [29]Loh, T., Nguyen, H., et al. "Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si (100) by ultrahigh vacuum chemical vapor deposition," Applied Physics Letters 2007,90(9):092108.
    [30]Langdo, T., Leitz, C., et al. "High quality Ge on Si by epitaxial necking," Applied Physics Letters 2000,76:3700.
    [31]Park, J.S., Bai, J., et al. "Defect reduction of selective Ge epitaxy in trenches on Si (001) substrates using aspect ratio trapping," Applied Physics Letters 2007,90(5):052113.
    [32]Li, Q., Han, S.M., et al. "Selective growth of Ge on Si (100) through vias of SiO nanotemplate using solid source molecular beam epitaxy," Applied Physics Letters 2003, 83:5032.
    [33]Vanamu, G., Datye, A., et al. "Heteroepitaxial growth on microscale patterned silicon structures," Journal of Crystal Growth 2005,280(1):66-74.
    [34]周志文.Si基iGe、Ge弛豫衬底生长及其Ge光电探测器研制[博士学位论文].2009.厦门大学.
    [35]Brunco, D., de Jaeger, B., et al. "Germanium MOSFET devices:Advances in materials understanding, process development, and electrical performance," Journal of the Electrochemical Society 2008,155:H552.
    [1]江剑平,孙成城.异质结原理与器件[M].北京:电子工业出版社.2010.
    [2]胡赓祥.金属学[M].上海:上海科学技术出版社.1980.
    [3]杨顺华.晶体位错理论基础(第一卷)[M].北京:科学出版社.1988.
    [4]Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, New York:Pergamon,1959.
    [5]Sokolnikoff I.S., Mathematical Theory of Elasticity, New York:McGraw-Hill,1956.
    [6]Nabarro, F.R.N., Theory of Crystal Dislocations, Oxfort:Clarendon,1967.
    [7]徐世六.SiGe微电子技术[M].北京:国防工业出版社.2007.
    [8]周志文.Si基Ge弛豫衬底生长及其Ge光电探测器研制[博士学位论文].厦门:厦门大学.2009.
    [9]Luan, H.C., Lim, D.R., et al. "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters 1999,75:2909-2911.
    [10]刘恩科,朱秉升,罗晋生.半导体物理学[M].北京:电子工业出版社.2006.
    [11]Hall, R.N., "Electron-hole recombination in germanium," Physical Review 1952,87:387.
    [12]Simmons, J.G. and Taylor, G.W., "Nonequilibrium steady-state statistics and associated effects for insulators and semiconductors containing an arbitrary distribution of traps,' Physical Review B 1971,4:502.
    [13]Halbwax, M., Rouviere, M., et al. "UHV-CVD growth and annealing of thin fully relaxed Ge films on (001) Si," Optical Materials 2005,27(5):822-826.
    [14]Balbi, M., Sorianello, V., et al. "Analysis of temperature dependence of Ge-on-Si pin photodetectors," Physica E:Low-dimensional Systems and Nanostructures 2009,41(6): 1086-1089.
    [15]Ang, K. W., Ng, J. W., et al. "Impact of field-enhanced band-traps-band tunneling on the dark current generation in germanium pin photodetector," Applied Physics Letters 2009,94: 223515.
    [16]Masini, C., Calace, L., et al. "High-performance pin Ge on Si photodetectors for the near infrared:from model to demonstration," IEEE Transactions on Electron Devices 2001,48 (6):1092-1096.
    [17]Osmond, J., Isella, G., et al. "Ultralow dark current Ge/Si (100) photodiodes with low thermal budget," Applied Physics Letters 2009,94:201106.
    [18]Kang, Y.M., Liu, H.D., et al. "Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product," Nature Photonics 2008,3(1):59-63.
    [1]Thompson, S.E. "Strained Si and the future direction of CMOS," Proceedings of the Fifth International Workshop on System-on-Chip for Real-Time Applications Washington, USA. 2005, pp.14-16.
    [2]Maikap, S., Yu, C.Y., et al. "Mechanically strained strained-si nMOSFETs," IEEE Electron Device Letters 2004,25:1.
    [3]肖哲.晶圆级机械致单轴应变si技术研究[硕士论文].西安:西安电子科技大学.2010.
    [4]Saraswat, K. "How far can we push Si CMOS? What lies beyond?" J. IEEE/SEMI Internation Semiconductor Manufacturing Science Symposium,1993,19-20:1-5.
    [5]徐世六.SiGe微电子技术[M].北京:国防工业出版社.2007.
    [6]Xiang, Q., Goo, J.S., et al. "Strained silicon nMOS with nickel-silicide metal gate,' Symposium on VLSI Technology Digest of Technical Papers 2003, pp.101-102.
    [7]Gannavaram, S., Pesovic, N. and Ozturk, C. "Low temperature (800℃) recessed junction selective silicon-germanium source/drain technology for sub-70 ran CMOS," IEDM Tech Dig.2000, pp.437-440.
    [8]Taylor, A., X-Ray Metallography, New York:John Wiley & Sons,1961.
    [9]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社.2003.
    [10]朱秋东,郝群.激光束偏转法非球面面形测量和计算[J].光学技术.2002.28(001):22-23.
    [11]王成,张贵彦等.薄膜应力测量方法研究[J].激光与光电子学进展.2005.41(9):28-32.
    [12]魏勤,董师润等.超声双折射法测试铝合金的内部应力[J].应用声学.2008.27(5):401-406.
    [13]Chuang, S. and Chang, C. "k-p method for strained wurtzite semiconductors," Physical Review B 1996,54(4):2491.
    [14]ATLAS User's Manual, DEVICE SIMULATION SOFTWARE.
    [15]Ishikawa, Y., Wada, K., et al. "Strain-induced band gap shrinkage in Ge grown on Si substrate," Applied Physics Letters 2003,82:2044.
    [16]Liu, J., D. D. Cannon, et al. "Tensile strained Ge pin photodetectors on Si platform for C and L band telecommunications" Applied physics Letters 2005,87:011110.
    [17]Liu, J., Cannon, D.D. et al. "Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si (100)," Physical Review B 2004,70(15):155309.
    [1]Hollenhorst, J.N., "Frequency response theory for multilayer Photodiodes," Journal of Lightwave Technology 1990,8(4):531-537.
    [2]Pereira, J.M.T., "Frequency response o multilayer avalanche photodiodes:structural effects," Proceedings of SPIE 2002,4650:44-54.
    [3]Seitz, S., Bieler, M., et al. "Optoelectronic measurement of the transfer function and time response of a 70 GHz sampling oscilloscope," Measurement Science and Technology 2005, 16(10):L7-L9
    [4]温继敏,伞海生,黄亨沛等.高速光探测器频率响应的精确表征[J].半导体学报.2006.27(12):1630-1633.
    [5]李建威.高速光电探测器频率响应测试研究[博士论文].天津:南开大学.
    [6]S. M. Sze, Physics of Semiconductor Devices,2nd Ed. New York:Wiley,1981. p.758.
    [7]Oehme, M., Werner, J., et al. "High bandwidth Ge p-i-n photodetector integrated on Si," Applied Physics Letters 2006,89:071117.
    [8]Das, N.R. and Deen, M.J. "Calculating the photocurrent and transit-time-limited bandwidth of a heterostructure p-i-n photodetector," IEEE Journal of Quantum Electronics 2001,37(12):1574-1587.
    [9]Kang, Y., Zadka, M., et al. "Epitaxially-grown Ge/Si avalanche photodiodes for 1.3 mu m light detection," Optics Express 2008,16(13):9365-9371
    [10]Zaoui, W.S., Chen, H.W., et al. "Frequency response and bandwidth enhancement in Ge/Si avalanche photodiodes with over 840 GHz gain-bandwidth-product," Optics Express 2009 17(15):12641-12649.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700