超酸性蛋白融合标签对大肠杆菌中重组蛋白可溶性表达的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质工程一直是生物技术研究的一个重要方面。在科学研究中,获得大量纯化、可溶性的、有生物活性的蛋白质是蛋白质理化性质与功能研究的基础。然而受资源有限、成本昂贵等因素的影响,天然的蛋白质无法满足实际需要。随着蛋白质工程和基因工程技术的发展,重组蛋白在理化性质和生物学活性上已日趋接近于天然蛋白质,且可以通过大规模生产源源不断地获得。虽然20世纪90年代后开始频繁利用哺乳动物细胞来生产重组蛋白,但迄今为止原核的大肠杆菌表达系统还是最常用的,因为大肠杆菌的遗传背景清楚,培养条件简单,表达高效,经济方便。但是,大肠杆菌表达系统也有局限性,当所表达的蛋白是复杂的真核来源的蛋白时,大肠杆菌常常不能将翻译出的多肽链正确折叠修饰形成蛋白质的天然构象,而是形成不溶性的无功能的包涵体。包涵体中多肽链活性恢复必须通过复杂的变性复性过程,而且成功率低。因此,探索重组蛋白在大肠杆菌中的可溶性表达具有较高的学术价值和广泛的应用前景。
     目前已经找到了一些提高重组蛋白在大肠杆菌中可溶性表达的方法,其中较常用的办法是使用融合表达策略,即将融合标签和靶蛋白连接成为一个融合蛋白进行表达。但由于蛋白质种类繁多,目前还没有找到可以提高蛋白可溶性表达的通用型融合标签。
     本工作中,我们致力于寻找一类通用的增溶标签来促进靶蛋白(尤其是那些用常规增溶办法无法解决的蛋白)在大肠杆菌中的可溶性表达。基于此,我们设计挑选了三种大肠杆菌来源、分子量相对较小和酸度超强的融合标签即Msb(大肠杆菌酸性蛋白MsyB)、Yd(一个推定的大肠杆菌开放阅读框蛋白,yjgD)和Od(大肠杆菌RNA聚合酶σ70因子rpoD的N端区);分析它们对三种具有高度聚集倾向性的靶蛋白即小牛肠激酶(EK)、烟草蚀纹病毒蛋白酶(TEV)和1,5—二磷酸核酮糖羧化/加氧酶大亚基rbcL(Rb)在大肠杆菌中可溶性表达的影响。同时,选用一些常用融合标签如大肠杆菌Trx(硫氧还蛋白)、MBP(麦芽糖结合蛋白)、NusA和酵母SUMO蛋白与它们一起进行作用比对。
     通过PCR或酶切得到融合标签Msb、Yd、Od、MBP、NusA、Trx和SUMO的基因,然后以质粒pET-32a(+)为骨架与靶蛋白基因融合构建一系列融合表达载体,并将它们在大肠杆菌BL21(DE3)中进行诱导表达。SDS-PAGE分析发现,与常用标签Trx等相比,三个超酸性标签蛋白Yd、Od和Msb都能够卓著地增强靶蛋白(EK、TEV和Rb)的可溶性表达。另外,我们还构建了杂合标签MS、YS、OS、NS和PS(即SUMO分别与标签Msb、Yd、Od、NusA和MBP的杂合体)与靶蛋白的融合表达载体,结果表明,酸性杂合标签MS,YS,OS也能够显著地增强靶蛋白的可溶性表达。这些实验结果很好地验证了用Wilkinson-Harrison可溶性模型得到的理论预测。
     进一步,我们利用酵母蛋白酶Ulp1切割SUMO融合蛋白的反应体系和TEV融合蛋白自切割反应体系评估了所选三种超酸性融合标签Msb、Yd和Od的作用机理。结果表明这些超酸性融合标签在显著增强靶蛋白可溶性表达的过程中实际上起着分子内伴侣作用,有效地帮助靶蛋白的正确结构折叠。
     总之,本工作发现超酸性蛋白Msb、Yd、Od可以作为一类通用高效的增溶性融合标签来促进大肠杆菌中靶蛋白的可溶性表达,相信它们在蛋白质研究及其生物技术领域内有着很好的应用前景。
Protein engineering has been an important aspect in biotechnological research.In scientific area,to gain large amount of pure,soluble and bioactive protein is the prerequisite for studying its physiochemical properties and function.However, obtainment of natural protein cannot meet actual requirements,due to a few of strict limitations such as rare resources and high cost.With the development of protein engineering and genetic engineering,the recombinant proteins,being increasingly closer to their natural forms in terms of the physical,chemical and biological features, can be prepared in large scales.Although mammalian cells have been frequently applied to produce recombinant proteins since the 1990s,the Escherichia coli(E.coli) expression system is the most commonly used so far.This system is of many advantages including well-known genetic background,simple culture conditions, high-level expression,inexpensiveness and convenience.However,the E.coli expression system does have limitations.When a target protein is complicated and is of eukaryotic sources,this system often fails in making the expressed protein fold correctly,leading to formation of insoluble and non-active aggregates termed inclusion bodies.Functional recovery of proteins from their inclusion bodies usually should undergo a complex and inefficient process of denaturalization and refolding. Therefore,to maximize the soluble expression of recombinant protein in E.coli is certainly of high academic value and wide range of applications.
     Regarding this,some effectual approaches have been explored at present,in which the fusion expression strategy by using protein fusion partners(or tags)has been prevalently used.However,such fusion tags are not effective for all proteins.
     In this work,we were committed to finding common fusion partners to improve the soluble expression of target proteins(especially those recalcitrant to conventional solubilizing efforts)in E.coli.To this purpose,three candidate proteins with the features of E.coli origin,relatively small size and extremely high acidity were selected,including Msb(an E.coli acidic protein MsyB),Yd(one hypothetical protein,yjgD),and Od(the N-terminal domain ofσ70 factor of RNA polymerase, rpoD).They were tested as fusion tags for three highly aggregation-prone target proteins including EK(the bovine enterokinase),TEV(the tobacco etch virus protease) and Rb(rbcL,the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase). Meanwhile,other frequently used solubility-enhancing fusion tags such as Trx(TrxA), MBP,NusA and SUMO,were included for comparison.
     By using PCR amplification and restriction enzyme digestion,DNA fragments of fusion tags Msb,Yd,Od,MBP,NusA,Trx and SUMO were obtained and respectively fused with the genes of target proteins to generate series of expression vectors on the basis of backbone plasmid pET-32a(+).All of these vectors were expressed in E.coli BL21(DE3)by induction and subsequently analyzed by SDS-PAGE.The results demonstrated that all three hyper-acidic protein fusion tags Yd,Od as well as Msb could remarkably enhance the soluble expression of three highly aggregation-prone target proteins Ek,TEV and Rb.In addition,hybrid fusion tags such as MS,YS,OS, PS and NS(consisting of Msb,Yd,Od,MBP,and NusA,and the common His_6-tagged SUMO,respectively)were created,the acidic ones of which were also found to effectuate apparently in solubility enhancement for target proteins.Taken together,all these experimental results are well in consistence with the theoretical solubility prediction by the revised algorithm of Wilkinson-Harrison.
     We further evaluated the functional roles of all three hyper-acidic fusion partners (Yd,Od and Msb)by taking advantages of the yeast SUMO/Ulpl reaction and TEV auto-cleavage.Our results indicated that these hyper-acidic fusion partners actually act as intramolecular chaperones assisting in the correct folding of the target proteins, during their solubilising process.
     Conclusively,the hyper-acidic proteins(Msb、Yd、Od)in our study could be used as a category of universal and potent fusion tags to improve the soluble expression of target proteins in E.coli,and largely believed to confer broad prospects in the fields of proteins studies and biotechnological applications.
引文
[1] Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol 2006, 72:211-222.
    
    [2] Cabrita LD, et al. Protein expression and refolding-a practical guide to getting the most out of inclusion bodies. Biotechnol Annu Rev 2004,10:31-50.
    [3] Marston F. The purification of eukaryotic polypeptides synthesized in Escherichia coli. J Biochem 1986, 240:1.
    [4] Bentley WE, et al. Optimal induction of protein synthesis in recombinant bacterial cultures. Ann N Y Acad Sci 1990, 589:121-138.
    [5] Schein CH. Production of soluble recombinant proteins in bacteria. Bio Technology 1989, 7:1141-1148.
    [6] Vasina JA, et al. Expression of aggregation prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Protein Expr Purif 1997, 9:211-218.
    [7] Donovan RS, Robinson CW, Glick BR. Review: Optimizing Inducer and Culture Conditions for Expression of Foreign Protein under the Control of the Lac Promoter [J]. J. Ind. Microbiol., 1996, 16:145-154.
    [8] Schein CH, Noteborn MHM. Formation of Soluble Recombinant Proteins in Escherichia coli Is Favored by Lower Growth Temperatures [J]. Bio-technology 1988, 6: 291-294.
    [9] Schein CH, Boix E, Haugg M, et al. Secretion of Mammalian Ribonucleases from Escherichia coli. Using the Signal Sequence of Murine Spleen Ribonuclease [J]. Biochem. J., 1992, 283:137-144.
    
    [10] Carter P, Kelley RF, Rodrigues ML, et al. High-level Escherichia coli. Expression and Production of a Bivalent Humanized Antibody Fragment [J]. Bio-technology, 1992, 10:163-167.
    
    [11] Chesshyre JA, et al. Low temperatures stabilize interfero α -2 against a Proteolysis in Methylophilus methylotrophus and Escherichia coli. Appl Microbiol Biotechnol 1989, 31:158-162.
    
    [12] Mogk A, et al. Mechanisms of protein folding: molecular chaperones and their application in biotechnology. Chembiochem 2002, 3:807-814.
    
    [13] Ferrer M, et al.Chaperonins govern growth of Escherichia coli. at low temperature. Nat Biotechnol 2003, 21:1266-1267.
    [14] Donovan RS, Robinson CW, Glick BR. Optimizing the Expression of a Monoclonal Antibody Fragment under the Transcriptional Control of the Escherichia coli. Lac Promoter [J].Can.J.Microbiol., 2000, 46(6):532-541.
    [15] Lee HW, Yoon SJ, Kim HK, et al. Overexpression of an Alkaline Lipase Gene from Proteus vulgaris K80 in Escherichia coli BL21/ pKLE[J]. Biotechnol.Lett., 2000,22:1 543-1 547.
    [16] Hoffmann F, van den Heuvel J, Zidek N, et al. Minimizing Inclusion Body Formation during Recombinant Protein Production in Escherichia coli. at Bench and Pilot Plant Scale [J]. Enzyme Microb. Technol., 2004, 34:235-241.
    [17] Slabaugh MB, Davis RE, Roseman NA, et al. Vaccinia Virus Ribonucleotide Reductase Expression and Isolation of Recombinant Large Subunit [J].J. Biol. Chem., 1993,17803-17810.
    [18] KagawaI N, Cao QW. Osmotic Stress Induced by Carbohydrates Enhances Expression of Foreign Proteins in Escherichia coli [J]. Arch. Biochem. Biophys., 2001,393(2): 290-296.
    
    [19] Han NS, et al. Simple Method to Expression Soluble, Highly Active Cyclodextrin Glycosyltransferase in Recombinant E.coli [J]. Biotechnol. Tech., 1999,13:631-635.
    [20] Yang Q, Xu J, Li M, et al. High-level Expression of a Soluble Snake Venom Enzyme, Gloshedob in E. coli in the Presence of Metal Ions [J]. Biotechnol. Lett., 2003, 25: 607-610.
    [21] Schein CH, Kashiwagi K, Fujisawa A, et al. Secretion of Mature IFN-alpha-2 and Accumulation of Uncleaved Precursor by Bacillus-subtilis Transformed with a Hybrid Alpha-amylase Signal Sequence-IFN-alpha-2 Gene [J]. Bio-technology, 1986,14:719-725.
    [22] Chow CH, Aristidou AA, Meng SY, et al. Characterization of a pH-inducible promoter system for high-level expression of recombinant proteins in Escherichia coli.[J].Biotechno Bioeng, 1995, 47:186
    [23] Kato Y, Asano Y. High-level expression of a novel FMN-dependent heme-containing lyase, phenylacetaldoxime dehydratase of Bacillus sp. strain OxB-1,in heterologous hosts[J]. Protein Expr Purif, 2003, 28(1):131
    [24] Seddi R, Chaix JC, Puigserver A. Expression of a soluble and activatable form of bovine procarboxypeptidase A in Escherichia coli.[J]. Protein Expr Purif, 2003, 27(2):220
    [25] Premkumar L, Bageshwar UK, Gokhman I, et al. An unusual halo tolerant alpha-type carbonic anhydrate from the alga Unadilla Salina functionally expressed in Escherichia coli.[J]. Protein Expr Purif, 2003, 28(1): 151
    [26] Vasina J A, Baneyx F. Expression of Aggregation-prone Recombinant Proteins at Low Temperatures: A Comparative Study of the Escherichia coli cspA and tac Promoter Systems [J]. Protein Express. Purific, 1997, 9:211-218.
    [27] Baneyx F. Recombinant Protein Expression in Escherichia coli. Curr. Opin. Biotechnol., 1999,10:411-421.
    [28] Donovan RS, Robinson CW, Glick BR. Review: Optimizing Inducer and Culture Conditions for Expression of Foreign Protein under the Control of the Lac Promoter. J. Ind. Microbiol., 1996,16:145-154.
    [29] Donovan RS, Robinson CW, Glick BR. Optimizing the Expression of a Monoclonal Antibody Fragment under the Transcriptional Control of the Escherichia coli. Lac Promoter[J]. Can. J. Microbiol., 2000,46(6):532-541.
    [30] Saraswat V, Lee JW, Kim DY, et al. Synthesis of Recombinant Human lnterleukin-2 via Controlled Feed of Lactose-complex Media in Fed Bath Cultures of Escherichia coli. BL21(DE3)[PET-G3IL2] [J]. Biotechnol. Lett., 2000,22:261-265.
    [31] Amrein KE, Takacs B, Stieger M. Purification and characterization of recombinant human p50csk protein-tyrosine kinase from an Escherichia coli. expression system overproducing the bacterial chaperones GroES and GroEL[J]. Proc Natl Acad Sci USA, 1995, 92: 1048-1059.
    [32] Graf PC, Jakob U. Redox-regulated molecular chaperones [J]. Cell Mol Life Sci, 2002, 59(10): 1624-1631.
    [33] Mogk A, Deuerling E, Vorderwulbecke S, et al. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation[J]. Mol Microbiol, 2003, 50(2):585-595.
    [34] Nishihara K, Kanemori M, Kitagawa M, et al. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Eseheriehia coli. [J]. Appl Environ Microbiol, 1998, 64(5): 1694-1699.
    [35] Lee S Y, Olins P O. J Biol Chem. 1992, 267:2849-2852.
    [36] Humphreys D P, Weir N. J Biol Chem. 1995, 270:28210-28215.
    [37] Ostermeier M, De Sutter K, Georgiou G. J Biol Chem. 1996, 271:10616-10622.
    [38] Humphreys DP, Weir N, Mountain A. Human protein disulfide isomerasefunctionally complements a dsbA mutation and enhances the yield of pectate lyase C in Escherichia coli [J]. J Biol Chem, 1995, 270:28210-28215.
    [39] Ramm K, Plilckthun A. High enzymatic activity and chaperone function are mechanistically related features of the dimeric E . coli peptidyl-prolyl-isomerase FkpA. J Mol Biol, 2001,310(2):485-498.
    [40] Bothmann H, et al. The periplasmic Eseherichia coli. peptidylprolyl cis, trans-isomerase FkpA: I increased functional expression of antibody fragments with and without cis-prolines. [J]. Biol Chem, 2000, 275(22): 17100-17105.
    [41] Majumder A, Basak S, Raha T, et al. Effect of osmolytes and chaperone-like action of P-protein on folding of nucleocapsid protein of Chandipura virus[J]. J Biol Chem, 2001, 276(33): 30948
    [42] Murby M, Samuelsson E, Nguyen TN, et al. Hydrophobicity Engineering to Increase Solubility and Stability of a Recombinant Protein from Respiratory Syncytial Virus [J]. Eur. J. Biochem., 1995, 230: 38-44.
    [43] Schein C H, Haugg M. Deletions at the C-terminus of Interferon-gamma Reduce RNA-binding and Activation of Double-stranded-RNA Cleavage by Bovine Seminal Ribonuclease [J]. Biochem. J., 1995, 307:123-127.
    [44] Mary AD, Loren LL, Homme WH. Computational Design of a Biologically Active Enzyme [J]. Science, 2004, 304:1967-1971.
    [45] Reinhard S, Franz XS. De Novo Design of an Enzyme [J]. Science, 2004, 304:1916-1917.
    [46] Nygren PA, Stahl S, Uhlen M. Engineering Proteins to Facilitate Bioprocessing [J]. Trends Biotechnol., 1994, 12:184-188.
    [47] Esposito D, et al. Enhancement of soluble protein expression through the use of fusion tags.Curr, Opin. Biotechnol, 2006, 17:353-358.
    [48] Gleason FK, et al. Rapid screeing for improved solubility of small human proteins produced as fusion proteins in Eseheriehia coli. Proteins Sci, 2002, 11:313-321.
    [49] Pigiet VP, et al. Thioredoxin-catalyzed refolding of disulfide-containing proteins Proc Natl Acad Sci USA, 1986, 83:7643-7647.
    [50] Jueppner H, et al. A G protein-linked receptor for PTH and PTHrP. Science, 1991, 254 1024-1026.
    [51] Taymar H, et al. The human gene for vascular Endothelial Growth Factor. J Bio Chem.1991,266:11947-11954.
    [52]安乃莉,张智清,王嵩等.应用硫氧还蛋白促进外源蛋白在大肠杆菌的可溶性表达病毒学报.1999,15(2):130-136.
    [53]Takashi,et al.Increase of solubility of foreign proteins in Escherichia coli.by coproduction of the bacterial thioredoxin.J Bio Chem,1995,270:25328-25331.
    [54]LaVallie ER,et al.A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E.coli cytoplasm Biotechnology.1993,11:187-193.
    [55]Lee C,Lee SG,Takahashi S,et al.The Soluble Expression of the Protein Using Fusion Parters:Thioredoxin,Maltose Binding Human Rennin Binding a Comparison of Ubiquitin,Protein and NusA[J].Biotechno 1.Biopro.Eng.,2003,8(2):89-93.
    [56]Butt TR,Edavettal SC,Hall JP,et al.SUMO fusion technology for difficult-to-express proteins.Protein Expression and Purification,2005,43(1):1-9.
    [57]Malakhov MP,et al.SUMO fusion and SUMO-specific proteases for efficient expression and purification of proteins,J.Struct.Funct.Genom,2004,5:75-86.
    [58]Zuo X,et al.Expression and purification of SARS coronavirus proteins using SUMO-fusions.Protein Expr Purif,2005,42:100-110.
    [59]LaVallie ER,et al.A thioredoxin gene fusion expression system that circumvent:inclusion body formation in the E.coli cytoplasm.Biotechnology 1993,11:187-193.
    [60]van Leen RW,et al.Production of human interleukin-3 using industrial microorganisms.Biotechnology(N Y)1991,9:47-52.
    [61]Langley KE,et al.Recombinant-DNA-derived bovine growth hormone from Escherichia coli.1.Demonstration that the hormone is expressed in reduced form,and isolation of the hormone in oxidized,native form.Eur J Biochem,1987,163:313-321.
    [62]Haelewyn J,et al.A rapid single-step purification method for human interferon-gamma from isolated Escherichia coli.Inclusion bodies,Biochem Mol Biol Int,1995,37:1163-1171.
    [63]Fayard,E.M.S.Thesis.University of Oklahoma.1999.
    [64]封淑颖.人脂联素基因的克隆及其在大肠杆菌中的高效可溶性表达.硕士论文.华东师范大学,2006.
    [65] de Macro A. Two-step metal affinity purification of double-tagged (NusA-His_6) fusion proteins. Nat Protoc 2006, 1:1538-1543.
    [66] Bardwell JCA, Beekwith J. Identification of 8 a protein required for disulfide bond formation in vivo. Cell, 1991, 67(3): 581-589.
    [67] Zhang Y, Olsen DR, Nguyen KB, et al. Expression of eukaryotic proteins in soluble form in Escherichia coli [J]. Prorein Expr Purif, 1998, 12(2): 159-165.
    [68] Jeong KJ, Lee SY. Secretory production of human leptin in Escherichia coli [J] .Biotechnol Bioeng, 2000,67(4):398-407.
    [69] Sorensen HP, etal. Bacterial translation initiation-mechanism and regulation. Rec. Res. Dev. BioPhys. Biochem, 2002, 2:243-270.
    [70] Sorensen HP, et al. Remarkable conservation of translation initiation factors: IF1/eIF 1 A and 1F2/eIF5B are universally distributed phylogenetic markers. IUBMB Life 2001, 51:321-327.
    [71] Mortensen KK, et al. A six-domain structural model for Escherichia coli. translation initiation factor IF2. Characterisation of twelve surface epitopes, Biochem. Mol. Biol. Int 1998, 46:1027-1041.
    [72] Sorensen, HP, et al. A favorable solubility partner for the recombinant expression of streptavidin. Protein Expr. Purif, 2003, 32:252-259.
    [73] Sorensen HP, et al. Soluble expression of aggregating proteins by covalent coupling to the ribosome. Biochem Biophys Res Commun, 2004, 319:715-719.
    [74] Hirvas L, et al. Bacterial histone-like protein 1' (HLP-1) is an outer membrane constituent? FEBS Lett, 1990,262:123-126.
    [75] Koski P., et al. Complete sequence of the ompH gene encoding the 16-kDa cationic outer membrane protein of Salmonella typhimurium. Gene 1990, 88:117-120.
    [76] Missiakas D, et al. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol 1996,21:871-884.
    [77] Thome BM, Muller M. Skp is a periplasmic Escherichia coli protein requiring SecA and SecY for export [J]. Mol Microbiol, 1991, 5, (11):2815-2821
    [78] Harms N, et al. The early interaction of the outer protein phoe with the periplasmic chaperone Skp occurs at the cytoplasmic membrane. J. Biol. Chem , 2001,276: 18804-18811.
    [79] Schafer U, et al. Skp, a molecular chaperone of gram-negative bacteria, is required for the formation of soluble periplasmic intermediates of outer membrane proteins.J.Biol.Chem 1999,274:24567-24574.
    [80]Chen R,et al.A periplasmic protein(Skp)of Escherichia coli selectively binds class of outer membrane proteins.Mol.Microbiol 1996,19:1287-1294.
    [81]De Cock H,et al.Affinity of the periplasmic chaperone Skp of Escherichia coli.for phospholipids,lipopolysaceharides and non-native outer membrane proteins.Role of Skp in the bingenesig of neuter membrane protein.Eur.J.Biochem,1999,259:96-103.
    [82]Troy A.Walton,et al.Crystal structure of Skp,a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation.Mol Cell,2004,15:367-374.
    [83]张守涛,史婧,李楠等.蛇毒纤溶酶ALF基因在大肠杆菌中的表达.西北农林科技大学学报(自然科学版),2006,34(12):21-24
    [84]Bothmann H,Pluckthun A.Selection for a periplasmic factor improving phage display and functional periplasmic expression[J].Nat Biotech,1998,16(4):376-380.
    [85]Schafer U,Beck K,Muller M.Skp,a Molecular chaperone of gram-negative bacteria,is required for the formation of soluble periplasmic intermediates of outer membrane proteins[J].The Journal of Biological Chemistry,1999,274(35):24567-24574
    [86]Smith DB,et al.Single-step purification of polypeptides expressed in Escherichia coli.as fusions with glutathione S-transferase.Gene,1988,67:31-40.
    [87]Wu X,Oppermann U.High-level expression and rapid purification ofrare-codon genes from hyperthermophilic archaea by the GST gene fusion system.[J].J.Chromatography B,Analytical Technologies in the Biomedical and Life Science,2003,786(1):177-185
    [88]LI Chu-fang,et al.Expression of hPLIC-2 and antibody preparation.LETTERS IN BITECHNOLOGY,2004,15:451-453.
    [89]Lu Q,et al.Using Schizosaccharomyces pombe as host for expression and purification of eukaryotic proteins.Gene,1997,200:135-144.
    [90]Rudert F,et al.pLEF,a novel vector for expression of glutathione S-transferase fusion proteins in mammalian cells.Gene,1996,169:281-282.
    [91]Beckman JM,et al.A rapid one-step method to purify baculovirus-expressed human estrogen receptor to be used in the analysis of the oxytocin promoter. Gene, 1994, 146:285-289.
    
    [92] Lassar AB, et al. MyoD is a sequencespecific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 1989,58:823-831.
    
    [93] Mayer BJ, et al. The noncatalytic src homology region 2 segment of abl tyrosine kinase binds to tyrosine-phosphorylated cellular proteins with high affinity. Proc Natl Acad Sci USA, 1991, 88:627-631.
    [94] Ron D, et al. pGSTag-a versatile bacterial expression Plasmid for enzymatic labelling of recombinant proteins. Biotechniques 1992,13:866-869.
    [95] McTigue MA, et al. Chrystal structures of a Schistosomal drug and vaccine target: glutathione Stransferase from Schistosoma japonica and its complex with the leading antischistosomal drug praziquantel. J Mol Biol, 1995,246:21-27.
    [96] Duplay P, et al. Sequence of male gene and of its product, the maltosebinding protein of Escherichia coli K12. J Biol Chem, 1988,259:10606-10613.
    [97] Di Guan C, et al. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 1988, 67:21-30.
    [98] Sachdev D, et al. Fusions to maltose-binding protein: control of folding and solubility in protein purification. Methods Enzymol, 2000,326:312-321
    [99] Hamilton SR, et al. AMP activated protein kinase: detection with recombinant AMPK alphal subunit. Biochem Biophys Res Commun,2002,293:892-898.
    [100] Podmore AH, et al. Purification and characterization of VanXYC, a d,d-dipeptidase/d,d-carboxypeptidase in vancomycin- resistant Enterococcus gallinarum BM4174. Eur J Biochem, 2002, 269:2740-2746.
    [101] Sassenfeld HM, et al. A polypeptide fusion designed for purification of recombinant proteins. Bio Technology, 1984, 2:76-81.
    [102] Nagai K, et al. Synthesis and sequence specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol, 1987,153:461-481.
    [103] Hochuli E, et al. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr, 1987, 411:177-184.
    
    [104] Hochuli E, et al. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/Technology 1988, 6:1321-1325.
    [105] Hefti MH, et al. A novel purification method for histidine-tagged proteins containing a thrombin cleavage site. Anal Biochem, 2001, 295:180-185
    [106] Janknecht R, et al. Rapid and efficient purification of native histidine-tagged protein expressed by recombinant vaccina virus. Proc Natl Acad Sci USA, 1991, 88:8972-8976.
    [107] Chaga G, et al. Immobilized metal ion affinity chromatography on Co2+-carboxymethylaspartate-agarose superflow, as demonstrated by one-step purification of lactate dehydrogenase from chicken breast. Biotechnol Appl Biochem, 1999a, 29:19-24.
    [108] Chaga G, et al. Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt (II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A 1999b, 864:257-256
    [109] Chen BP, et al. Expression vectors for affinity purification and radiolabeling of proteins using Escherichia coli. as host. Gene, 1994, 139:73-75.
    [110] Rank KB, et al. [W206R]- procaspase 3: an inactivateable substrate for caspase 8.Protein Expr Purif, 2001, 22:258-266.
    [111] Borsing L, et al. Expression and purification of His-tagged beta-1, 4 galactosyltransferase in yeast and in COS cells. Biochem Biophys Res Commun, 1997, 240:586-590.
    [112] Kaslow DC, et al. Production, purification and immunogenicity of a malarian transmission-blocking vaccine candidate: TBV25H expressed in yeast and purified using nickel-NTA agarose. BiolTechnology, 1994,12:494-499.
    [113] Janknecht R, et al. Affinity purification of histidinetagged proteins transiently produced in HeLa cells. Gene, 1992,121:321-324.
    [114] Kuusinen A, et al. Purification of recombinant GluR-D glutamate receptor produced in Sf21 insect cells. Eur J Biochem, 1995, 233:720-726.
    [115] Schmidt M, et al. Baculovirus-mediated large-scale expression and purification of a polyhistidine-tagged Rubella virus capsid protein. Protein Expr Purif, 1998, 12:323-330.
    [116] Hakansson K, et al. Crystallization of peptidase T from Salmonella typhimurium. Acta Crystallogr D Biol Crystallogr, 2000, 56:924-926.
    [117] Hopp TP, et al. A short polypeptide marker sequence useful for recombinant protein identification and purification. Bio Technology, 1988, 6:1204-1210.
    [118] Maroux S, et al. Purification and specificity of procine enterokinase. J Biol Chem, 1971,246:5031-5039.
    [119] Blanar MA, et al. Interaction cloning: identification of a helix-loop-helix zipper protein that interacts with c-fos. Science, 1992, 256:1014-1018.
    [120] Su XA, et al. Production of recombinant porcine tumor necrosis factor alpha in a novel E. coli expression system. BioTechniques, 1992,13:756-762.
    [121] Einhauer A, et al. Expression and purification of homogenous proteins in Saccharomyces cerevisiae based on ubiquitin-FLAG fusion. Protein Expr Purif, 2002, 24: 497-504.
    [122] Schucter M, et al. Protein expression strategies for identification of novel target proteins. J Biomol Screen, 2000, 5:89-97.
    [123] Kunz D, et al. The human leukocyte plateletactivating factor receptor. J Biol Chem,1992, 267:9101-9106.
    [124] Zhang XK, et al. Novel pathway for thyroid hormone receptor action through interaction with jun and fos oncogene activities. Mol Biol, 1991, 11:6016-6025.
    [125] Feng-min LU, et al. N-terminal Flag Tag Stabilizes P21Cip/WAFl Protein. Catctno Genesis,Terato Genesis&Muta Genesis, 2006,3:119-121.
    [126] Schmidt TGM, et al. The random peptide libraryassisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng, 1993, 6:109-122.
    [127] Schmidt TGM, et al. Molecular interaction between the Strep-tag affinity peptide and its cognate target, Streptavidin. J Mol Biol 1996,255:753-766.
    [128] Voss S, et al. Mutagenesis of a flexible loop in streptavidin leads to higher affinity for the Strep-tag II peptide and improved performance in recombinant protein purification. Protein Eng, 1997,10:975-982.
    [129] Kornd6rfer IP, et al. Improved affinity of engineered Streptavidin for the Strep-tag II peptide is due to a fixed open conformation of the lid-like loop at the binding site. Protein Sci, 2001, 11:883-893.
    [130] Fontaine L, et al. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADHdependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol, 2002,184:821-830.
    [131] Murphy JT, et al. Purification and characterization of recombinant affinity peptide-tagged oat phytochrom A. Photochem Photobiol 1997, 65:750-758.
    [132] Sardy M, et al. Epidermal transglutaminase (TGase 3) is the autoantigen of dermatitis herpetiformis. J Exp Med, 2002, 195 747-757.
    [133] Smyth N, et al. Eucaryotic expression and purification of recombinant extracellular matrix proteins carrying the Strep II tag. In: Streuli CH, Grant ME (eds) Extracellular matrix protocols. Humana, Totowa, New Jersey, 2000,49-57
    [134] Drucker M, et al. Purification of viral protein from infected plant tissues using the Strep-tag. Botechnol Intl June, 2002,16-18.
    [135] Kipriyanov SM, et al. Rapid detection of recombinant antibody fragments directed against cell-surface antigens by flow cytometry. J Immunol Methods, 1996, 196:51-62.
    [136] Dreher ML, et al. Colony assays for antibody fragments expressed in bacteria. J Immunol Methods, 1991,139:197-205.
    
    [137] Vaughan TJ, et al. Human antibodies with sub-nanomolar affinities isolated from large non-immunized phage display library. Nat Biotechnol, 1996, 14:309-314.
    [138] Sequi-Real B, et al. Yeast aminopeptidase I is post-translationally sorted from the cytosol to the vacuole by a mechanism mediated by its bipartite N-terminal extension. EMBO J , 1995, 14:5476-5484.
    [139] Weiss HM, et al. Comparative biochemical and pharmacological characterization of mouse 5HT5A 5-hydroxytryptamine receptor and the human beta2- adrenergic receptor produced in the methylotrophic yeast Pichia pastoris. Biochem J, 1998, 330:1137-1147.
    [140] Schioth HB, et al. Expression of functional melanocorcin 1 receptor in insect cells. Bichem Biophys Res Commun, 1996, 221:807-814.
    [141] McKern NM, et al. Crystallization of the first three domain of the human insuline-like growth factor-1 receptor. Protein Sci, 1997, 6:2663-2666.
    [142] Moorby CD, et al. Expression of a Cx43 deletion mutant in 3T3 A31 fibroblasts prevents PDGF-induced inhibition of cell communication and suppress cell growth. Exp Cell Res, 1999, 249:367-376.
    [143] Ferrando A, et al. Detection of in vivo protein interactions between Snfl-related kinase subunits with intron-tagged epitope- labeling in plant cells. Nucleic Acids Res, 2001, 29:3685-3693.
    [144] Manstein DJ, et al. Cloning vectors for the production of proteins in Dictyostelium discoideum. Gene, 1995,162:129-134.
    [145] Karpeisky MY, et al. Formation and properties of S-protein complex with S-peptide containing fusion protein. FEES Lett, 1994, 339:209-212.
    [146] Kim JS, et al. A misfolded but active dimer of bovine seminal ribonuclease. Eur J.Biochem, 1994, 224:109-114.
    [147] Connelly PR, et al. Thermodynamics of protein-peptide interactions in the ribonuclease S system studied by titration calorimetry. Biochemistry 1990, 29:6108-6114.
    [148] Blumenthal DK, et al. Identification of the calmodulinbinding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci USA 1985, 82:3187-3191.
    [149] Vaillancourt P, et al. Affinity purification of recombinant proteins fused to calmodulin or calmodulin-binding peptides. Methods Enzymol 2000, 326:340-362.
    
    [150] Head JF. A better grip on calmodulin. Curr Biol, 1992, 2:609-611.
    [151] Zheng CF, et al. A new expression vector for high level protein production, one step purification and direct isotopic labeling of calmodulin-binding peptide fusion proteins. Gene, 1997,186:55-60.
    [152] Xu Z, et al. Heavy metal removal by novel CBD-EC20 sorbents immobilized on cellulose. Biomacromolecules, 2002, 3:462-465.
    [153] Tomme P, et al. Characterization and affinity applications of cellulose-binding domains. J Chromatogr B, 1998, 715:283-296.
    [154] Watanabe T, et al. The role of the C-terminal domain and type III domains of chitinase A1 from bacillus circulans WL-12 in chitin degradation. J Bacteriol, 1994, 176:4465-4472.
    [155] Chong S, et al. Protein splicing involving the Saccharomyces cerevisiae VMA intein. J Biol Chem, 1996, 271:22159-22168.
    [156] Chong S, et al. Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene 1997, 192:271-281.
    [157] Xu MQ, et al. Fusionc to selfcnliring inteinc for protein Plwrifcativni . Methods Enzymol, 2000, 236:376-418.
    [158] Cantor EJ, et al. Intein-mediated rapid purification of Cre recombinase. Protein Expr Purif, 2001, 22:135-140.
    [159] Sweda P, et al. Cloning, expression, and purification of the Staphylococcus simulans lysostaphin using the intein-chitin-binding domain (CBD) system. Protein Expr Purif, 2001,22:467-471.
    [160] Wiese A, et al. Cloning, nucleotide sequences and expression of a hydantoinase and carbamoylase gene from Arthrobacter aurescens DSM 3745 in Escherichia coli. and comparison with corresponding genes from Arthrobacter aurescens DSM 3747. Appl Microbiol Biotechnol, 2001, 55:750-757.
    [161] Uhlen M, et al. Gene fusion vectors based on the gene for staphylococcal protein A. Gene, 1983,23:369-378.
    [162] Nilsson B, et al. Immobilization and purification of enzymes with staphylococcal protein A gene fusion vectors. EMBO J, 1985, 4:1075-1080.
    [163] Goward CR, et al. Expression and purification of a truncated recombinant streptococcal protein G Biochem J, 1990, 267:171-177.
    [164] pET 表达系统操作指南, Novagen
    [165] Choi SI, et al. Recombinant enterokinase light chain with affinity tag: expression from Saccharomyces cerevisiae and its utilities in fusion protein technology. Biotechnol Bioeng, 2001, 75:718-724.
    [166] Chang JY, Thrombin specificity Requirement for apolar amino acids adjacent to the thrombin cleavage site of polypeptide substrate. Eur J Biochem, 1985, 151:217-224.
    [167] Chang JY, et al. Thrombin specificity Selective cleavage of antibody light chains at the joints of variable with joining regions and joining with constant regions. Eur J Biochem, 1985,151:225-230.
    [168] Haun RS, et al. Ligation-independent cloning of glutathione fusion genes for expression in Escherichia coli. Gene, 1992,112:37-43.
    [169] Guan K, et al. Eukaryotic proteins expressed in E. coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem, 1991,192:262-267.
    [170] Yu L, et al. Cloning, gene sequencing, and expression of the small molecular mass ubiquinone-binding protein of mitochondrial ubiquinol-cytochrorm creductase. J Biol Chem, 1995, 270:25634-25638.
    [171] Ko YH, et al. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein. J Biol Chem, 1993, 268:24330-24338.
    [172]Rodriguez PL,et al.Improved factor Xa cleavage of fusion proteins containing maltose binding protein.Biotechniques,1995,238:241-243.
    [173]Pryor KD,et al.High-level expression of soluble protein in Escherichia coli.using His6-tag and maltose-binding protein double-affinity system.Prot Expr Purif,1997,10:309-319
    [174]郑斌,詹希美.信号肽序列及其在蛋白质表达中的应用.生物技术通讯,2005,16(3):296-298.
    [175]袁宇,甘人宝.大肠杆菌的蛋白分泌机制.生物化学与生物物理进展,1995,22(4):295-300.
    [176]Mergulhao FJM,Monteiro GA,Larsson G,et al.Evaluation of Inducible Promoters on the Secretion of a ZZ-proinsulin Fusion Protein[J].Biotechnol.Appl.Biochem.,2003,38:87-93.
    [177]Huang HC,Sherm an MY,Kandror O,et al.The Molecular Chaperone Dnaj Is Required for the Degradation of a Soluble Abnormal Protein in Escherichia coli [J].J.Biol.Chem.,2001,276:3920-3928.
    [178]Koster M,Bitter W,Tommassen J.Protein Secretion Mechanisms in Gram-negative Bacteria[J].Int.J.Med.Microbiol.,2000,290:325-331.
    [179]Palacios JL,Zaror I,Martinez P,et al.Subset of Hybrid Eukaryotic Proteins is Exported by the Type I Secretion Systems of Erwinia chrysanthemi[J].J.Bacteriol.,2001,183:1346-1358.
    [180]Kajava AV,Zolov SN,Kalinin AE,et al.The Net Charge of the First 18Residues of the Mature Sequence Affects Protein Translocation Across the Cytoplasmic Membrane of Gram-negative Bacteria[J].J.Bacteriol,2000,182:2163-2169.
    [181]Nielsen HJ,Engelbrecht J,Brunak S,et al.Identification of Prokaryotic and Eukaryotic Signal Peptides and Prediction of Their Cleavage Sites[J].Protein Eng.,1997,10:1-6.
    [182]Rose,R.E.(1988)The nucleotide sequence of pACYC184.Nucleic Acids Res.16,355.
    [183]韩志勇,沈革志,潘建伟.一种改良的质粒DNA小量提取法.生物技术通报.2000,4:45.
    [184]Bollag DM,et al.Protein Methods 2~(nd)[M].New York:Wiley-Liss,1966,12:108-149.
    [185]Kyte J,et al.A simple method for displaying the hydropathic character of a protein.J.Mol.Biol,1982,157:105-132.
    [186]赫然,张颖,王强等.利用微波炉和煮沸法快速制备大肠杆菌基因组DNA PCR模板.中山大学学报,2004,43:80-81.
    [187]Sambrook J,et al.分子克隆实验指南(第三版).科学出版社,2002.
    [188]余波光,林健,吴文言.大肠杆菌胞内的共表达策略.现代临床医学生物工程学杂志,2006,12(4):376-378.
    [189]Davis GD,et al.New fusion protein system designed to give soluble expression in Escherichia coli.Biotechnol.Bioeng,1999,65:382-388.
    [190]Van den Berg,S.,L6fdahl,P.,Hard,T.,Berglund,H.Improved solubility of TEV protease by directed evolution.J.Biotechnol.2006,121:291-298.
    [191]Gatenby,A.A.,van der Vies,S.M.,Rothstein,S.J.Co-expression of both the maize large and wheat small subunit genes of ribulose-bisphosphate carboxylase in Escherichia coli.Eur.J.Biochem.1987,168:227-231.
    [192]Kapust,R.B.,Waugh,D.S.Controlled intracellular processing of fusion proteins by TEV protease.Protein Expr.Purif.2000,19:312-318.
    [193]Sachdev,D.,Chirgwin,J.M.Properties of soluble fusions between mammalian aspartic proteases and bacterial maltose binding protein.J.Protein Chem.1999,18:127-136.
    [194]Nomine,Y.,Ristriani,T.,Laurent,C.,et al.Formation of soluble inclusion bodies by HPV e6 oncoprotein fused to maltose-binding protein.Protein Expr.Purif.2001,23:22-32.
    [195]Mossessova,E.and Lima,C.D.Ulp1-SUMO Crystal Structure and Genetic Analysis Reveal Conserved Interactions and a Regulatory Element Essential for Cell Growth in Yeast.Mol.Cell 2000,5:865-876.
    [196]Kapust,R.B.and Waugh,D.S.Controlled intracellular processing of fusion proteins by TEV protease.Protein Expr.Purif.2000,19:312-318.
    [197]Malakhov,M.P.,Mattem,M.R.,Malakhova,O.A.,et al.SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins.J.Struct.Funct.Genomics2004,5:75-86.
    [198]Shimada K,et al.Influence of amino acid features of glutathione S-transferase fusion proteins on their solubility.Protemics,2005,5:3859-3863.
    [199]Dyson MR,et al.Production of soluble mammalian proteins in Escherichia coli:identification of protein features that correlate with successful expression.BMC Biotechnol,2004,4:32.
    [200]Hammarstrom,M.,Woestenenk,E.A.,Hellgren,N.,et al.Effect of N-terminal solubility enhancing fusion proteins on yield of purified target protein.J.Struct.Funct.Genomics,2006,7:1-14.
    [201]Kim,C.W.,Han,K.S.,Ryu,K.-S.,et al.N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers.Protein Sci.2007,16:635-643.
    [202]Jurado,P.,de Lorenzo,V.,Fernandez,L.A.Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli:evidence that chaperone activity is the prime effect of thioredoxin.J.Mol.Biol.2006,357:49-61.
    [203]Nallamsetty,S.and Waugh,D.S.Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners.Protein Expr.Purif.2006,45:175-182.
    [204]苏裕.大肠杆菌中重组蛋白可溶性表达的研究.硕士论文.华东师范大学,2007.
    [205]Yu Su,Zhurong Zou,Shuying Feng,et al.Hyper-acidic protein fusion partners improve solubility and assist correct folding of recombinant proteins expressed in Escherichia coli.Journal of Biotechnology,2007,129(3):373-382.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700