广州地区稻田甲烷和氧化亚氮排放及模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷(CH_4)和氧化亚氮(N_2O)是两种重要的温室气体,自工业革命以来,由于人类活动的加强大气中甲烷和氧化亚氮浓度有了明显的增加,研究表明,稻田是甲烷和氧化亚氮的主要生物排放源之一。因此,近年来在全球气候变化中稻田甲烷和氧化亚氮排放得到了广泛的关注。
     本文利用静态箱法对广东清远地区双季稻生态系统CH_4和N_2O的排放进行了连续的观测研究,对观测数据进行了分析;利用生物地球化学模型DNDC(Denitrification and Decomposition)对早晚稻稻田CH_4和N_2O的排放进行了模拟,并与实际观测结果进行了比较;利用DNDC模型对影响稻田CH_4和N_2O排放的共同因子进行了一系列的敏感性实验,分析了各种因子对两种气体综合排放的贡献,提出了合理的减排措施;最后利用DNDC模型对广东省稻田CH_4和N_2O排放量进行了初步估算。
     早稻田CH_4排放通量季节变化基本为三峰型,三个阶段的峰值分别出现在返青、分蘖拔节期和成熟期,而且后两个时期的排放峰值非常明显,季节平均排放通量为4.38 mg/m~2·h。晚稻田CH_4排放通量存在明显的三个排放峰值,呈现“前高后低”的趋势,最高峰值出现在分蘖盛期,季节平均排放通量为6.09 mg/m~2·h。稻田水位和土壤Eh(氧化还原电位)值对CH_4排放有明显的影响。当稻田水位在2cm左右时,容易出现CH_4排放的峰值,为了减少稻田CH_4排放应该避免2cm左右的浅水位,或者采取间歇灌溉的方式。早稻田土壤Eh值低于-100mv才有大量的CH_4产生,晚稻田土壤Eh值(-60mv—-150mv)比早稻田的高。不同水稻品种对稻田CH_4排放和水稻的产量有很大的影响。品种1(金优99)和品种2(七丝尖)相比,不仅CH_4排放少而且产量高,所以在选择水稻品种时应选排放少且产量高的。
     DNDC模型能较好的模拟出早晚稻田CH_4排放的季节变化规律和主要排放峰值。模式的敏感性表明:①温度和稻田CH_4和N_2O排放之间是一种正相关关系,温度升高会引起稻田CH_4和N_2O排放量的增加,从而又引起温度的升高。②增加土壤有机质含量(SOC)对于稻田CH_4和N_2O的排放都有促进作用;土壤pH对稻田CH_4和N_2O排放的影响是不同的,最大值出现在不同的范围内,CH_4的最大值出现在偏碱性环境中,N_2O则出现在偏酸性环境中。但是这两个因素都是由土壤本身的特性决定的,不同类型的土壤有不同的SOC和pH值,因此通过控制SOC和pH值来减少稻田CH_4和N_2O的排放是不可能。③要想减少稻田CH_4和N_2O的排放只有通过农田管理措施(水管理、施肥等)来实现。根据CH_4和N_2O排放的特点以及敏感性实验,建议在水稻生长初期土壤有机质比较丰富的情况下,尽量使土壤保持在干湿交替的状态;生长中期进行中耕晒田,能
    
    南京气象学院顶士学位论文
    广东地区稻田甲烷和氧化亚氮排放及模拟研究
    减少CH;的排放;在水稻生长的中后期,由于此时土壤中的有机质大部分
    已经被吸收或分解,采用浅水灌溉,为了增加水稻的产量,应追施化肥,
    此时水稻田处于淹水状态可以抑制NZO的排放。
     利用DNDC模型初步估算出广东省稻田C执和N20的排放量分别为
    0 .205一0.557TgC和0.04一0.042TgN。
Methane (CH4) and nitrous oxide (N2O) are two important greenhouse gases. For the reason of human activities the concentrations of CH4 & N2O have been increasing clearly since the industrial revolution. A study indicates that rice paddy fields are one of the most important biology sources of CH4 & N2O. Therefore, in recent years CH4 & N2O emissions from rice fields are given more attentions in the field of global climate change.
    In this paper an experiment study of CH4 & N2O emissions were carried out by using static chambers in rice-rice rotation system in Qingyuan region of Guangdong province. The experiment data were analyzed. Beside the measurements of CH4 & N2O fluxes, the biogeochemical model-DNDC (Denitrification and Decomposition) was used to simulate CH4 & N2O emissions from the early and later rice. The simulations were compared with observations. On the basis of control-experiment a series of sensitive experiment about the factors affecting CH4 & N2O emissions were conducted. Many reasonable mitigation methods were brought out according to the sensitive experiments. In the end, total amount of CH4 & N2O emissions from rice fields of Guangdong province was preliminary estimated by using DNDC model.
    The seasonal variation of CH4 emission flux from the early rice fields is three-peak model. Three peak values appear respectively in the phase of regreening, tillering and fruiting. The two peak values in tillering and fruiting term are very obvious. The average CH4 emission flux of the whole early rice growing season is 4.38mg/m2 h In the growing season of the later rice there are three clear CH4 emission peaks. In the beginning (tillering term) of the later rice there is a high emission flux, and in the middle term (tasseling) there is a low methane emission flux. The highest peak value appears in the phase of tillering. The seasonal average CH4 emission flux of the whole later rice is 6.09mg/m2 h Water level and the Eh value have obvious effects on CH4 emission. When the water level is about 2cm, there is often a corresponding peak of CH4 flux. We should avoid shallow water level of about 2cm or choose intermittent irrigation in order to decrease CH4 emission from rice fields. When Eh<-100mv, there are a
    lot of CHU production from the early rice. The Eh value of later rice(-60mv--150mv) is higher than that of early rice. CH4 emission and the yield have a large difference for different rice cultivar. Jinyou 99 has not only little CH4 emission but also a large yield comparing Qisijian.
    
    
    So, we should choice the rice variety which has little CH4 emission and large yield.
    The processes of CH4 emission are discussed in detail by comparing the DNDC model outputs with the results from field measurements. Results show that DNDC model can elucidate well the seasonal change of CHU emission and most of CH4 emission pulses in the region. On the basis of these sensitive experiments are carried out. Sensitive experiments indicate that: CD There is a positive correlation between temperature and CH4 & N2O emissions from rice paddy fields. Temperature increasing can arouse CH4 & N2O emissions fluxes increasing. CHU & N2O emissions fluxes increasing can result in the greenhouse effect enhancing. Therefore, the temperature increases. (2) when soil organic carbon increases, CH4 & N2O emissions fluxes will increases. Soil pH has different effect on CHU & N2O emissions. The highest value of CH4 emission appears in the environment of alkalescence, but N2O appears in acidity. Soil pH and soil organic carbon lie on the characteristic of soil. Therefore, reducing CH4 & N2O emissions through contro
    lling SOC and pH is not impossible. (3) In order to reducing CH4 & N2O emissions water management and fertilization are necessary methods. According to the trait of CHU & N2O emissions and sensitive experiments, the following advices are brought out. If soil organic matter is abundance at the beginning, the rice field should be in the station of dry-wet alternating. The mid-season draining which can reduce CH4 emission is use
引文
[1] 陈美慈,闵航,钱泽澍.水稻田中产甲烷菌数量和优势种.土壤学报.1993,30(4):432~437
    [2] 陈玉芬,杨军,顾蔚蓝等.广州地区晚造稻田氧化亚氮排放量与施肥灌溉关系的研究.华南农业大学学报.1999,20(2):80~84
    [3] 陈中云,闵航,陈美慈等.不同水稻土甲烷氧化菌和产甲烷菌数量与甲烷排放量之间相关性的研究.生态学报.2001,21(9):1498~1505
    [4] 勾继,郑循华,王明星,李长生.华东地区稻麦轮作农田生态系统N_2O排放的模拟研究.大气科学.2000,24(6):835~842
    [5] 国家科委社会发展司.全球气候变化及其对策—全球气候变化对策专家组研究报告.1990
    [6] 侯爱新,陈冠雄,吴杰等.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子.应用生态学报.1997,8(3):270~274
    [7] 李长生.生物地球化学的概念与方法—DNDC模型的发展.第四纪研究.2001,21(2):89~99
    [8] 李晶.稻田甲烷排放和减排技术的模式研究及应用.中科院大气物理研究所博士论文.1999
    [9] 李楠,陈冠雄等.植物释放N_2O的速率及施肥的影响.应用生态学报.1993,4(3):295~289
    [10] 刘建栋,周秀骥,王建林等.稻田甲烷排放的农业气象数值模拟研究.应用气象学报.2001,12(4):409~418
    [11] 刘建栋,周秀骥,于强.长江三角洲稻田生态系统综合增温潜势源汇交替的数值分析.中国科学(D).2003,33(2):105~113
    [12] 卢维盛,张建国,廖宗文.广州地区晚稻田CH_4和N_2O的排放通量及其影响因素.应用生态学报.1997,8(3):275~278.
    [13] 吕雪娟,杨军,陈玉芬等.广州地区早稻品种与施肥对稻田甲烷排放通量的影响研究.华南农业大学学报.1998,19(4):87~91.
    [14] 闵航,陈美慈,钱泽澍.水稻田的甲烷释放及其生物学机理.土壤学报.1993,30(2):125~130.
    [15] 齐玉春,董云社.土壤N_2O产生、排放及其影响因素.地理学报.1999,54(6):534~542
    [16] 任丽新,王庚辰,张仁健等.成都平原稻田甲烷排放的实验研究.大气科学.2002,26(6):731~743
    [17] 上官行健.稻田甲烷产生和排放过程的研究.中科院大气物理研究所博士论文.1993
    [18] 上官行健,王明星,R.Wassmann等.稻田土壤中CH_4产生率的实验研究.大气科学.1993a,17(5):604~610
    
    
    [19] 上官行健,王明星,陈德章等.稻田土壤中的CH_4产生.地球科学进展.1993b,8(5):1~12
    [20] 上官行健,王明星.稻田甲烷排放影响因子的研究进展.中国农业气象,1993c,14(4):48~53
    [21] 邵可声,李震.水稻品种以及施肥措施对稻田甲烷排放的影响,北京大学学报,1996,32(4):46~59
    [22] 沈壬兴,上官行健,王明星等.广州地区稻田甲烷排放及中国稻田甲烷排放的空间变化.地球科学进展,1995,10(4):387~392
    [23] 世界温室气体资料中心:http://gaw.kishou.go.jp/wdcgg.html
    [24] 王敬国,农业生态系统和大气间的温室效应气体交换,环境科学,1993,14(2):49~53
    [25] 王琛瑞,黄国宏,梁战备等.大气甲烷源和汇与土壤氧化(吸收)甲烷研究进展.应用生态学报.2002,13(12):1707~1712
    [26] 王海啸.稻田氮循环及N_2O排放数值模拟研究.中科院大气物理研究所博士论文.1999
    [27] 王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理.大气科学.1998,22(4):600~612
    [28] 王明星.大气化学.北京:气象出版社.1999
    [29] 王明星.中国稻田甲烷排放.北京:科学出版社.2001
    [30] 王效科,李长生.中国农业土壤N_2O排放量估算.环境科学学报.2000,20(4):483~488
    [31] 王效科,欧阳志云,苗鸿.DNDC模型在长江三角洲农田生态系统的CH_4和N_2O排放量估算中的应用.环境科学.2001,22(3):15~19
    [32] 王智平,曾江海,张玉铭.农田土壤N_2O排放的影响因素.农业环境保护.1994,13(1):40~42
    [33] 吴兑主编.温室气体与温室效应.北京:气象出版社.2003
    [34] 谢小立,王卫东,上官行健等.施肥对稻田甲烷的影响.农村生态环境.1995,11(1):10~14
    [35] 熊效振,沈壬兴等.太湖流域单季稻的甲烷排放研究.大气科学.1999,23(1),9~18
    [36] 徐华,蔡祖聪,李小平.土壤Eh和温度对稻田甲烷排放季节变化的影响.农业环境保护.1999,18(4):145~149
    [37] 徐琪,杨林章,董元华等著.中国稻田生态系统.中国农业出版社.1998,72~82
    [38] 徐文斌,洪业汤.冬闲水田土壤—一个重要的尚未确定的N_2O释放源.环境科学研究.1999,12(3):42~48
    [39] 徐文彬,洪业汤,陈旭晖等.应用DNDC模型估算区域农业土壤N_2O释放通量和释放量—以贵州省为例.环境科学.2000,21(2):11~15
    
    
    [40] 杨军,陈玉芬,胡飞等.广州地区早稻田施肥对N_2O排放影响的初步研究.华南农业大学学报.1996,17(4):52~57
    [41] 杨军,陈王芬,胡飞等.广州地区晚季稻田甲烷排放通量与施肥影响研究.华南农业大学学报.1996,17(2):17~22
    [42] 于海青.长江三角洲稻田N_2O减排措施和未来排放的估测.中国气象科学研究院硕士论文.2002
    [43] 曾江海,王智平.农田土壤N_2O生成与排放研究.土壤通报.1995,26(3):132~134
    [44] 郑循华.农田N_2O产生与排放过程研究.中科院大气物理研究所博士论文.1996
    [45] 朱枚,田洪海,李金龙等.大气甲烷的源和汇.环境保护科学.1996,22(2):5~9
    [46] Bailey L. D. and E. G. Beauchamp. Effects of temperature on NO_3 and NO_2 reduction, nitrogenous gas production, and redox potential in a saturated soil. Can. J. Soil Sci. 1973, 53:213~218
    [47] Batjes, N.H and E.M. Bridges. World Inventory of soil Emissions, No.92/4, Working Paper and Preprint. 1992, 204
    [48] Bouwman, A.F., I. Fung and E. Matthewes et al. Global analysis of the potential for N_2O production in natural soils, Global Biogeochemical Cycles. 1993, 7: 557~597
    [49] Bouwman, A. F., et al. Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res. 1995, 100(D2): 2785~2800
    [50] Donner, L., and Ramanathan, V. Methane and Nitrous Oxide: Their effects on the Terrestrial Climate. Journal of the Atmospheric Sciences. 1980, 37:119~124
    [51] Huang Y., Sass R. L. and Fisher F. M. Methane emission from Texas rice paddy softs .2.Seasonal contribution of rice biomass production to CH_4 emission. Global Change Biology. 1997, 3:491~500
    [52] IPCC, 1990, 1992
    [53] IPCC, Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press, 2001
    [54] Khalil M. A. K and R. A. Rasmussen. Climate-induced feed backs for the global cycles of methane and nitrous oxide. Tellus. 1989, 41(b): 554~559
    [55] Khalil M. A. K and R. A. Rasmussen. The global sources of nitrous oxide. J. Geophys. Res. 1992, 97:14651~14660
    [56] Killham K. Heterotrophic nitrification, in: J. I. Prosser(ed), Nitrification, IRL Press, Oxford. 1986, 117~126
    [57] Kludze, H.K., Delanne, R.D. and Patrick Jr., W.H. Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci. Sco. Am. J. 1993, 57:386~391
    
    
    [58] Leffelaar P. A. and W. W. Wessel. Denitrification in a homogeneous, closed system: experiment and simulation. Soil Science. 1988, 146:335~349
    [59] Letey J., W. A. Jury, Aviva Hadas, and N. Valoras. Gas diffusion as a factor in laboratory incubation studies on denitrification. J. Environ. Qual. 1980, 9:223~227
    [60] Li et al. A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of Geophysical Research. 1992a, 97:9759~9776
    [61] Li et al. Modeling carbon biogeochemistry in agricultural soils. Global Biogeochemical Cycles. 1994, 8:237~254
    [62] Li C S, Narayanan V and Harris R C. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochemical Cycles. 1996, 10(2): 297~306
    [63] Li C S. Modeling trace gas emissions from agricultural ecosystems. Nutrient Cycling in Agroecosystems. 2000, 58:259~276
    [64] Li C S, Jianjun Qiu, Steve Frolking et al. Reduced methane emission from large-scal changes in water management of China's rice paddies during 1980-2000. Geophysical Research Letters. 2002, 29(20): 331~334
    [65] Lindau C. W., Bollich P. K. and Delaune R. D. Effect of rice variety on methane emission from Louisiana rice. Agriculture, Ecosystems and Environment. 1995, 54:109~114
    [66] Lindsay, W.L., Sadiq and L.K., Potter. Thermodynamics of inorganic nitrogen transformations. Soil Sci. Soc. Am. J. 1981, 45:61~66
    [67] Molina J. A. E., Clapp C. E., Shaffer M. J., et al. NCSOIL, a model of nitrogen and carbon transformations in soil: Description, calibration, and behavior. Soil Sci. Soc. Am. J. 1983, 47:85~91
    [68] Mosier A.R., Mohanty S K, Bhadrachalam A et al. Evolution of dinitrogen and nitrous oxide from the soil to the atmospHere through rice plants [J]. Biol Fertil Soils. 1990, 9:61~67
    [69] Munch, J.C. Nitrous oxide emissions from soil as determined by the composition of denitrifying microbial population. In: Diversity of Environmental Biogeochemistry, Elsevier, Amsterdam. 1991,308~315
    [70] Nevison C. D. et al. A global model changing N_2O emission from natural and perturbed soils. Climate Changes. 1996, 32:327~378
    [71] Nommik H. Investigation on denitrification in soil. Acta Agric. Scand 1956, 6:195~228
    [72] Patrick J. Masscheleyn, Ronald D. Delaune, and Willian H. Patrick. Methane and nitrous oxide emission from laboratory measurements of rice soil suspension:
    
    effect of soil oxidation-reduction status. Chemosphere. 1993, 26:251~260
    [73] Ramanathan, V., et al. Climate-chemical interactions and effects of changing atmospheric trace gases. Rev, Geophys. Res. 1987, 25:1441~1482
    [74] Rapen, H. and H. Rennenberg. Microbial processes involved in emission of radiatively important trace gases. In: Transactions 14th International Congress of Soil Science, Kyoto. 1990, 2:232~273
    [75] Schutz H, Holzapfel-Pschom A, Conrad R, et al. A 3-year continuous record on the influence of daytime season and fertilizer Treatment on methane emission rates from an Italian rice paddy[J]. Geophy Res. 1989, 94(16): 16405~16416
    [76] Schutz H, H, Seiler W, and Conrad R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry. 1990, 11:77~95
    [77] Smith M. S. and J. M. Tiedje. Phases of denitrification following oxygen depletion in soil. Soil Biol. Biochem. 1979, 11:261~267
    [78] Takai Y. The mechanism of methane formation in flooded paddy soil. Soil Sci. and Plant Nutr. 1970, 16:238~244
    [79] Tiedje J. M. Denitrification in soil, in Microbiology. edited by D.Schlessinger, American Society of Microbiology, Washington D.C. 1978, 362~366
    [80] Vitousek P, Matson P, Volkman C, Maass J.M. and Garcia G. Nitrous oxide flux from dry tropical forests. Global Biogeochem Cycles. 1989, 3:375~382
    [81] Wassmann.R., Neue.H.U. et al. Temporal patterns of methane emissions from rice fields treated by different modes of N application. J. Geophys. Res. 1994,99:16457~16462
    [82] Yagi, K, Kumagai, K., Tsuruta, H. and Minami, K. Emission, production, and oxidation of methane in a Japanese paddy field. Adv. Soil Sci. Soils and Global Change. eds. R. Lal, J. Kimble, E. Levine and B. A. Stewart, Lewis Publishers.1995, 231~243
    [83] Zhangyu. Modeling carbon and nitrogen biogeochemistry in agroceosystems: The inpact of soil climate and farming practice on crop growth, carbon and nitrogen dynamics and trace gas emissions. Submitted to Beijing University in Partial Fulfillment of the Requirement for the Degree of Philosophy in Geophysics.1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700