黄梁木α扩展蛋白的基因克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄梁木(Anthocephalus chinensis)别名团花树,属茜草科团花属常绿阔叶乔木,是亚洲、南亚热带的速生树种。由于其速生性,在1972年的世界林业大会上被公认为“奇迹树”,在我国华南地区有着巨大的开发和应用前景。然而,由于黄梁木遗传信息十分匮乏,其木材速生性的分子生物学基础研究至今尚未开展。扩展蛋白作为一类细胞壁生长重要调控因子,与植物的生长发育息息相关。因此,本文以黄梁木的α扩展蛋白编码基因EXPA为切入点,筛选出其16个家族成员中在形成层高丰度表达的基因并进行了功能鉴定。首先,利用简并引物扩增同源基因保守序列,结合基因组步移及3'RACE技术克隆到扩展蛋白基因序列并进行生物信息学分析。在此基础上,筛选合适内参基因,对α扩展蛋白基因在黄梁木中的时空表达进行分析。选择形成层中高表达的AcEXPA8基因进行基因组中的拷贝数分析,并进行蛋白质三维结构建模预测其功能。同时,通过构建植物表达载体并转化拟南芥研究,进一步鉴定AcEXPA8基因的功能。通过上述研究,得到主要结果如下:
     1.通过设计保守区的简并引物,PCR扩增获得同源基因保守序列,再结合基因组步移和3'RACE技术获得黄梁木EXPA基因家族的16个成员,分别命名为AcEXPAl-16, GenBank注册号为FJ417847、JF922686-JF922700,其相对应的基因组DNA序列的注册号为GQ228823、JF922701-JF922715。
     2.黄梁木AcEXPAl-16基因的内含子分布方式一致,都含有EXPA基因保守的内含子1和内含子2。除了AcEXPA4中的内含子2的剪接方式是TA-GA,其余都符合真核生物内含子GT-AG的剪接模式。
     3.AcEXPAl-16基因编码的氨基酸序列都含有EXPA蛋白保守序列,包括N端的信号肽、8个C残基、1个组氨酸域(His-Phe-Asp, HFD),和羧基末端的4个保守色氨酸(tryptophan, W)残基,但在AcEXPA12的第一个W被亮氨酸(leucine, L)所取代。在AcEXPA1、AcEXPA5、AcEXPA8和AcEXPA9成熟蛋白的N端和C端都各自含有RIPGV和KNFRV序列。并通过系统进化分析,黄梁木AcEXPA家族成员分别属于4个亚家族。
     4.筛选到环孢素A受体基因AcCyP作为内参基因用于荧光定量PCR分析。AcEXPA1-16基因在黄梁木中具有明显的组织表达特异性:在四个幼嫩的生长组织中,AcEXPA8在形成层的表达量最高,AcEXPA4、AcEXPA6、AcEXPA15、AcEXPA14和AcEXPA10在嫩叶中大量表达,AcEXPA13只在嫩叶中有所表达,而AcEXPA16仅在嫩根中表达。AcEXPA8在不同生长季节的形成层中的表达也明显不同,7月的最高,1月的最低。在维管发育径向的不同细胞层,AcEXPA8在次生壁形成区的表达量明显低于形成层。
     5. AcEXPA8基因以多拷贝的形式在黄梁木基因组中存在。蛋白同源建模显示成熟AcEXPA8蛋白的三维结构与到目前为止仅知的EXP蛋白玉米ZmEXPB1晶体结构极为相似,含有domain1和domain2以及两者之间的连接区域。
     6.通过转AcEXPA8基因拟南芥研究,转基因植株与野生型相比,叶片形成加速,叶片面积增大,并且叶片长生长大于宽生长,使得叶片形状变得扁长,在基叶完全成熟期,基座的半径明显增大。而且,转基因植株的高度和茎的粗度也明显大于野生型。
     7.过表达AcEXPA8基因促进了拟南芥的次生生长,主要是导致了纤维细胞增长和细胞壁的加厚,但没有改变细胞壁中纤维素的含量。此外,转基因植株茎的髓和皮层薄壁细胞明显增大,而皮层的薄壁细胞在沿周长方向的长度增长尤为明显。
     本研究克隆到并分析了黄梁木AcEXPA基因家族成员在不同幼嫩组织的表达差异,对形成层中高丰度表达的AcEXPA8基因的时空表达进行了进一步分析并进行了转基因功能鉴定,结果为今后研究α扩展蛋白基因与团花树木质部生长速度和材质的关系提供基础,并最终为林木分子育种提供潜在的候选基因。
Anthocephalus chinensis with the synonym of Neolamarckia cadamba belonging to the family Rubiaceae, is an evergreen broadleaf arbor and a fast-growing tree species which grows in Tropical Asia and Southern Asia. It was universally accepted as "a miraculous tree" in the World Forestry Congress in1972because of its rapid growth. Meanwhile, it possesses significant development and utilization value in South China. However, genetic information on A. chinensis is still unclear, especially in molecular mechanism study on fast-growing of wood. Expansin is a class of important cell growth regulator, and closely related to the growth and development of plants. So, in the study, we fitstly cloned a-expansin gene sequences in A. chinensis, and inditified the function of the a-expansin gene abundantly expressed in the cambium region, a-expansin genes were isolated by amplifying conservative domain binding with genomic walking and3'RACE techniques from four differential growth tissues in A. chinensis, followed by bioinformatic analysis. Based on these, we selected a suitable reference gene and analysed the temporal and spatial expression pattern of a-expansin genes. AcEXPA8gene expressed highly in cambium region was selected to analyse its copy number in genome, and we also predicted the protein structure and function by homology modeling. Meanwhile, we constructed the plant expression vector and transformed it into Arabidopsis thaliana to further indentify AcEXPA8gene function. The main results and conclusions obtained in this study are shown as follows:
     1. AcEXPA1-16genes were cloned by a cloning strategy. Firstly, the conservative regions of A. chinensis a-expansin genes were amplified with the degenerated primers, then, the flank sequences were obtained by genomic walking and3'RACE. Their GenBank accession Nos. were FJ417847, JF922686-JF922700, with corresponding genomic DNA sequences of GenBank accession Nos. GQ228823, JF922701-JF922715.
     2. The intron-exon structures of AcEXPAl-16are similar between them, and they all contain intronl and intron2which are conservative in a-expansin genes. All AcEXPAl-16introns conforn with eukaryotic intron splicing pattern of GT-AG, except the intron2of AcEXPA4with TA-GA.
     3. All amino acid sequences encoded by AcEXPAI-16gene contain conservative sequences of EXPA protein, including the N-terminal signal peptide, eight C residues, HFD motif and four W residues near the C terminus. But, there is a leucine (L) instead of the first W in AcEXPA12. All mature proteins of AcEXPA1, AcEXPA5, AcEXPA8and AcEXPA9cotain RIPGV sequence at N-terminal and KNFRV sequence at C-terminal. And AcEXPAl-16genes were divided into four subfamilies in the phylogenetic analysis.
     4. The screened cyclophilin gene AcCyP was suitable in RT-qPCR analysis as reference gene. AcEXPA1-16genes showed obviously tissue-specific expression in A. chinensis. In the four young tissues in growth, AcEXPA8was expressed highestly in cambium region. AcEXPA4, AcEXPA6, AcEXPA15, AcEXPA14and AcEXPA10were abundantly expressed in the tender leaf. AcEXPA13was only expressed in leaf, whereas AcEXPA16was only expressed in root. The expression of AcEXPA8was significantly different between different growing seasons in cambium region, highest in July, but lowest in January. And the abundance of AcEXPA8expressed in second wall formation region was significantly lower than that in camium region.
     5. AcEXPA8gene is present in A. chinensis genomic DNA as multicopy. Protein homology modeling showed that the3D structure of mature protein AcEXPA8is similar to maize ZmEXPB1which is the only known crystal structure of EXP protein so far, and also contains domain1, domain2and connection area between them.
     6. Overexpression of AcEXPA8in Arabidopsis could not only accelerate leaf formation, induce leaf area, cause leaf length growth greater than width growth, leading to the leaf shape becoming prolate, and increase the radius of fully mature rosette, but also increase plant height and stem diameter.
     7. In transgenic plant stem, overexpression of AcEXPA8promoted secondary growth in Arabidopsis, mainly leading to increase fiber cell length and cell wall thickness, but without changing the content of cellulose in the cell wall. In addition, the area of pith and cortex parenchyma cells increased obviously, and the length of cortex parenchyma cells along the circumference direction increased particularly.
     In this study, the AcEXPA gene family member expressions were analyzed in different young tissures, and the temporal and spatial expression pattern of AcEXPA8gene expressed abundantly in cambium region was further analized, followed by gene function analysis. These findings will lay the foundation for studying the relationship between a-expansin genes and growth rate and wood quality of the xylem in A. chinensis, and finally provide potential candidate genes for tree molecular breeding.
引文
1. Strau. E.,李大卫.细胞壁:决定植物细胞命运的信使[J].世界科学,1999,(5):21-22.
    2.陈爱国,陈进红Expansin的研究进展[J].植物学通报,2003,(6):752-758.
    3. 邓小梅,欧阳昆唏,张倩,等.团花研究现状及发展思考[J].中南林业科技大学学报,2011,(11):90-95.
    4.邓小梅,詹艳玲,张倩,等.黄梁木组培快繁技术研究[J].华南农业大学学报,2012,(2):216-219.
    5.高英,王学臣.扩张蛋白(expansin)研究进展[J].中国农学通报,2005,(7):82-86.
    6.耿云芬,邱琼,杨德军.团花容器苗的育苗期施肥试验[J].西部林业科学,2010,(1):73-76.
    7.胡丹丹,顾金刚,姜瑞波,等.定量rt-pcr及其在植物学研究中的应用[J].植物营养与肥料学报,2007,(3):520-525.
    8.胡瑞波,范成明,傅永福.植物实时荧光定量pcr内参基因的选择[J].中国农业科技导报,2009,11(6):30-36.
    9.黄培堂.真核基因组dna的制备和分析.见Green Michael R.,Sambrook Joseph分子克隆实验指南[M].北京:科学出版社,2002:487-513.
    10.黄雅志,裴汝康.咖啡旋皮天牛和幼龄团花树[J].云南热作科技,1982,(2):41-44.
    11.金由辛,包慧中,赵丽云Dna的制备和分析.见Ausubel Frederick M.,Brent Roger,Kingston Robert E.,等.精编分子生物学实验指南[M].北京:科学出版社,2008:46-47.
    12.李连朝,王学臣,荆家海.大豆幼苗下胚轴扩张蛋白的存在及其特性[J].植物学报,1998,(7):46-53.
    13.李娜.团花树木葡聚糖转葡糖苷酶cdna克隆及序列分析[D]:北京林业大学,2008.
    14.李伟.转双价基因促进植物生根及顶端优势的研究[D]:北京林业大学,2004.
    15.林展.小麦膨胀素基因的分离、克隆与功能鉴定[D]:中国农业大学,2005.
    16.龙程,颜季琼.膨胀素——一个引人注目的细胞壁松弛酶候选者[J].植物生理学通讯,1997,(3):208-212.
    17.罗献瑞,高蕴璋,陈伟球,等.茜草科.罗献瑞主编.中国植物志[M].北京:科学出版社,1999:260-262.
    18.聂艳丽,周跃华,李娅,等.甘蔗渣堆肥化处理及用作团花育苗基质的研究[J].农业环境科学学报,2009,(2):380-387.
    19.生书晶.何首乌芪合酶基因(fmsts)的克隆、鉴定及转化拟南芥研究[D]:华南理工大学,2010.
    20.苏光荣,易国南,杨清.团花生长特性研究[J].西北林学院学报,2007,(5):49-52.
    21.陶永强.团花育苗及造林技术[J].云南林业,2005,(4):25-26.
    22.汪开治.奇妙的植物细胞壁扩展素[J].植物杂志,2001,(1):38-39.
    23.王帅.基于同源建模的蛋白质结构预测方法的研究[D]:哈尔滨工业大学,2006.
    24.王泽亮.河北杨干旱胁迫响应基因的分离与鉴定[D]:北京林业大学,2010.
    25.卫尊征,郭琦,李百炼,等.小叶杨ga20氧化酶基闪的克隆、表达及单核苷酸多态性分析[J].林业科学,2009,(4):19-27.
    26.徐筱,徐倩,张磖,等.植物扩展蛋白基因的研究进展[J].北京林业大学学报,2010,(5):154-162.
    27.牙库靛江·阿西木,关波,张富春.植物基因表达转录分析中内参基因的选择与应用[J].生物技术通报,2011,(7):7-11.
    28.杨德军,邱琼,王达明,等.团花育苗技术研究[J].广西林业科学,2004,(2):93-95.
    29.袁隆平.水稻强化栽培体系[J].杂交水稻,2001,(4):4-6.
    30.云南省林科所.滇产团花木材性质和用途的研究[J].云南林业科技通讯,1975,(1):1-4.
    31.朱桂兰.速生树种——团花[J].云南林业调查规划,1994,(4):58-59.
    32. Arana M V, de Miguel L C, Sanchez R A. A phytochrome-dependent embryonic factor modulates gibberellin responses in the embryo and micropylar endosperm of Datura ferox seeds[J]. Planta, 2006,223(4):847-857.
    33. Balestrini R, Cosgrove D J, Bonfante P. Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus[J]. Planta,2005,220(6):889-899.
    34. Baluska F, Salaj J, Mathur J, et al. Root hair formation:F-actin-dependent tip growth is initiated by local assembly of profilin-supported F-actin meshworks accumulated within expansin-enriched bulges[J]. Dev Biol,2000,227(2):618-632.
    35. Basu A, Chatterjee R, Datta S. Expression, purification, structural and functional analysis of SycB:a type three secretion chaperone from Yersinia enterocolitica[J]. Protein J,2012,31(1):93-107.
    36. Behrendt H, Tomczok J, Sliwa-Tomczok W, et al. Timothy grass (Phleum pratense L.) pollen as allergen carriers and initiators of an allergic response[J]. Int Arch Allergy Immunol,1999,118(2-4): 414-418.
    37. Belfield E J, Ruperti B, Roberts J A, et al. Changes in expansin activity and gene expression during ethylene-promoted leaflet abscission in Sambucus nigra[J]. J Exp Bot,2005,56(413):817-823.
    38. Bibikova T N, Jacob T, Dahse I, et al. Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana[J]. Development,1998,125(15): 2925-2934.
    39. Brummell D A, Harpster M H, Civello P M, et al. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening[J]. Plant Cell,1999, 11(11):2203-2216.
    40. Brummell D A, Harpster M H, Dunsmuir P. Differential expression of expansin gene family members during growth and ripening of tomato fruit[J]. Plant Mol Biol,1999,39(1):161-169.
    41. Budzinski I G, Santos T B, Sera T, et al. Expression patterns of three alpha-expansin isoforms in Coffea arabica during fruit development[J]. Plant Biology,2011,13(3):462-471.
    42. Cantu D, Blanco-Ulate B, Yang L, et al. Ripening-regulated susceptibility of tomato fruit to botrytis cinerea requires nor but not rin or ethylene [J]. Plant Physiol,2009,150:1434-1449.
    43. Carey R E, Cosgrove D J. Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins[J]. Ann Bot,2007,99(6):1131-1141.
    44. Catala C, Rose J K, Bennett A B. Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth[J]. Plant Physiol,2000,122(2):527-534.
    45. Ceccardi T L, Barthe G A, Derrick K S.A novel protein associated with citrus blight has sequence similarities to expansin[J]. Plant Mol Biol,1998,38(5):775-783.
    46. Chen F, Bradford K J. Expression of an expansin is associated with endosperm weakening during tomato seed germination[J]. Plant Physiol,2000,124(3):1265-1274.
    47. Chen F, Dahal P, Bradford K J. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination[J]. Plant Physiol,2001,127(3): 928-936.
    48. Cho H T, Cosgrove D J. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana[J]. Proc Natl Acad Sci U S A,2000,97(17):9783-9788.
    49. Cho H T, Cosgrove D J. Regulation of root hair initiation and expansin gene expression in Arabidopsis[J]. Plant Cell,2002,14(12):3237-3253.
    50. Cho H T, Kende H. Expression of expansin genes is correlated with growth in deepwater rice[J]. Plant Cell,1997,9(9):1661-1671.
    51. Choi D, Kim J H, Lee Y. expansins in plant development[J]. Adv Bot Res,2008,47:47-97.
    52. Choi D, Lee Y, Cho H T, et al. Regulation of expansin gene expression affects growth and development in transgenic rice plants[J]. Plant Cell,2003,15(6):1386-1398.
    53. Chubo J K, Huat O K, Jais H M, et al. Genera of arbuscular mycorrhiza occurring within the rhizospheres of Octomeles sumatrana and Anthocephalus chinensis in Niah, Sarawak, Malaysia[J]. Scienceasia,2009,35:340-345.
    54. Colmer T D, Peeters A J, Wagemaker C A, et al. Expression of alpha-expansin genes during root acclimations to O2 deficiency in Rumex palustris[J]. Plant Mol Biol,2004,56(3):423-437.
    55. Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature,2000a,407(6802):321-326.
    56. Cosgrove D J. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls[J]. Planta,1989,177:121-130.
    57. Cosgrove D J. Relaxation in a high-stress environment:the molecular bases of extensible cell walls and cell enlargement[J]. Plant Cell,1997,9(7):1031-1041.
    58. Cosgrove D J. Expansive growth of plant cell walls[J]. Plant Physiol Biochem,2000b,38(1-2):109-124.
    59. Cosgrove D J. Plant cell enlargement and the action of expansins[J]. Bioessays,1996,18(7):533-540.
    60. Cosgrove D J. Wall structure and wall loosening. A look backwards and forwards[J]. Plant Physiol, 2001,125(1):131-134.
    61. Cosgrove D J. Cell wall loosening by expansins[J]. Plant Physiol,1998,118(2):333-339.
    62. Cosgrove D J. Enzymes and other agents that enhance cell wall extensibility[J]. Annu Rev Plant Physiol Plant Mol Biol,1999,50:391-417.
    63. Cosgrove D J, Bedinger P, Durachko D M. Group I allergens of grass pollen as cell wall-loosening agents[J]. Proc Natl Acad Sci U S A,1997,94(12):6559-6564.
    64. Cosgrove D J, Li L C, Cho H T, et al. The growing world of expansins[J]. Plant Cell Physiol,2002, 43(12):1436-1444.
    65. Cosgrove D J, Li Z C. Role of Expansin in Cell Enlargement of Oat Coleoptiles (Analysis of Developmental Gradients and Photocontrol)[J]. Plant Physiol,1993,103(4):1321-1328.
    66. Cosgrove D J, Tatyana S, Durachko D M, et al. Highly specific and distinct expression patterns for two alpha-expansin genes in Arabidopsis.9th International Conference on Arabidopsis Research, Madison, Wisconsin, U S A.
    67. Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis[J]. Plant Physiol,2005,139(1):5-17.
    68. Dai S, Chen T, Chong K, et al. Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen[J]. Mol Cell Proteomics,2007,6(2):207-230.
    69. De Marino S, Morelli M A, Fraternali F, et al. An immunoglobulin-like fold in a major plant allergen:the solution structure of Phi p2 from timothy grass pollen[J]. Structure,1999,7(8):943-952.
    70. Ding X, Cao Y, Huang L, et al. Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice[J]. Plant Cell,2008,20(1):228-240.
    71. Duan J, Zhang M, Zhang H, et al. OsMIOX, a myo-inositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.)[J]. Plant Sci, 2012,196(0):143-151.
    72. Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric Method for Determination of Sugars and related subatances[J]. Anal Chem,1956,28(3):350-356.
    73. Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis[J]. Nucleic Acids Res,1991,19(6):1349.
    74. Farris L R, Mcdonald M J. Computational analysis of non-covalent polymer-protein interactions governing antibody orientation[J]. Anal Bioanal Chem,2012,402(4):1731-1736.
    75. Farrokhi N, Burton R A, Brownfield L, et al. Plant cell wall biosynthesis:genetic, biochemical and functional genomics approaches to the identification of key genes[J]. Plant Biotechnol J,2006,4(2): 145-167.
    76. Figueroa C R, Pimentel P, Dotto M C, et al. Expression of five expansin genes during softening of Fragaria chiloensis fruit:Effect of auxin treatment[J]. Postharvest Biol Tec,2009,53(1):51-57.
    77. Fleming A J, Caderas D, Wehrli E, et al. Analysis of expansin-induced morphogenesis on the apical meristem of tomato[J]. Planta,1999,208:166-174.
    78. Fleming A J, Mcqueen-Mason S, Mandel T, et al. Induction of leaf primordia by the cell wall protein expansin[J]. Science,1997,276:1415-1418.
    79. Fox J E D. Anthocephalus chinensis, the Laran Tree of Sabah[J]. Econ Bot,1971,25(3):221-233.
    80. Fu J, Ristic Z. Analysis of transgenic wheat (Triticum aestivum L.) harboring a maize (Zea mays L.) gene for plastid EF-Tu:segregation pattern, expression and effects of the transgene[J]. Plant Mol Biol,2010,73(3):339-347.
    81. Gaete-Eastman C, Figueroa C R, Balbontin C, et al. Expression of an ethylene-related expansin gene during softening of mountain papaya fruit (Vasconcellea pubescens)[J]. Postharvest Biol Tec,2009, 53(1-2):58-65.
    82. Gao X, Liu K, Lu Y. Specific roles of AtEXPA1 in plant growth and stress adaptation[J]. Russ J Plant Physiol,2010,57(2):241-246.
    83. George E F, Hall M A, Klerk G D. Developmental Biology.见:George E F, Hall M A, Klerk G D. Plant Propagation by Tissue Culture[M]:Springer Netherlands,2008:283.
    84. Goh H H, Sloan J, Dorca-Fornell C, et al. Inducible repression of multiple expansin genes leads to growth suppression during leaf development J]. Plant Physiol,2012,159(4):1759-1770.
    85. Gookin T E, Hunter D A, Reid M S. Temporal analysis of alpha and beta-expansin expression during floral opening and senescence[J]. Plant Sci,2003,164(5):769-781.
    86. Goulao L F, Santos J, de Sousa I, et al. Patterns of enzymatic activity of cell wall-modifying enzymes during growth and ripening of apples[J]. Postharvest Biol Tec,2007,43(3):307-318.
    87. Gray-Mitsumune M, Blomquist K, Mcqueen-Mason S, et al. Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen[J]. Plant Biotechnol J,2008,6(1):62-72.
    88. Gray-Mitsumune M, Mellerowicz E J, Abe H, et al. Expansins abundant in secondary xylem belong to subgroup A of the alpha-expansin gene family[J]. Plant Physiol,2004,135(3):1552-1564.
    89. Greenwood M S, Xua F, Hutchison K W. The role of auxin-induced peaks of alpha-expansin expression during lateral root primordium formation in Pinus taeda[J]. Physiol Plantarum,2006, 126:279-288.
    90. Guo M, Davis D, Birchler J A. Dosage effects on gene expression in a maize ploidy series[J]. Genetics,1996,142(4):1349-1355.
    91. Handa S S, Borris R P, Cordell G A, et al. NMR spectral Analysis of cadambine from Anthocephalus chinensis[J]. J Nat Prod,1983,46(3).
    92. Harada T, Torii Y, Morita S, et al. Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening[J]. J Exp Bot,2011,62(2):815-823.
    93. Hayama H, Shimada T, Ito A, et al. Changes in the levels of mRNAs for putative cell wall-related genes during peach fruit development[J]. Sci Hortic,2001,91(3-4):239-250.
    94. Hertzberg M, Aspeborg H, Schrader J, et al. A transcriptional roadmap to wood formation[J]. Proc Natl Acad Sci U S A,2001,98(25):14732-14737.
    95. Hiwasa K, Rose J K, Nakano R, et al. Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit[J]. Physiol Plant,2003,117(4):564-572.
    96. Hu Y, Poh H M, Chua N H. The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth[J]. Plant J,2006,47(1):1-9.
    97. Huang J, Takano T, Akita S. Expression of alpha-expansin genes in young seedlings of rice (Oryza sativa L.)[J]. Planta,2000,211(4):467-473.
    98. Hur Y J, Yi Y B, Lee J H, et al. Molecular cloning and characterization of OsUPS, a U-box containing E3 ligase gene that respond to phosphate starvation in rice (Oryza sativa)[J]. Mol Biol Rep,2012,39(5):5883-5888.
    99.Hutchison K W, Singer P B, Mcinnis S, et al. Expansins are conserved in conifers and expressed in hypocotyls in response to exogenous auxin[J]. Plant Physiol,1999,120(3):827-832.
    100.Im K, Cosgrove D J, Jones A M. Subcellular Localization of Expansin mRNA in Xylem Cells[J]. Plant Physiology,2000,123:463-470.
    101.Ishimaru M, Smith D L, Gross K C, et al. Expression of three expansin genes during development and maturation of Kyoho grape berries[J]. J Plant Physiol,2007,164(12):1675-1682.
    102.Ismail J, Jusoh M Z, Sabri M H. Anatomical variation in planted Kelempayan (Neolamarckia cadamba, Rubiaceae) [J]. JAWA,1995,16(3):277-287.
    103 Jung J, O Donoghue E M, Dijkwel P P, et al. Expression of multiple expansin genes is associated with cell expansion in potato organs[J]. Plant Sci,2010,179(1):77-85.
    104.Keller E, Cosgrove D J. Expansins in growing tomato leaves[J]. Plant J,1995,8(6):795-802.
    105.Kende H, Bradford K, Brummell D, et al. Nomenclature for members of the expansin superfamily of genes and proteins[J]. Plant Mol Biol,2004,55(3):311-314.
    106.Kim D W, Lee S H, Choi S B, et al. Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns[J]. Plant Cell,2006,18(11):2958-2970.
    107.Kim G T, Shoda K, Tsuge T, et al. The ANGUSTIFOLIA gene of Arabidopsis, a plant CtBP gene, regulates leaf-cell expansion, the arrangement of cortical microtubules in leaf cells and expression of a gene involved in cell-wall formation[J]. Embo J,2002,21(6):1267-1279.
    108.Kim G T, Tsukaya H, Uchimiya H. The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells[J]. Genes Dev,1998,12(15):2381-2391.
    109.Kim J H, Cho H T, Kende H. Alpha-expansins in the semiaquatic ferns Marsilea quadrifolia and Regnellidium diphyllum:evolutionary aspects and physiological role in rachis elongation[J]. Planta, 2000,212(1):85-92.
    110.Kirst M, Johnson A F, Baucom C, et al. Apparent homology of expressed genes from wood-forming tissues of loblolly pine(Pinus taeda L.) with Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2003,100(12):7383-7388.
    111.Konik-Rose C, Thistleton J, Chanvrier H, et al. Effects of starch synthase Ⅱa gene dosage on grain, protein and starch in endosperm of wheat[J]. Theor Appl Genet,2007,115(8):1053-1065.
    112.Kwasniewski M, Szarejko I. Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley[J]. Plant Physiol,2006,141(3):1149-1158.
    113.Kwon Y R, Lee H J, Kim K H, et al. Ectopic expression of Expansin3 or Expansinβ 1 causes enhanced hormone and salt stress sensitivity in Arabidopsis[J]. Biotechnol Lett,2008,30:1281-1288.
    114.Lee D K, Ahn J H, Song S K, et al. Expression of an expansin gene is correlated with root elongation in soybean[J]. Plant Physiol,2003,131(3):985-997.
    115.Lee Y, Choi D. Biochemical properties and localization of the beta-expansin OsEXPB3 in rice (Oryza sativa L.)[J]. Mol Cells,2005,20(1):119-126.
    116.Lee Y, Choi D, Kende H. Expansins:ever-expanding numbers and functions[J]. Curr Opin Plant Biol,2001,4(6):527-532.
    117.Lee Y, Kende H. Expression of alpha-expansin and expansin-like genes in deepwater rice[J]. Plant Physiol,2002,130(3):1396-1405.
    118.Lee Y, Kende H. Expression of beta-expansins is correlated with internodal elongation in deepwater rice[J]. Plant Physiol,2001,127(2):645-654.
    119.Levine A, Durbin R. A computational scan for U12-dependent introns in the human genome sequence[J]. Nucleic Acids Res,2001,29(19):4006-4013.
    120.Li L C, Cosgrove D J. Grass group I pollen allergens (beta-expansins) lack proteinase activity and do not cause wall loosening via proteolysis[J]. Eur J Biochem,2001,268(15):4217-4226.
    121.Li Y, Darley C P, Ongaro V, et al. Plant expansins are a complex multigene family with an ancient evolutionary origin[J]. Plant Physiol,2002,128(3):854-864.
    122.Li Y, Jones L, Mcqueen-Mason S. Expansins and cell growth[J]. Curr Opin Plant Biol,2003,6(6): 603-610.
    123.Li Z, Durachko D M, Cosgrove D J. An oat coleoptile wall protein that induces wall extension in vitro and that is antigenically related to a similar protein from cucumber hypocotyls[J]. Planta, 1993,191(3):349.
    124.Libault M, Brechenmacher L, Cheng J, et al. Root hair systems biology[J]. Trends Plant Sci,2010, 15(11):641-650.
    125.Link B M, Cosgrove D J. Acid-growth response and alpha-expansins in suspension cultures of bright yellow 2 tobacco[J]. Plant Physiol,1998,118(3):907-916.
    126.Ludidi N N, Heazlewood J L, Seoighe C, et al. Expansin-like molecules:novel functions derived from common domains[J]. J Mol Evol,2002,54(5):587-594.
    127.Marga F, Grandbois M, Cosgrove D J, et al. Cell wall extension results in the coordinate separation of parallel microfibrils:evidence from scanning electron microscopy and atomic force microscopy [J]. Plant J,2005,43:181-190.
    128.Mbeguie-A-Mbeguie D, Gouble B, Gomez R, et al. Two expansin cDNAs from Prunus armeniaca expressed during fruit ripening are differently regulated by ethylene[J]. Plant Physiol Bioch,2002, 40(5):445-452.
    129.Mcqueen-Mason S J, Cosgrove D J. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding[J]. Plant Physiol,1995,107(1):87-100.
    130.Mcqueen-Mason S J, Fry S C, Durachko D M, et al. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls[J]. Planta,1993, 190(3):327-331.
    131.Mcqueen-Mason S, Cosgrove D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proc Natl Acad Sci U S A,1994,91(14): 6574-6578.
    132.Mcqueen-Mason S, Durachko D M, Cosgrove D J. Two endogenous proteins that induce cell wall extension in plants[J]. Plant Cell,1992,4:1425-1433.
    133.Mcqueen-Mason S, Le N T, Brochlehurst D. Expansins. The Expanding Cell. Plant Cell Monographs[M]. Herlin Heidelberg, New York:Springer,2007:117-138.
    134.Medford J I. Vegetative apical meristems[J]. Plant Cell,1992,4(9):1029-1039.
    135.Mellerowicz E J, Baucher M, Sundberg B, et al. Unravelling cell wall formation in the woody dicot stem[J]. Plant Mol Biol,2001,47(1-2):239-274.
    136.Muller B, Bourdais G, Reidy B, et al. Association of specific expansins with growth in maize leaves is maintained under environmental, genetic, and developmental sources of variation[J]. Plant Physiol,2007,143(1):278-290.
    137.Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells[J]. Genomics,1992,14(4):897-911.
    138.Oh E, Yamaguchi S, Hu J, et al. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds[J]. Plant Cell,2007,19(4):1192-1208.
    139.Park C H, Kim T W, Son S H, et al. Brassinosteroids control AtEXPA5 gene expression in Arabidopsis thaliana[J]. Phytochemistry,2010,71(4):380-387.
    140.Patel A A, Steitz J A. Splicing double:insights from the second spliceosome[J]. Nat Rev Mol Cell Biol,2003,4(12):960-970.
    141.Paux E, Tamasloukht M, Ladouce N, et al. Identification of genes preferentially expressed during wood formation in Eucalyptus[J]. Plant Mol Biol,2004,55(2):263-280.
    142.Peters W S, Felle H H. The correlation of profiles of surface pH and elongation growth in maize roots[J]. Plant Physiol,1999,121(3):905-912.
    143.Pezzotti M, Feron R, Mariani C. Pollination modulates expression of the PPAL gene, a pistil-specific β-expansin[J]. Plant Mol Biol,2002,49:187-197.
    144.Pien S, Wyrzykowska J, Mcqueen-Mason S, et al. Local expression of expansin induces the entire process of leaf development and modifies leaf shape[J]. Proc Natl Acad Sci U S A,2001,98(20): 11812-11817.
    145.Rahbar M R, Rasooli I, Gargari S L, et al. A potential in silico antibody-antigen based diagnostic test for precise identification of Acinetobacter baumannii[J]. J Theor Biol,2012,294:29-39.
    146.Rayle D L, Cleland R E. The Acid Growth Theory of auxin-induced cell elongation is alive and well[J]. Plant Physiol,1992,99(4):1271-1274.
    147.Rayle D L, Haughtont P M, Cleland R. An in vitro system that simulates plant cell extension growth[J], Proc Natl Acad Sci U S A,1970,67(4):1814-1817.
    148.Reinhardt D, Wittwer F, Mandel T, et al. Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem[J]. Plant Cell,1998,10(9):1427-1437.
    149.Roberts K, Shirsat A H. Increased extensin levels in Arabidopsis affect inflorescence stem thickening and height[J]. J Exp Bot,2006,57(3):537-545.
    150.Rochange S F, Wenzel C L, Mcqueen-Mason S J. Impaired growth in transgenic plants over-expressing an expansin isoform[J]. Plant Mol Biol,2001,46(5):581-589.
    151.Rose J K C, Bennett A B. Cooperative disassembly of the cellulose-xyloglucan network of plant cell walls:parallels between cellexpansion and fruitripening[J]. Trends Plant Sci,1999,4(5):176-183.
    152.Rose J K C, Cosgrove D J, Albersheim P, et al. Detection of expansin proteins and activity during tomato fruit ontogeny[J]. Plant Physiol,2000,123:1583-1592.
    153.Rose J K, Lee H H, Bennett A B. Expression of a divergent expansin gene is fruit-specific and ripening-regulated[J]. Proc Natl Acad Sci U S A,1997,94(11):5955-5960.
    154.Roy A, Kucukural A, Zhang Y. I-TASSER:a unified platform for automated protein structure and function prediction[J]. Nature Protocols,2010,5(4):725-738.
    155.Roy A, Yang J, Zhang Y. COFACTOR:an accurate comparative algorithm for structure-based protein function annotation[J]. Nucleic Acids Res,2012,40(Web Server issue):W471-W477.
    156.Sahu N P, Koike K, Jia Z, et al. Structures of two novel isomeric triterpenoid saponins from Anthocephalus cadamba[J]. Magn Reson Chem,1999,37(11):837-842.
    157.Sampedro J, Cosgrove D J. The expansin superfamily[J]. Genome Biol,2005,6(12):242.
    158.Sampedro J, Lee Y, Carey R E, et al. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family[J]. Plant J,2005,44(3):409-419.
    159.Sanchez A M, Bosch M, Bots M, et al. Pistil factors controlling pollination[J]. Plant Cell,2004,16: S98-S106.
    160.Sanchez M A, Mateos I, Labrador E, et al. Brassinolides and IAA induce the transcription of four alpha-expansin genes related to development in Cicer arietinum[J]. Plant Physiol Biochem,2004, 42(9):709-716.
    161.Sane A P, Tripathi S K, Nath P. Petal abscission in rose (Rosa bourboniana var Gruss an Teplitz) is associated with the enhanced expression of an alpha expansin gene, RbEXPA1[J]. Plant Sci,2007, 172(3):481-487.
    162.Sane V A, Chourasia A, Nath P. Softening in mango (Mangifera indica cv. Dashehari) is correlated with the expression of an early ethylene responsive, ripening related expansin gene, MiExpA1[J]. Postharvest Biol Tec,2005,38(3):223-230.
    163.Schindelman G, Morikami A, Jung J, et al. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis[J]. Genes Dev, 2001,15(9):1115-1127.
    164.Schipper O, Schaefer D, Reski R, et al. Expansins in the bryophyte Physcomitrella patens[J]. Plant Mol Biol,2002,50(4-5):789-802.
    165.Schuetz M, Smith R, Ellis B. Xylem tissue specification, patterning, and differentiation mechanisms[J]. J Exp Bot,2013,64(1):11-31.
    166.Selker J M, Steucek G L, Green P B. Biophysical mechanisms for morphogenetic progressions at the shoot apex[J]. Dev Biol,1992,153(1):29-43.
    167.Sharova E. Expansins:Proteins involved in cell wall softening during plant growth and morphogenesis[J]. Russ J Plant Physiol,2007,54(6):713.
    168.Shatalov A A, Evtuguin D V, Pascoal N C. (2-O-alpha-D-galactopyranosyl-4-O-methyl-alpha-D-glucurono)-D-xylan from Eucalyptus globulus Labill[J]. Carbohydr Res,1999,320(1-2):93-99.
    169.Shcherban T Y, Shi J, Durachko D M, et al. Molecular cloning and sequence analysis of expansins-a highly conserved, multigene family of proteins that mediate cell wall extension in plants[J]. Proc Natl Acad Sci U S A,1995,92(20):9245-9249.
    170.Simpson G G, Filipowicz W. Splicing of precursors to mRNA in higher plants:Mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery[J]. Plant Mol Biol,1996,32: 1-41.
    171.Smith L G. What is the role of cell division in leaf development?[J]. Semin Cell Dev Biol,1996,7: 839-848.
    172.Spadafora N, Perrotta L, Nieuwland J, et al. Gene dosage effect of WEE 1 on growth and morphogenesis from arabidopsis hypocotyl explants[J]. Ann Bot,2012,110(8):1631-1639.
    173.Sun T, Zhang Y, Chai T. Cloning, characterization, and expression of the BjEXPA1 gene and its promoter region from Brassica juncea L.[J]. Plant Growth Regul,2011,64(1):39-51.
    174.Tamura K, Dudley J, Nei M, et al. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    175.Taylor P E, Staff I A, Singh M B, et al. Localization of the two major allergens in rye-grass pollen using specific monoclonal antibodies and quantitative analysis of immunogold labelling[J]. Histochem J,1994,26(5):392-401.
    176.Trainotti L, Zanin D, Casadoro G. A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peaches[J]. J Exp Bot,2003,54(389):1821-1832.
    177.Trivedi P K, Nath P. MaExp1, an ethylene-induced expansin from ripening banana fruit[J]. Plant Sci,2004,167(6):1351-1358.
    178.Valdivia E R, Sampedro J, Lamb J C, et al. Recent proliferation and translocation of pollen group 1 allergen genes in the maize genome[J]. Plant Physiol,2007,143(3):1269-1281.
    179.Valdivia E R, Wu Y, Li L C, et al. A group-1 grass pollen allergen influences the outcome of pollen competition in maize[J]. PLoS One,2007,2(1):e154.
    180.Vreeburg R A, Benschop J J, Peeters A J, et al. Ethylene regulates fast apoplastic acidification and expansin A transcription during submergence-induced petiole elongation in Rumex palustris[J]. Plant J,2005,43(4):597-610.
    181. Wang G, Gao Y, Wang J, et al. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) alpha-expansin genes CIEXPA1 and CIEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls[J]. Plant Biotechnol J,2011,9(4):486-502.
    182. Wang W, Milanesi C, Faleri C, et al. Localization of group-1 allergen Zea m 1 in the coat and wall of maize pollen[J]. Acta Histochem,2006,108(5):395-400.
    183.Wu A M, Rihouey C, Seveno M, et al. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynthesis during secondary cell wall formation[J]. Plant J,2009,57(4):718-731.
    184. Wu Y, Meeley R B, Cosgrove D J. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize[J]. Plant Physiol,2001,126(1):222-232.
    185.Xie H, Chen J, Yuan R, et al. Differential expression and regulation of expansin gene family members during fruit growth and development of'Shijia'longan fruit[J]. Plant Growth Regul, 2009,58(3):225.
    186.Xie Y R, Chen Z Y, Brown R L, et al. Expression and functional characterization of two pathogenesis-related protein 10 genes from Zea mays[J]. J Plant Physiol,2010,167(2):121-130.
    187.Xing S, Li F, Guo Q, et al. The involvement of an expansin gene TaEXPB23 from wheat in regulating plant cell growth[J]. Biol Plantarum,2009,53(3):429-434.
    188.Xu H, Swoboda I, Bhalla P L, et al. Male gametic cell-specific gene expression in flowering plants[J]. Proc Natl Acad Sci U S A,1999,96(5):2554-2558.
    189.Xu J, Tian J, Belanger F C, et al. Identification and characterization of an expansin gene AsEXP1 associated with heat tolerance in C3 Agrostis grass species[J]. J Exp Bot,2007,58(13):3789-3796.
    190.Yang Y, Karlson D. Effects of mutations in the Arabidopsis Cold Shock Domain Protein 3 (AtCSP3) gene on leaf cell expansion[J]. J Exp Bot,2012,63(13):4861-4873.
    191.Yennawar N H, Li L C, Dudzinski D M, et al. Crystal structure and activities of EXPB1 (Zea m I), a beta-expansin and group-1 pollen allergen from maize[J]. Proc Natl Acad Sci U S A,2006,103 (40):14664-14671.
    192.Yokoyama R, Nishitani K. A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis[J]. Plant Cell Physiol,2001,42(10):1025-1033.
    193.Yoo S, Gao Z, Cantini C, et al. Fruit ripening in sour cherry:Changes in expression of genes encoding expansins and other cell-wall-modifying enzymes[J]. J Am Soc Hortic Sci,2003,128(1): 16-22.
    194.Yuan L, Wang L, Han Z, et al. Molecular cloning and characterization of PtrLAR3, a gene encoding leucoanthocyanidin reductase from Populus trichocarpa, and its constitutive expression enhances fungal resistance in transgenic plants[J]. J Exp Bot,2012,63(7):2513-2524.
    195.Zenoni S, Reale L, Tornielli G B, et al. Downregulation of the Petunia hybrida alpha-expansin gene PhEXP1 reduces the amount of crystalline cellulose in cell walls and leads to phenotypic changes in petal limbs[J]. Plant Cell,2004,16(2):295-308.
    196.Zhang N, Hasenstein K H. Distribution of expansins in graviresponding maize roots[J]. Plant Cell Physiol,2000,41(12):1305-1312.
    197.Zhang X Q, Wei P C, Xiong Y M, et al. Overexpression of the Arabidopsis alpha-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus[J]. Plant Cell Rep,2011,30(1):27-36.
    198.Zhang X, Henriques R, Lin S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nat Protoc,2006,1(2):641-646.
    199.Zhang Y. I-TASSER server for protein 3D structure prediction[J]. BMC Bioinformatics,2008,9: 40.
    200.Zhou H, He H, Kong N, et al. Indole alkaloids from the leaves of Anthocephalus chinensis[J]. Helv Chim Acta,2008,91(11):2148-2152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700