根际有益芽孢杆菌N11及SQR9与植物根系的互作研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土传枯萎病的防治是世界性难题,传统的农业防控措施只能起到局部的控制作用,抗病品种选育和化学防治效果有限,且后者会带来严重的环境问题。近年来,生物防控以其环保、有效等优点日益受到人们关注。
     本文研究了由实验室筛选到的香蕉枯萎病拮抗菌N6(Bacillus amyloliquefaciens)或/和N11(Bacillus subtilis)制得的专用型生物有机肥及广谱型有机肥在盆栽实验中对土传香蕉枯萎病的防控效果,拮抗菌N11和广谱型拮抗菌SQR9(Bacillus amyloliquefaciens)在香蕉根际的定殖情况,拮抗菌生物膜形成的表型特征、定量方法和动态变化,三株拮抗菌对香蕉和黄瓜根系分泌物及其中各种有机酸成份的响应,及不同作物根系分泌物对SQR9基因表达影响的转录组分析。最后研究了cheA基因突变对SQR9生物膜形成能力的影响。获得了以下结果:
     1.通过盆栽实验研究了由实验室筛选到的土传香蕉枯萎病拮抗菌N6(Bacillus amyloliquefaciens)或/和N11(Bacillus subtilis)制得的专用型生物有机肥(BIO2-4)在盆栽实验中对土传香蕉枯萎病的防控效果,并与实验室之前研发的由拮抗菌SQR21(Paenibacillus subtilis)和SQR-T37(Trichoderma harzianum)制得的生物有机肥(BIO1)的效果进行比较,发现生物有机肥可将香蕉植株发病率由93.3%降到33.3%以下,专用有机肥处理的植株发病率更低于16.7%。利用实时荧光定量PCR法对香蕉植株根际土及土体土中的尖孢镰刀菌进行了检测,结果表明处理的根际土总DNA的尖孢镰刀菌ITS基因拷贝数为1.59×105个g-1土,而施用BIO1可将其拷贝数下降到6×104个g-1土,香蕉专用有机肥BIO2-4(T3-5)可进一步将拷贝数抑制到1.5×104个g-1土以下。利用PCR-DGGE分析了各处理香蕉根际土壤的微生物群落结构,发现根际土壤的真菌群落变化不大,但专用型香蕉生物有机肥(BIO2-4)处理可以显著增加细菌种群的多样性。
     2.试图通过电转化将持续表达绿色荧光蛋白(Green Fluorescent Protein, GFP)的大肠-枯草杆菌穿梭质粒pHAPII引入拮抗菌N11,成功得到了GFP标记的N11菌株(N11-gfp),其菌落和菌体在荧光显微镜下可发出明亮的绿色荧光。N11-gfp的生长速度和对香蕉枯萎病病原菌FOC的拮抗能力与原始菌株N11基本相同。随后通过水培、砂培和土培系统,利用激光共聚焦荧光显微镜(CLSM)和扫描电子显微镜(SEM)研究了N11-gfp菌株和实验室之前构建的SQR9-gfp在香蕉根系的定殖情况。发现三种系统中拮抗菌在香蕉根表定殖的情况相似,在接种后2-4天,拮抗菌即可在香蕉植株根表形成微菌落和生物膜,定殖主要发生在主根的伸长区和分生区,次生根,主根与侧根的交界处以及根毛区,而附着于根尖的拮抗菌数量很少。拮抗菌定量检测的结果表明接种4天后N11-gfp与SQR9-gfp在香蕉根表的密度保持在每克根105-106CFU,以及每克根际土106-107CFU。
     3.通过体外实验研究了芽孢杆菌在细胞培养板中的生物膜形成情况,发现枯草芽孢杆菌168在LB与MSgg中形成的生物膜都较弱,而野生型的FZB42、N6、N11和SQR9都能形成较厚的生物膜,且在MSgg中形成的生物膜更厚、结构更复杂。荧光显微镜观察发现N11-gfp与SQR9-gfp在盖玻片和培养板中形成的生物膜具有一定的厚度和立体结构。CLSM观察也表明SQR9-gfp形成的生物膜具有一定的立体结构。传统的结晶紫染色法与震荡打碎法定量测定生物膜生物量的相关性较高,R2达到0.9313。实验中发现芽孢杆菌在细胞培养板中的成膜具有一定边缘效应。最后研究了4株野生型芽孢杆菌在LB与MSgg培养基中生物膜与悬浮细胞生物量的动态变化规律,发现各菌生物膜的生物量从24h开始增加,到60h时保持稳定,同时悬浮细胞开始增多,96h后生物膜逐渐消解。各菌在MSgg中形成的生物膜生物量都高于LB,FZB42与SQR9在两种培养基中形成的生物膜生物量都高于N6与N11。
     4.从香蕉根际分离的拮抗菌N11和从黄瓜根际分离的拮抗菌SQR9在其原始宿主根表的定殖能力都显著强于另一种宿主根部。N6和N11对浓缩的香蕉和黄瓜根系分泌物均表现出强烈的趋化性,SQR9对两种分泌物的趋化反应则一般。香蕉分泌物可以显著诱导N6和N11生物膜的形成。利用HPLC分析从香蕉根系分泌物中鉴定出草酸、苹果酸和延胡索酸这3种主要的有机酸成分,在黄瓜根系分泌物中则鉴定出草酸、苹果酸和柠檬酸。N6和N11对苹果酸、柠檬酸和延胡索酸都表现出趋化性,SQR9只对苹果酸和柠檬酸有较强的趋化反应。延胡索酸可以显著增加N6、N11和SQR9形成生物膜的生物量,柠檬酸则都能显著诱导N6和SQR9生物膜的形成。体外定殖实验发现延胡索酸可以诱导N11-gfp在两种作物上的定殖,而苹果酸、柠檬酸和延胡索酸可促进SQR9-gfp在香蕉或/和黄瓜根际的定殖。
     5.通过接合的方法将携带有在木糖诱导型启动子(PxylA)控制下表达的感受态因子ComK的穿梭质粒引入野生型芽孢杆菌SQR9,发现通过木糖诱导可实现外源质粒的转化,转化效率在103-104CFU·μg-1质粒。通过响应曲面法设计Box-Behnken实验对诱导转化的条件进行了优化,发现最佳条件为菌液OD600达到0.5时,用0.2%浓度的木糖诱导1h,该条件下转化质粒的效率可以接近104CFU·μg-1。将cheA基因的双同源臂突变片段,以pMD19-T为母体的自杀载体,及该质粒的多聚体通过诱导转化的方式引入9kz,经过PCR验证发现得到了正确的双交换的cheA突变体。利用传代培养删除了质粒pXKZ.突变体对趋化物柠檬酸的反应消失,生长速度与野生型相似,生物膜形成有滞后现象。透射电镜的观察发现突变体的鞭毛基本缺失,而野生型具周生鞭毛。推测对cheA的删除影响了下游sigD的转录和表达,从而影响了鞭毛的形成进而造成趋化性的消失和成膜的滞后,具体情况需要cheA和sigD的互补实验验证。
     6.浓缩的黄瓜、玉米及香蕉的根系分泌物可显著促进SQR9在1/2浓度的MSgg中的生长(接种后6h)。玉米根系分泌物可诱导SQR9在1/2MSgg中的生物膜形成,利用Solexa高通量转录组测序研究了在振荡培养条件下三种作物分泌物,以及静态生物膜形成条件下玉米根系分泌物对SQR9基因表达的影响。结果表明主要调控的基因类群包括营养代谢(主要包括碳水化合物代谢、氨基酸代谢、脂类代谢和核酸代谢等)、蛋白质翻译与调控、跨膜运输(主要是ABC转运蛋白)、信号转导(主要为双组份调控系统)以及趋化及运动相关。不同根系分泌物调控的基因类群有一定差异。SQR9在静态条件下对玉米根系分泌物的转录组在接种后24h和48h有较大差异。
The control of Fusarium wilt is a world wide problem. The traditionally farming control methods have rarely provided long-term control in any production area, while selection of resistant cultivars and chemical application are not effective enough for control this disease, and also the latter causes environmental problems. Recently, biological control of soil-born disease is an efficient and environmentally friendly way and is receiving increased attention.
     In this study, the capability of the specific bio-organic fertilizers made of organic fertilizer (pig manure compost and amino acid fertilizer) fermented with antagonisms Bacillus amyloliquefaciens N6or/and Bacillus subtilis N11, as well as the normal BIO developed before in this laboratory, to control the Fusarium wilt of banana was evaluated in pot experiments. The colonization pattern of GFP tagged N11and SQR9, another biocontrol agent isolated from the cucumber rhizosphere and being shown a very broad antagonistic spectrum to Fusarium oxysporum, on banana roots was determined in hydroponic, sand and natural soil system, respectively. The appearance of the biofilm formation of the two Bacillus strains in vitro, the method for quantitative measurement of the biofilm biomass, and the dynamics of the biofilm biomass were studied. The response of N6, N11and SQR9towards the root exudates of banana and cucumber, as well as the organic acids composition, was investigated. Subsequently, the transcriptional profiling of SQR9towards different root exudates were analysed by Solexa high-throughout transcriptome sequence. At last, the effect of cheA deletion on biofilm formation of SQR9was studied. The main results obtained are listed as follows.
     1. The capability of the specific bio-organic fertilizers (BIO2-4) for banana plants made of Bacillus amyloliquefaciens N6or/and Bacillus subtilis N11isolated from the banana rhizosphere to control the Fusarium wilt of banana was evaluated in pot experiments, and the normal bio-organic fertilizer (BIO1) made of Paenibacillus polymyxa SQR21and Trichoderma harzianum SQR-T37was also used for comparison. Results indicated that the application of BIO could decrease the disease incidence (DI) of banana from93.3%to below33.3%, and the DI in treatments applied with specific BIO (BIO2-4) was even lower than16.7%. The F. oxysporum was recovered from the bulk and rhizosphere soil by Quantitative Real-time PCR. Results revealed that the copy numbers of ITS gene of FOC in bulk soil were similar among all treatments. However, application of BIO could decrease the copy numbers of ITS gene of FOC inrhizophere soil from1.59×105g-1soil (control) to less than6×104g-1soil, and the treatments with specific BIOs (BIO2-4, T3-5) even suppressed the copy numbers to below1.5×104g"1soil. The microbial communities in the banana rhizosphere in all the treatments were analyzed by PCR-DGGE. No significant dissimilarities in species composition of the fungal communities were found. However, application of specific BIOs (T3-5) significantly increased the bacterial species.
     2. An E. coli-Bacillus shuttle vector pHAPII, which contained a continually expressed Green Fluorescent Protein (GFP), was attempted introduce into N11by electroporation to obtain the GFP-tagged N11(N11-gfp). The cells and colonies of N11-gfp could emit bright green fluorescent under the microcopy. The growth speed and the antagonistic ability against FOC of N11-gfp were identical with that of the original strain. Later, the distribution of N11-gfp and SQR9-gfp, constructed by this laboratory previously, in banana rhizosphere was determined in hydroponic, sand and natural soil system by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), respectively. Results indicated the colonization patterns of the biocontrol agents were similar among the three systems. Micrographs showed that2to4days after inoculation, the antagonists formed microcolonies and biofilm on the roots surface of banana plants, and the colonization mainly occurred on the elongation and differentiation zones of the main roots, the lateral roots, the junctions between roots, as well as the root hairs, while very few cells attached along the root tip. The quantitative analysis revealed that4days after inoculation, the population of N11-gfp and SQR9-gfp maintained at about105-106CFU·g-1roots, and106-107CFU·g-1soil.
     3. The biofilm formation of several Bacillus strains in microtitre was studied in vitro. The biofilm formed by B. subtilis168in both LB and MSgg medium was thick, while the wide type strains FZB42, N6, N11and SQR9could form thin biofilm in both medium. It was found the biofilm formed in MSgg was thinner, also with more complex structure. The florescent microscopy pictures revealed that the biofilm of N11-gfp and SQR9-gfp formed on cover slides and microtitre presented complex three-dimensional architecture. The CLSM graphs of biofilm formed by SQR9-gfp confirmed this phenomenon. The traditionary violent staining method and a vortex method for quantitative measurement of the biofilm biomass were found to be identical, with a correlation index R2of0.9313. The biofilm formed by Bacillus strains displayed some edge-effects in the microtitre. At last, the dynamics of the biomass of biofilm and suspended cells of the four wide type strains were monitored. The biofilm biomass of each strain continuously increased from24h after inoculation, and maintained at about60h post inoculation. At this time the biomass of suspend cells began to increase. The disassembly of the biofilm occurred at96h after inoculation. The biofilm biomass of all the four strains in MSgg were higher than those in LB, and the biomass of the biofilm formed by FZB42and SQR9in both of the medium were larger than N6and N11.
     4. The colonization of N11-gfp (isolated from banana rhizosphere) and SQK9-gfp (isolated from cucumber rhizosphere) on their original host plants was more effective than on the other plant. N6and N11displayed strong chemotactic reaction towards both the root exudates of banana and cucumber. SQR9showed ordinary reaction to the two kinds of root exudates. The root exudates of banana could significantly stimulated the biofilm formation of N6and N11, while both the two kinds of root exudates could significantly induced the biofilm formation of SQR9. High performance liquid chromatography (HPLC) analysis of the root exudates of banana revealed the existence of oxalic acid, malic acid, and fumaric acid, while oxalic acid, malic acid, and citric acid in those of cucumber. N6and N11showed intense chemotaxis reaction to malic acid, citric acid, and fumaric acid, while only the first two organic acids could significantly attract SQR9. Fumaric could significantly stimulate the biofilm formation of all the three strains, while citric acid could induce the biofilm formation of N6and SQR9. Colonization assay indicated that fumaric acid could improve the colonization of N11-gfp on banana and cucumber; while malic acid, citric acid, and fumaric could induce the survival of SQR9-gfp on banana or/and cucumber.
     5. The shuttle vector pXKZ, which contained a competence factor ComK under the control of a xylose induced promoter (PxylA), was introduced into wide type Bacillus strains SQR9by conjunction. It was found that transformation of9kz by different plasmids was available with induction of xylose, and the transformation efficiency ranged from103to10CFU·μg-1. The transformation condition was optimized by Box-Behnken experiment with Response Surface Methodology (RSM), and the best situation was found to be:induction with0.2%of xylose for1h when the OD600of the suspension reached0.5, the transformation efficiency was approximately10CFU·μg-1DNA. The fragments contained the upstream and downstream arm for recombination with cheA, the suicide vector constructed by this fragment and pMD19-T, and the multimerzation of this suicide plasmid, were introduced into SQR9kz by induced transformation, respectively. Several corrected mutants were obtained by confirmation with PCR, and the highest efficiency were obtained for multimer transformation, which was still lower than10CFU·μg-1DNA. Then the pXKZ were eliminated by culture the mutant for several generations. The chemotactic response of the cheA null mutant towards citric acid was abolished. Its growth speed was similar with the wide type strain, while the biofilm formation delayed. The transmission electron microscopy (TEM) graphs revealed that the mutant failed to form flagellum, while the flagellums were found around the wide type cells. We speculated that the knockout of cheA caused some polar effects on the sigD in the downstream, thus influence the formation of flagellum, and disturb the chemotactic reaction, as well as delay of the biofilm formation, which needs complementation of cheA and sigD for confirmation.
     6. The concentrated root exudates of cucumber, maize and banana could all significantly stimulate the growth of SQR9in1/2MSgg medium. Root exudates of maize could induce the biofilm formation of SQR9in1/2MSgg medium. The transcriptional profiling of SQR9towards the three kinds of root exudates under shaken condition, as well as its respond to maize exudates under static condition, were analysed by Solexa high-throughout transcriptome sequence. Results indicated the main regulated genes belonged to metabolism (mainly regarding carbohydrate, amino acids, lipid and nucleotide), protein translation and folding, membrane transport (ABC transporters), signal transduction (two-component system) and cell chemotaxis and motility. Some differences exist within the genes mediated by different root exudates. In static condition, the transcriptome of SQR9respond to maize roots after incubation for24h and48h, were quite different.
引文
Assmus B, Hutzler P, Kirchhof G, Amann R, Lawrence JR, Hartmann A (1995) In situ localization of Azospirillum brasilense in the rhizosphere of wheat with fluorescently labeled rRNA targeted oligonucleotide probes and scanning confocal laser microscopy [J]. Applied and Environmental Microbiology 61:1013-1019.
    Axel G, Stoverand AD (1999) Regulation of synthesis of the Bacillus subtilis transition-phase, spore-associated antibacterial protein TasA [J]. Journal of Bacteriology 181:5476-5481.
    Badri DY, Vivanco JM (2009) Regulation and function of root exudates [J]. Plant, Cell & Environment 32:666-681.
    Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues:plant-microbe interactions [J]. Current opinion in biotechnology 20:642-650.
    Bais HP, Fall R Vivanco JM. (2004a) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J]. Plant Physiology 134:307-319.
    Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004b) How plants communicate using the underground information superhighway [J]. Trends in plant science 9:26-32.
    Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Reviews of Plant Biology 57:233-266.
    Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in rhizosphere [J]. Plant and Soil 256:67-83.
    Bloemberg GV, Lugtenberg BJJ (2004) Bacterial biofilms on plants:relevance and phenotypic aspects. In Microbial Biofilms. Edited by Ghannoum M, O'Toole GA. ASM Press.
    Bloemberg GV, Wijfjes AHM, Lamers GEM, Stuurman N, Lugtenberg BJJ (2000) Simultaneous imaging of Pseudomonas fluorescens WCS365 populations expressing three different autofluorescent proteins in the rhizosphere:new perspectives for studying microbial communities [J]. Molecular Plant-Microbe Interaction 13:1170-1176.
    Branda SS, Gonzalez-Paster JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis [J]. PNAS 98:11621-11626.
    Branda SS, Chu F, Kearns DB, Losick R and Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix [J]. Molecular Microbiology 59:1229-1238.
    Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity [J]. Applied and Environmental Microbiology 74: 738-744.
    Broz AK., Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity:another victim of the invasive plant Centaurea maculosa [J]. The ISME journal 1:763-765.
    Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors:a mechanism for exotic invasion [J]. Science 290:521-523.
    Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biology and Fertility of Soils 47:495-506.
    Cavaglieri L, Orlando J, Rodriguez MI (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level [J]. Research in Microbiology 156:748-754.
    Chai YR, Chu F, Kolter R and Losick R (2008) Biostability and biofilm formation in Bacillus subtilis [J]. Molecular Microbiology 67:254-263.
    Chai YR, Kolter R and Losick R (2009) Paralogous antirepressor acting on the master regulator for biofilm formation in Bacillus subtilis [J]. Molecular Microbiology 74:876-887
    Chalfie M, Euskirchen YTG, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression [J]. Science 264:802-805.
    Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiela pneumoniae in association with Zea mays L [J]. Applied and Environmental Microbiology 66: 783-787.
    Chu F, Kearns DB, Branda SS, Kolter R and Losick R (2006) Targets of the master regulator of biofilm formation in Bacillus subtilis [J]. Molecular Microbiology 59:1216-1228.
    Chu F, Kearns DB, Mcloon A, Chai YR, Kolter R and Losick R (2008) A novel regulatory protein governing biofilm formation in Bacillus subtilis [J]. Molecular Microbiology 68:1117-1127.
    Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases principles, mechanisms of action, and future prospects [J]. Applied and Environmental Microbiology 71:2951-4959.
    Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost, Trichoderma asperellum isolates to suppress Fusarium wilt of tomato [J]. Soil Biology & Biochemistry 34:467-476.
    Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria [J]. Microbiology 61: 401-422.
    Davey ME, O'Toole GA (2000) Microbial biofilms:from ecology to molecular genetics [J]. Microbiology and Molecular Biology Reviews 64:847-867.
    David DG, Parsek MR, Pearson JP, Iqlewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a Bacterial Biofilm [J]. Science 280:295-298.
    Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens [J]. Biological Control 37:68-74.
    Duffy BK, Weller DM (1996) Biological control of take-all of wheat in the Pacific North-west of the USA using hypovirulent Gaeumannomyces graminis var. tritici and fluorescent Pseudomonads [J]. Journal of Phytopathology 144:11-12.
    Dunn AK, Kimowicz AK, Handelsman J (2003) Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens [J]. Applied and Environmental Microbiology 69:1197-1205.
    van Elsas JD, Trevors JT, Jain D (1992) Survival of, and root colonization by, alginate-encapsulated Pseudomonas fluorescens cells following introduction into soil [J]. Biology and Fertility of soils 14: 14-22.
    Elory ACB (1986) The rhizosphere [M]. Berlin:Spring-Verlag:510-523.
    Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida:love at first sight [J]. Microbiology 148:341-343.
    Fan B, Chen XH, Budiarjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein [J]. Journal of Biotechnology 151:303-311.
    Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wiren N, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates [J]. BMC Microbiology 12:116-128.
    Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere [J]. Plant and Soil 321:279-303.
    Fravel D, Olivain C, Alabouvette (2002) Fusarium oxysporum and its biocontrol [J]. New Phytologist 157:493-502.
    Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA 14 biofilms [J]. Molecular Microbiology 51:675-690
    Gage DJ (2004) Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes [J]. Microbiology and Molecular Biology Reviews 68:280-300.
    Gage DJ (2002) Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti [J]. Journal of Bacteriology 184:7042-7046.
    Garbeva P, Veen JAV, Elsas JDV (2004) Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness [J]. Annual Review of Phytopathol 42:243-270.
    Gavin R, Rabaan AA, Merino S, Tomas JM, Gryllos I, Shaw JG (2002) Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation [J]. Molecular Microbiology 43:383-397.
    Glandorf DCM, Brand I, Bakker PAHM (1992) Stability of rifampicin resistance as a marker for root colonization studies of pseudomonas putida in the filed [J]. Plant and Soil 147:135-142.
    Hamon MA, Lazazzera BA (2001) The sporulation transcription factor SpoOA is required for biofilm formation development in Bacillus subtilis [J]. Molecular Microbiology 42:1199-1209.
    Hao WY, Ren LX, Ran W, Shen QR (2010) Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp.niveum [J]. Plant and Soil 336:485-497.
    Harsh PB, Ray F, Jorge MV (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J]. Plant Physiology 134:307-319.
    Huang XQ, Chen LH, Ran W, Shen QR, Yang XM (2011) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism [J]. Applied Microbiology and Biotechnology 91: 741-755.
    Huang XQ, Zhang N, Yong XY, Yang XM, Shen QR (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43 [J]. Microbiology Research 167: 135-143.
    Hunt AP, Parry JD (1998) The effect of substratum roughness and river flow rate on the development of a freshwater biofilm community [J]. Biofouling 12:287-303.
    Hwang SC, Ko WH (2004) Cavendish banana cultivars resistant to fusarium wilt acquired through somaclonal variation in Taiwan [J]. Plant Disease 88:580-588.
    Insam H, Amor K, Renner M, Crepaz C (1996) Changes in functional abilities of the microbial communit y during composing of manure [J]. Microbial Ecology 31:77-87.
    Ji XL, Lu GB, Gai YP, Zheng CC, Mu ZM (2008) Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain [J]. FEMS Microbiology Ecology 65:565-573.
    Kearns DB, Chu F, Branda SS, Kolter R and Losick R (2005) A master regulator of biofilm formation by Bacillus subtilis [J]. Molecular Microbiology 55:739-749.
    Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, Hain R (2000) FZB24(r) Bacillus subtilis mode of action of a microbial agent enhancing plant vitality [J]. Pflanzenschutz Nachrichten Bayer 1:72-93.
    Kim J, Hegde M, Kim SH, Wood TK, Jayaraman A (2012) A microfluidic device for high throughput bacterial biofilm studies [J]. Lap Chip 12:1157-1163.
    Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring colonization of plant roots by bacteria[J]. Canadian Journal of Microbiology 38:1219-1232.
    Kobayashi K (2008) SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis [J]. Molecular Microbiology 69:1399-1410
    Li SQ, Zhang N, Zhang ZH, Luo J, Shen B, Zhang RF, Shen QR (2012) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation [J]. Biology and Fertility of Soils, doi:10.1007/s00374-012-0718-x.
    Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bio-organic fertilizer for improving the biocontrol efficacy to Fusarium wilt [J]. BioControl 55: 673-683.
    Ling N, Huang QW, Guo SW, Shen QR (2011a) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum [J]. Plant and Soil 341:485-493.
    Ling N, Raza W, Ma JH, Huang QW, Shen QR (2011b) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere [J]. Eurpean Journal of Soil Biology 47:374-379.
    Lugtenberg BJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition,utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization [J]. Environmental Microbiology 1:439-446.
    Luo J, Ran W, Hu J, Yang XM, Xu YC, Shen QR (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils [J]. Soil Science Society of America Journal 74: 2039-2048
    Mao CH, Evans C, Jensen RV, Sobral BWS (2008) Identification of new genes in Sinorhizobium meliloti using the genome sequencer FLX system [J]. BMC Microbiology 8:72.
    Marguerat S, Bahler J (2010) RNA-seq:from technology to biology [J]. Cellular and Molecular Life Sciences 67:569-579.
    Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions [J]. PNAS 102:17454-17459.
    Matilla MA, Espinosa-Urgel M, Rodriguez-Herva JJ, Ramos JL, Ramos-Gonzalez MIR (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere [J]. Genome Biology 8: R179.
    McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons [J]. Nature Biotechnology 25:584-592.
    Monier JM, Lindow SE (2004) Frequency, size, and localization of bacterial aggregates on bean leaf surfaces [J]. Applied and Environmental Microbiology 70:346-355.
    Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species [J]. Journal of Bioscience and Bioengineering 101:1-8.
    Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria [J]. Annual Review of Phytopathology 41:429-453.
    Nannipieri P, Ascher J, Ceccerini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions [J]. European Journal of Soil Science 54:655-670.
    Nel B, Viljoen A, Steinberg C (2003) Evaluation of chemical substances for the management and control of Fusarium wilt of banana. In:Claudine Picq. Anne Vezina. Eds.20d International symposium on Fusarium wilt on banana. Brazil. Salvador de Bahia.
    Ongena, M, Jacques P (2007) Bacillus lipopeptides, versatile weapons for plant disease biocontrol [J]. Trends in Microbiology 16:115-125.
    Ongena M, Jourdan E, Adam A, Paquot M, Brans A, Joris B, Arpigny J, Thonart P (2007) Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants [J]. Environmental Microbiology 9:1084-1090.
    Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH (2009) Structure and complexity of a bacterial transcriptome [J]. Journal of Bacteriology 191:3203-3211.
    Perez-Garcia A, Romero D, de Vicente A (2011) Plant protection and growth stimulation by microorganisms:biotechnological applications of Bacilli in agriculture [J]. Current Opinion in Biotechnology 22:187-193.
    Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole PS (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizospheres investigated by comparative transcriptomics [J]. Genome Biology 12:R106.
    Ren XL, Zhang N, Cao MH, Wu K, Shen QR, Huang QW (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5 [J]. Biology and Fertility of Soils 48:613-620.
    Roling WFM, Ferrer M, Golyshin PN (2009) Systems approaches to microbial communities and their functioning [J]. Current Opinion in Biotechnology 21:532-538.
    Rudrappa T, Biedzycki ML, Bais HP (2008a) Causes and consequences of plant-associated biofilms [J]. FEMS Microbiology Ecology 64:153-166.
    Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008b) Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant physiology 148:1547-1556.
    Ryder MH (1995) Monitoring of biocontrol agents and genetically engineered micro organisms in the environment [A]. Singh, R P Singh. Molecular Methods in PlantPatholgy [C]. BOCARA TON, U. S.:CRC lans publishers:475-492.
    Saravanan T, Muthusamy M, Marimuthu T (2003) Development of integrated approach to manage the Fusarium wilt of banana [J]. Crop Protection 22:1117-1123.
    Satoshi O (1997) Significance of the spatial distribution of microbial species in mixed-population biofilms [J]. Biofouling 11:119-136.
    Sharma R, Ranjan R, Kapardar RK, Grover A (2005) "Unculturable" bacterial diversity:an untapped resource [J]. Current Science 89:72-77.
    Smalla K, Wachtendorf U, Heuer H, Liu WT, Forney L (1998) Analysis of BIOLOG GN substrate utilization patterns by microbial communities [J]. Applied and Environmental Microbiology 64: 1220-1225.
    Snyder W, Hanson H (1940) The species concept in Fusarium. American Journal of Botany 27:64-67.
    Strauch M, Webb V, Spiegelman G, Hoch JA (1990) The SpoOA protein of Bacillus subtilis is a repressor of the abrB gene [J]. PNAS 87:1801-1805.
    Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays [J]. Journal of Bacteriology 185:1951-1957.
    Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities [J]. Annual Review of Microbiology 56:187-209.
    Sturz AV, Carter MR, Johnston HW (1997) A review of plant disease, pathogen interactions and microbial antagonism under conservation tillage in temperate humid agriculture [J]. Soil & Tillage Research 41:169-189.
    Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms [J]. Applied and Environmental Microbiology 71:7292-7300.
    Unge A, Jansson JK (2001) Monitoring population size, activity, distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat. Microb Ecol 41:290-300.
    Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus [J]. Molecular Microbiology 48:1075-1087.
    Veening JW, Kuipers OP, Brul SB, Hellingwerf KJ, Kort R (2006) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis [J]. Journal of Bacteriology 188:3099-3109.
    Verhamme DT, Kiley TB and Stanley-Wall NR (2007) DegU co-ordinates multicellular behaviour exhibited by Bacillus subtilis [J]. Molecular Microbiology 65:554-568.
    Verhamme DT, Murray EJ and Stanley-Wall NR (2009) DegU and SpoOA jointly control transcription of two loci required for complex colony development by Bacillus subtilis [J]. Journal of Bacteriology 191:100-108.
    Warembourg FR, Billes G (1979) Estimating carbon transfers in the plant rhizosphere [A].In:Harley J L, Russell R S. The Soil-Root Interface [C]. London:Academic Press:183-194.
    Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae 0139 [J]. Molecular Microbiology 39:223-235.
    de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mol R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens [J]. Molecular Plant-Microbe Interactions 15:1173-1180.
    de Weger LA, Dekkers LC, van der Bij A, Lugtenberg BJJ (1993) Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and in bulk soil [J]. Molecular Plant-Microbe Interactions 7:32-38.
    Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field [J]. Applied Soil Ecology 48:152-159.
    Weir TL, Stull VJ, Badri D, Trunck LA, Schweizer HP, Vivanco J (2008) Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection [J]. Applied and Environmental Microbiology 74:5784-5791.
    Wilson KJ (1995) Molecular techniques for the study of rhizobial ecology in the field [J]. Soil Biology & Biochemistry 27:501-514.
    Winkelman JT, Blair KM and Kearns DB (2009) RemA (YIzA) and RemB (YaaB) regulate extracellular matrix operon expression and biofilm formation in Bacillus subtilis [J]. Journal of Bacteriology 191: 3981-3991.
    Wu HS., Yang XM, Fan JQ, Miao WG, Ling N, Shen QR (2008) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms [J]. BioControl 54:287-295.
    Zhang SS, Raza W, Yang XM, Hu J, Huang QW, Xu YC, Liu XH, Ran W, Shen QR (2008) Control of Fusarium wilt disease of cucumber plants with the application of a bio-organic fertilizer [J]. Biology and Fertility of Soils 44:1073-1080.
    Zhao QY, Dong CX, Yang XM, Mei XL, Ran W, Shen QR (2010) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer [J]. Applied Soil Ecology 47:67-75.
    毕江涛,贺达汉.(2009)植物对土壤微生物多样性的影响研究进展[J].中国农学通报,25(9):244-250.
    曹理想,田新莉,周世宁.(2003)香蕉内生真菌、放线菌类群分析.中山大学学报(自然科学版).42(2):70-73.
    陈敦忠,徐碧玉,金志强.(2005)香蕉镰刀菌枯萎病的诊断及防治[J].热带农业科学,25(2)53-56.
    邓小龙,颜继烂,李艳君,等.(2011)西瓜枯萎病的发生及防治[J].安徽农学通报,17(8):115-116.
    郜红建,常江,张自立,等.(2003)研究植物根系分泌物的方法[J].植物生理学通讯,39(1):56-60.
    古瑞琼.(1989)香蕉组织内的镰刀菌种及其致病性研究[J].热带作物学报,10(1):99-106.
    韩剑,张静文,徐文修,等.(2011)新疆连作、轮作棉田可培养的土壤微生物区系及活性分析[J].棉花学报,23(1):69-74.
    黄海婵,裘娟萍.(2005)枯草芽孢杆菌防治植物病害的研究进展[J].浙江农业科学,3:213-215.
    黄曦,许兰兰,黄荣韶,等.(2010)枯草芽孢杆菌在抑制植物病原菌中的研究进展[J].生物技术通报,2010(1),24-29.
    姜瑞波,张晓霞,吴胜军.(2003)生物有机肥及其应用前景[J].磷肥与复肥,18(4):62-63.
    鞠会艳,韩丽梅,王树起,等.(2002)连作大豆根分泌物对根腐病病原菌的化感作用[J],应用生态学报,13(6):723-727.
    林成辉,许文耀,兀旭辉,等.(2004)香蕉无枯萎病组培苗培育技术规范[J].福建果树,1:43-46.
    莫才清.(1997)标记基因在植物病害发生和流行规律中的应用[J].植物保护,4:33-35
    年洪娟,陈丽梅.(2010)土壤有益细菌在植物根际竞争定殖的影响因素[J].生态学杂志,29(6):1235-1239.
    沈德龙,李俊,姜昕.(2007)我国生物有机肥的发展现状及展望[J].中国农技推广,23(9):35-37.
    孙建波,王宇光,赵平娟,等.(2010)拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响[J].热带作物学报,31(2):212-216.
    孙哲.(2000)基于检测报告基因的药物筛选方法研究进展[J].中国药学杂志,35(8):507-510.
    吴薇,葛诚.(1995)我国微生物肥料生产和应用现状的调查研究[J].微生物学通报,22(2):104-107.
    吴运新,卓国豪.(2004)香蕉枯萎病的发生及防治对策[J].柑桔与亚热带果树信息,20(4):39-40.
    杨建霞.(2005)日光温室黄瓜连作障碍研究及防治对策[J].甘肃农业,11:209-210.
    杨仁斌,曾清如,周细红,等.(2000)植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,19(3):152-155.
    杨兴明,徐阳春,黄启为,等.(2009)有机(类)肥料与农业可持续发展和生态环境保护[J].土壤学报,45(5):925-932.
    姚一建,李玉主译.(2002)菌物学概论.第4版[M].北京:中国农业大学出版社.
    张桂兴.(2003)抗香蕉枯萎病放线菌的筛选及菌株Da03047,Da04010的分类鉴定[D].儋州:华南热带农业大学.
    张志红,李华兴,韦翔恩,等.(2008)生物肥料对香蕉枯萎病及土壤微生物的影响[J].生态环境,17(6):2421-2425.
    朱廷恒,邢小平,孙顺娣.(2004)木霉菌株对几种植物病原真菌的拮抗作用机制和温室防治实验[J].植物保护学报,31(2):139-144.
    邹荣松,刘克锋,王红利,等.(2009)不同微生物有机肥对草莓生长影响的研究[J].中国农学通报,25(8):196-198.
    Badri D, Vivanco JM (2009) Regulation and function of root exudates [J]. Plant, Cell and Environment 32:666-681.
    Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CMJE, Savelkoul PHM (2003) Comparison of Real-Time PCR, culture for detection of Porphyromonas gingivalis in subgingival plaque samples [J]. Journal of Clinical Microbiology 41:4950-4954.
    Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology 74: 738-744.
    Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biology and Fertility of Soils 47: 495-506.
    Cook RJ (1993) Making greater use of introduced microorganisms for biological control of plant pathogens [J]. Annual Review Phytopathology 31:53-80.
    Correa SO, Soria MA (2011) Potential of Bacilli for biocontrol and its exploitation in sustainable agriculture [J]. Microbiology Monographs 18:197-209.
    Cotxarrera L, Trillas-Gay MI, Steinberg C, Alabouvette C (2002) Use of sewage sludge compost, Trichoderma asperellum isolates to suppress Fusarium wilt of tomato [J]. Soil Biology & Biochemistry 34:467-476.
    Ercolini D (2004) PCR-DGGE fingerprinting:novel strategies for detection of microbes in food [J]. Journal of Microbiological Methods 56:297-314.
    Gao X, Jackson TA, Lambert KN, Li S (2004) Detection and quantification of Fusarium solani f. sp. glyciens in soybean roots with real-time quantitative polymerase chain reaction [J]. Plant Disease 88:1372-1380.
    Garbeva P, Veen JAV, Elsas JDV (2004) Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness [J]. Annual Review of Phytopathol 42:243-270.
    Getha K, Vikineswary S (2002) Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4, indirect evidence for the role of antibiosis in the antagonistic process [J]. Journal of Industrial Microbiology and Biotechnology 28:303-310.
    Govindasamy V, Senthilkumar M, Magheshwaran V, Kumar U, Bose P, Sharma V, Annapurna K (2011) Bacillus and Paenibacillus spp.:potential PGPR for sustainable agriculture. D.K. Maheshwari (ed.), Plant Growth and Health Promoting Bacteria, Microbiology Monographs 18:333-364.
    Herrera ML, Vallor AC, Gelfond JA, Patterson TF, Wickes BL (2009) Strain-dependent variation in 18S ribosomal DNA copy numbers in Aspergillus fumigatus [J]. Journal of Clinical Microbiology 47: 1325-1332.
    Huang XQ, Chen LH, Ran W, Shen QR, Yang XM (2011) Trichoderma harzianum strain SQR-T37 and its bio-organic fertilizer could control Rhizoctonia solani damping-off disease in cucumber seedlings mainly by the mycoparasitism [J]. Applied Microbiology and Biotechnology 91:741-755
    Huang XQ, Zhang N, Yong XY, Yang XM, Shen QR (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43 [J]. Microbiology Research 167: 135-143.
    Lievens B, Brouwer M, Vanachter ACRC, Andre Levesque C, Cammun BPA, Thomma BPHJ (2005) Quantitative assessment of phytopathogenic fungi in various substrates using a DNA macroarray [J]. Environmental Microbiology 7:1698-1710.
    Li SQ, Zhang N, Zhang ZH, Luo J, Shen B, Zhang RF, Shen QR (2012) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation [J]. Biol Fertil Soils, doi:10.1007/s00374-012-0718-x.
    Lin YH, Chang JY, Liu ET, Chao CP, Huang JW, Fang P, Chang LD (2009) Development of a molecular marker for specific detection of Fusarium oxysporum f. sp. cubense race 4 [J]. European Journal of Plant Pathology 123:353-365.
    Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bio-organic fertilizer for improving the biocontrol efficacy to Fusarium wilt [J]. BioControl 55: 673-683.
    Luo J, Ran W, Hu J, Yang XM, Xu YC, Shen QR (2010) Application of bio-organic fertilizer significantly affected fungal diversity of soils [J]. Soil Science Society of America Journal 74: 2039-2048.
    Minuto A, Spadaro D, Garibaldi A, Gullino LM (2006) Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization [J]. Crop Protection 25:468-475.
    Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology 59:695-700.
    Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions [J]. European Journal of Soil Science 54:655-670.
    Nel B, Steinberg C, Labuschagne N, Viljoen A (2007) Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana [J]. Crop Protection 26: 697-705.
    Ploetz RC (1990) Population biology of Fusarium oxysporum f.sp.cubense. In, Ploetz RC Ed., Fusarium Wilt of Banana. APS Press, St.Paul, MN, USA.
    Qiu MH, Zhang RF, Xue C, Zhang SS, Li SQ, Zhang N, Shen QR (2012) Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil [J]. Biology and Fertility of Soils, doi:10.1007/s00374-012-0675-4.
    Raza W, Wang Y, Shen QR (2008) Paenibacillus polymyxa, antibiotics hydrolytic enzymes, hazard assessment [J]. Journal of Plant Pathology 90:419-430.
    Ren LX, Su SM, Yang XM, Xu YC, Huang QW, Shen QR (2008) Intercropping with aerobic rice suppressed Fusarium wilt in watermelon [J]. Soil Biology & Biochemistry 40:834-844.
    Ren XL, Zhang N, Cao MH, Wu K, Shen QR, Huang QW (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5 [J]. Biology and Fertility of Soils 48:613-620.
    Sharma R, Ranjan R, Kapardar RK, Grover A (2005) "Unculturable" bacterial diversity:an untapped resource [J]. Current Science 89:72-77.
    Snyder W, Hanson H (1940) The species concept in Fusarium [J]. American Journal of Botany 27: 64-67.
    Timmusk S, van West P, Gow NA, Paul HR (2009) Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum [J]. Journal of Applied Microbiology 106:1473-1481.
    Trillas MI, Casanova E, Corxarrera L, Ordovas J, Borrero C, Aviles M (2006) Composts from agricultural waste, the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings [J]. Biological Control 39:32-38.
    Tyagi A, Saravanan V, Karunasagar I, Karunasagar Ⅰ (2009) Detection of Vibrio parahaemolyticus in tropical shellfish by SYBR green real-time PCR and evaluation of three enrichment media [J]. International Journal of Food Microbiology 129:124-130.
    Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions [J]. Soil Biology & Biochemistry,40:1-10.
    Waseem R, Yang XM, Huang QW, Xu YC, Shen QR (2010) Evaluation of Metal Ions (Zn2+, Fe3+ and Mg2+) Effect on the Production of Fusaricidin Type Antifungal Compounds by Paenibacillus polymyxa SQR-21 [J]. Bioresource Technology 101:9264-9271.
    Wei Z, Yang XM, Yin SX, Shen QR, Ran W, Xu YC (2011) Efficacy of Bacillus-fortified organic fertiliser in controlling bacterial wilt of tomato in the field [J]. Applied Soil Ecology 48:152-159.
    Wu HS, Yang XM, Fan JQ, Miao WG, Ling N, Shen QR (2009) Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms [J]. BioControl 54:287-295.
    Yang XM, Chen LH, Yong XY, Shen QR (2011) Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T37 against Fusarium wilt of cucumbers [J]. Biology and Fertility of Soils:239-248.
    Zhao QY, Dong CX, Yang XM, Mei XL, Ran W, Shen QR (2010) Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer [J]. Applied Soil Ecology 47:67-75.
    Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization of Bacillus subtilis N11. Plant and Soil 344:87-97.
    何欣.(2010)防治香蕉土传枯萎病生物有机肥的研制及其生物效应研究[M].南京农业大学.
    何欣,黄启为,杨兴明,冉炜,徐阳春,沈标,沈其荣.(2010)香蕉枯萎病致病菌筛选及致病菌浓度对香蕉枯萎病的影响[J].中国农业科学,43(18):3809-3816.
    凌宁,王秋君,杨兴明,等.(2009)根际施用微生物有机肥防治连作西瓜枯萎病研究[J].植物营养与肥料学报,15(5):1136-1141.
    司美如,薛泉宏,余博,等.(2005)36株生防菌对辣椒疫病等4种病原真菌的拮抗作用研究[J].西北农林科技大学学报,33(1):49-54.
    苏世鸣,任丽轩,霍振华,等.(2008)西瓜与旱作水稻间作改善西瓜连作障碍及对土壤微生物区系的影响[J].中国农业科学,41(3):704-712.
    张桂兴(2003)抗香蕉枯萎病放线菌的筛选及菌株Da03047,Da04010的分类鉴定[D].儋州:华南热带农业大学:50-51.
    Anith KN, Manomohandas TP (2001) Combined application of Trichoderma harzianum, Alcaligenes sp. strain AMB 8 for controlling nursery rot disease of black pepper [J]. Indian Phytopathol 54: 335-339.
    Badri VD, Vivanco JM (2009) Regulation and function of root exudates [J]. Plant, Cell and Environment 32:666-681.
    Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues plant-microbe interactions [J]. Current Opinion in Microbiology 20:642-650.
    Bais HP, Fall R (2004) Vivanco JM. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J]. Plant Physiology 134:307-319.
    Barrett M, Morissey JP, O'Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence [J]. Biology and Fertility of Soils 47: 729-744.
    Brigidi P, De Rossi E, Riccard G, Matteuzzi D (1991) A highly efficient electroporation system for transformation of Bacillus licheniforms [J]. Biotechnology Techiques 5:5-8.
    Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biology and Fertility of Soils 47:495-506.
    Cavaglieri L, Orlando J, Rodriguez MI (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioid.es in vitro and at the maize root level [J]. Research in Microbiology 156:748-754.
    Chalfie M, Euskirchen YTG, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression [J]. Science 264:802-805.
    Chelius MK, Triplett EW (2000) Immunolocalization of dinitrogenase reductase produced by Klebsiela pneumoniae in association with Zea mays L [J]. Applied and Environmental Microbiology 66, 783-787.
    Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases principles, mechanisms of action, and future prospects [J]. Applied and Environmental Microbiology 71:2951-4959.
    Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization [J]. Soil Biology and Biochemistry 42:669-678.
    Dennis PG, Miller AJ, Clark IM, Taylor RG, Valsami-Jones E, Hirsch PR (2008) A novel method for sampling bacteria on plant root and soil surfaces at the microhabitat scale [J]. Journal of Microbiology Methods 75:12-18.
    Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities [J]? FEMS Microbiology Ecology 72:313-327.
    Drahos DJ (1991) Field testing of genetically engineered microorganisms [J]. Biotechnology Advancement 9:157-171.
    Duffy BK, Weller DM (1996) Biological control of take-all of wheat in the Pacific North-west of the USA using hypovirulent Gaeumannomyces graminis var. tritici and fluorescent Pseudomonads [J]. Journal of Phytopathology 144:11-12.
    Demoz BT, Korsten L (2006) Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens [J]. Biological Control 37:68-74.
    Fan B, Chen XH, Budiarjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein [J]. Journal of Biotechnology 151:303-311.
    Germaine K, Keogh E, Garcia-Cabellos G (2004) Colonisation of poplar trees by gfp expressing bacterial endophytes [J]. FEMS Microbiology Ecology 48,109-118.
    Huang XQ, Zhang N, Yong XY, Yang XM, Shen QR (2012) Biocontrol of Rhizoctonia solani damping-off disease in cucumber with Bacillus pumilus SQR-N43 [J]. Microbiology Research 167: 135-143.
    Ling N, Xue C, Huang QW, Yang XM, Xu YC, Shen QR (2010) Development of a mode of application of bio-organic fertilizer for improving the biocontrol efficacy to Fusarium wilt [J]. BioControl 55: 673-683.
    Liu XM, Zhou HX, Chen SF (2006) Colonization of Maize and Rice Plants by Strain Bacillus megaterium C4 [J]. Current Microbiology 52:186-190.
    Li SQ, Zhang N, Zhang ZH, Luo J, Shen B, Zhang RF, Shen QR (2012) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation [J]. Biology and Fertility of Soils, doi:10.1007/s00374-012-0718-x.
    Lu ZX, Tombolini R, Woo S, Zeilinger S, Lorito M, Jansson JK (2004) In vivo study of Trichoderma-patogen-plant interactions, using constitutive and inducible green fluorescent protein reporter systems [J]. Applied and Environmental Microbiology 70:3073-3081.
    Neveu B, Labbe C, Belanger RR (2007) GFP technology for the study of biocontrol agents in tritrophic interactions:A case study with Pseudozyma flocculosa [J]. Journal of Microbiological Methods 68: 275-281.
    Nijland R, Burgess JG, Errington J, Veening J-W (2010) Transformation of environmental Bacillus subtilis isolates by transiently inducing genetic competence. PLoS One 5:e9724.
    Njoloma J, Tanaka K, Shimizu T, Nishiguchi T, Zakria M, Akashi R, Oota M, Akao S (2006) Infection and colonization of aseptically micropropagated sugarcane seedlings by nitrogen-fixing endophytic bacterium, Herbaspirillum sp. B501gfpl [J]. Biology and Fertility of Soils 43:137-143.
    Prosser JI (1994) Molecular marker systems for detection of genetically engineered micro-organisms in the environment [J]. Microbiology 140:5-17.
    Rajasekaran K, Cary JW, Cotty PJ, Cleveland TE (2008) Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cottonseed [J]. Mycopathologia,165:89-97.
    Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates [J]. Applied and Environmental Microbiology.66:801-809.
    Ren XL, Zhang N, Cao MH, Wu K, Shen QR, Huang QW (2012) Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5 [J]. Biology and Fertility of Soils 48:613-620.
    Rudrappa T, Biedrzycki ML, Bais HP (2008a) Causes and consequences of plant-associated biofilm [J]. FEMS Microbiology Ecology 64:153-166.
    Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008b) Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant Physiology 148:1547-1556.
    Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barley seeds visualized by using green fluorescent protein [J]. Applied and Environmental Microbiology 65:3674-3680.
    Timmusk, S., Grantcharova, N. and Wagner, E.G.H. (2005) Paenibacillus polymyxa invades plant roots and forms biofilm [J]. Applied and Environmental microbiology,71:7292-7300.
    Trevors JT, Chassy BM, Dower WJ, Blaschek HP (1992) Electrotransformation of bacteria by plasmid DNA. In, Chang,D.C, Chassy, B.M., Saunders, J.A., Sowers, A.E. (Eds.), Guide to Electroporation and Electrofusion. Academic Press, San Diego:265-290.
    Unge A, Jansson J (2001) Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat [J]. Microbiology Ecology 41: 290-300.
    Walker R, Rossall S, Ashe MJC (2002) Colonization of the developing rhizosphere of sugar beet seedlings by potential biocontrol agents applied as seed treatments [J]. Journal of Applied Microbiology 92:228-237.
    Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology [J]. Plant Physiology 132:44-51.
    de Weger LA, Dekkers LC, van der Bij A, Lugtenberg BJJ (1993) Use of phosphate-reporter bacteria to study phosphate limitation in the rhizosphere and in bulk soil [J]. Molecular Plant-Microbe Interactions 7:32-38.
    von der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177 [J]. World Journal of Microbiology and Biotechnology 12:1591-1597.
    Zhang ZH, Tian W, Liu DY, Liu YC, Shen QR, Shen B (2010) Characterization of a cryptic plasmid pPZZ84 from Bacillus pumilus [J]. Plasmid 64:200-203.
    李世贵,吕天晓,顾金刚,等.(2009)绿色荧光蛋白在微生物根际定殖研究中的应用[J].生物技术通报,2:34-37.
    李永刚,宋兴舜,赵雪莹,等.(2008)生防枯草芽孢杆菌L1特性的初步研究[J].植物保护,34(1):57-61.
    田涛,王琦.(2005)绿色荧光蛋白作为分子标记物在微生物学中的应用[J].微生物学杂志,25(1):68-73.
    Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J]. Plant Physiology 134:307-319.
    Branda SS, Gonzalez-Paster JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis [J]. PNAS 98:11621-11626.
    Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms:the matrix revisited [J]. Trends in Microbiology 13:20-26.
    Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix [J]. Molecular Microbiology 59:1229-1238.
    Chang WS, Halversoon LJ (2003) Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms [J].Journal of Bacteriology 185: 6199-6204.
    Chu F, Kearns DB, McLoon A, Chai YR, Kolter R, Losick R (2008) A novel regulatory protein governing biofilm formation in Bacillus subtilis [J]. Molecular Microbiology 68:1117-1127.
    Davey ME, O'Toole GA (2000) Microbial biofilms:from ecology to molecular genetics [J]. Microbiology and Molecular Biology Reviews 64:847-867.
    Hamon MA, Lazazzera BA (2001) The sporulation transcription factor SpoOA is required for biofilm formation development in Bacillus subtilis [J]. Molecular Microbiology 42:1199-1209.
    Houry A, Briandet R, Ayerich S, Gohar M (2010) Involvement of motility and flagella in Bacillus cereus biofilm formation [J]. Microbiology 156:1009-1018.
    Kobayashi K (2007) Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes [J]. Journal of Bacteriology 189:4920-4931.
    Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R (2008) Biofilm development with an emphasis on Bacillus subtilis[S]. T. Romeo (ed.), Bacterial Biofilms. Current Topics in Microbiology and Immunology 322:3-16.
    Lopez D, Fischbach MA, Chu F, Losick R, Kolter R (2009) Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis [J]. PNAS 106:280-285.
    McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R (2011) Tracing the domestication of a biofilm-forming bacterium [J]. Journal of Bacteriology 193:2027-2034.
    Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species [J]. Journal of Bioscience and Bioengineering 101:1-8.
    Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations [J]. Current Opinion in Microbiology 7:602-609.
    Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-y-DL-glutamic acid production and biofilm formation [J]. Molecular Microbiology 57:1143-1158.
    Veening JW, Kuipers OP, Brul SB, Hellingwerf KJ, Kort R (2006) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis [J]. Journal of Bacteriology 188:3099-3109.
    Webb JS, Givskov M, Kjelleberg S (2003) Bacterial biofilms prokaryotic adventures in multicellularity [J]. Current Opinion in Microbiology 6:578-585.
    杨敬辉,文平兰,陈宏州,等.(2008)植物相关细菌生物膜研究进展[J].河北农业科学,12(9):1-3.
    Adler J (1973) A Method for Measuring Chemotaxis and Use of the Method to Determine Optimum Conditions for Chemotaxis by Escherichia coli [J]. Journal of General Microbiology 74:77-91.
    Andersen PC, Brodbeck BV, Oden S, Shriner A, Leite B (2007) Influence of xylem fluid chemistry on planktonic growth, biofilm formation and aggregation of Xylella fastidiosa [J]. FEMS microbiology letters 274:210-217.
    Bacilio-Jimenez M, Aguilar-Flores S, Ventura-Zapata E, Perez-Campos E, Bouquelet S, Zenteno E (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria [J]. Plant and Soil 249:271-277.
    Badri DV, Vivanco JM (2009) Regulation and function of root exudates [J]. Plant, Cell & Environment 32:666-681.
    Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues:plant-microbe interactions. Current opinion in biotechnology 20:642-650.
    BaisH P, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway [J]. Trends in plant science 9:26-32.
    Banwart WL, Porter PM, Granato TC, Hassett JJ (1985) HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids [J]. Journal of Chemical Ecology,11:383-395.
    Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity [J]. Applied and Environmental Microbiology 74: 738-744.
    Broz AK., Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity:another victim of the invasive plant Centaurea maculosa [J]. The ISME journal 1:763-765.
    Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biology and Fertility of Soils 47:495-506.
    Chen Y, Cao SG, Chai YR, Clardy J, Kolter R, Guo JH, Losick R (2012) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants. Molecular Microbiology 85:418-430
    Dennis PG, Miller AJ, Hirsch PR (2010) Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities [J]? FEMS Microbiology Ecology 72:313-327.
    Gordillo F, Chavez FP, Jerez CA (2007) Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates [J]. FEMS Microbiology Ecology 60:322-328.
    Hsueh YH, Somers EB, Lereclus D, Wong ACL (2006) Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator[J]. Applied and Environmental Microbiology 72: 5089-5092.
    Jones DL (1998) Organic acids in the rhizosphere-a critical review. Plant and Soil 205:25-44.
    Li SQ, Zhang N, Zhang ZH, Luo J, Shen B, Zhang RF, Shen QR (2012) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation [J]. Biology and Fertility of Soils, doi:10.1007/s00374-012-0718-x.
    Ling N, Huang QW, Guo SW, Shen QR (2010) Paenibacillus polymyxa SQR-21 systemically affects root exudates of watermelon to decrease the conidial germination of Fusarium oxysporum f.sp. niveum [J]. Plant and Soil 341:485-593.
    Ling N, Raza W, Ma JH, Huang QW, Shen QR (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere [J]. Eurpean Journal of Soil Biology 47:374-379.
    Micallef SA, Channer S, Shiaris MP, Colon-Carmona A (2009) Plant age and genotype impact the progression of bacterial community succession in the Arabidopsis rhizosphere [J]. Plant Signaling & Behavior 4:777-780.
    Phillips DA, Tama CF, King MD, Bhuvaneswari TV, Teuber LR (2004) Microbial products trigger amino acid exudation from plant roots [J]. Plant Physiology 136:2887-2894.
    Rudrappa T, Biedrzycki ML, Bais HP (2008a) Causes and consequences of plant-associated biofilm [J]. FEMS Microbiology Ecology 64:153-166.
    Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008b) Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant physiology 148:1547-1556.
    Sood GS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants [J]. FEMS Microbiology Ecology 45:219-227.
    Stepanovic S, Dakic I, Opavski N, Jezek P, Ranin L (2003) Influence of the growth medium composition on biofilm formation by Staphylococcus sciuri [J]. Annals of Microbiology,53: 63-74.
    Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology 71:7292-7300.
    Tremaroli V, Fedi S, Tamburini S, Viti C, Tatti E, Ceri H, Turner RJ, Zannoni D (2011) A histidine-kinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism [J]. Biofouling 27:33-46.
    Vivanco (2004) How plants communicate using the underground information superhighway [J]. Trends in plant science 9:26-32.
    de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mol R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens [J]. Molecular Plant-Microbe Interactions 15:1173-1180.
    Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development [J]. Applied and Environmental Microbiology 67:5849-5854.
    Xu HJ, Liu YL (2011) D-Amino acid mitigated membrane biofouling and promoted biofilm detachment [J]. Journal of Membrane Science 376:266-274.
    Yaryura PM, Leon M, Correa OS, Kerber NL, Pucheu NL, Garcia AF (2008). Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339 [J]. Current Microbiology 56:625-632.
    Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization of Bacillus subtilis N11 [J]. Plant and Soil 344:87-97.
    Zohora US, Rahman MS, Ano T (2009) Biofilm formation and lipopeptide antibiotic iturin A production in different peptone media [J]. Journal of Environmental Sciences, Supplement S24-S27.
    曹享云.(1994)营养胁迫与根系分泌物[J].土壤学进展,22(3):27-33.
    郜红建,常江,张自立,等.(2003)研究植物根系分泌物的方法[J].植物生理学通讯,39(1):56--60.
    刘军,温学森,郎爱东.(2007)植物根系分泌物成分及其作用的研究进展[J].食品与药品,9(3):63-65.
    Baker MD, Wolanin PM, Stock JB (2005) Signal transduction in bacterial chemotaxis [J]. BioEssays 28: 9-22.
    Brigidi P, De Rossi E, Riccard G, Matteuzzi D (1991) A highly efficient electroporation system for transformation of Bacillus licheniforms [J]. Biotechnology Techniques.5(1):5-8.
    Bourret RB, Stock AM (2002) Molecular information processing:lessons from bacterial chemotaxis [J]. Journal of Biological Chemistry 277:9625-9628.
    Chen XH, Vater J, Piel J, Franke P, Scholz R, Schneider K, Koumoutsi A, Hitzeroth G, Grammel N, Strittmatter AW, Gottschalk G, Sussmuth RD, Borriss R (2006) Structural and functional characterization of three polyketide synthase gene Clusters in Bacillus amyloliquefaciens FZB 42 [J]. Journal of Bacteriology 188:4024-4036.
    Chen Y, Cao SG, Chai YR, Clardy J, Kolter R, Guo JH, Losick R (2012a) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants [J]. Molecular Microbiology 85:418-430.
    Chen Y, Yan F, Chai YR, Liu HX, Kolter R, Losick R, Guo JH (2012b) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depend on conserved genes mediating biofilm formation [J]. Environmental Microbiology DOI:10.1111/j.1462-2920.2012.02860.x.
    Fan B, Chen XH, Budiarjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein [J]. Journal of Biotechnology 151:303-311.
    Huo ZH, Zhang N, Xu ZH, Li SQ, Zhang QX, Qiu MH, Yong XY, Huang QW, Zhang RF, Shen QR (2012) Optimization of survival and spore formation of Paenibacillus polymyxa SQR-21 during bioorganic fertilizer [J]. Bioresource Technology 108:190-195.
    Hoa TT, Tortosa P, Albano M, Dunau D (2002) Rok (YkuW) regulates genetic competence in Bacillus subtilis by directly repressing comK [J]. Molecular Microbiology 43:15-26.
    Jayamanne VS, Adams MR (2009) Modelling the effects of pH, storage temperature and redox potential (Eh) on the survival of bifidobacteria in fermented milk. International Journal of Food Science& Technology 44:1131-1138.
    Kearns DB, Chu F, Rudner R, Losick R (2004) Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility [J]. Molecular Microbiology 52:357-369.
    Kobayashi K (2007) Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes [J]. Journal of Bacteriology 189:4920-4931.
    Lux R, Shi WY (2004) Chemotaxis-guided movements in bacteria [J]. Critical Reviews in Oral Biology & Medicine 15:207-220.
    Merritt PM, Danhorn T, Fuqua C (2007) Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation [J]. Journal of Bacteriology 189:8005-8014.
    Morikawa M (2006) Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species [J]. Journal of Bioscience and Bioengineering 101:1-8.
    Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation:roles of flagella motility, chemotaxis and type I pili [J]. Molecular Microbiology 30:285-293.
    Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant physiology 148:1547-1556.
    Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production [J]. Canadian Journal of Microbiology 50:1-17.
    Schumann W (2007) Production of recombinant proteins in Bacillus subtilis [J]. Advances in Applied Microbiology 62:137-189.
    Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S (2004) Construction of long DNA molecules using long PCR-based fusion of several fragments simultaneously [J]. Nucleic Acids Research 32:e19
    Sood GS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants [J]. FEMS Microbiology Ecology 45:219-227.
    Raza W, Wu HS, Shen QR (2010) Use of response surface methodology to evaluate the effect of metal ions (Ca2+, Ni2+, Mn2+, Cu2+) on production of antifungal compounds by Paenibacillus polymyxa [J]. Bioresource Technology 101:1904-1912.
    van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, Hamoen L (1995). comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis [J]. Molecular Microbiology 15:455-462.
    Tremaroli V, Fedi S, Tamburini S, Viti C, Tatti E, Ceri H, Turner RJ, Zannoni D (2011) A histidine-kinase cheA gene of Pseudomonas pseudoalcaligens KF707 not only has a key role in chemotaxis but also affects biofilm formation and cell metabolism [J]. Biofouling 27:33-46.
    Turgeon N, Laflamme C, Ho J, Duchaine C (2006) Elaboration of an electroporation protocol for Bacillus cereus ATCC 14579 [J]. Journal of Microbiology Methods 67:543-548.
    de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mol R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens [J]. Molecular Plant-Microbe Interactions 15:1173-1180.
    Vehmaanper J (1988) Transformation of Bacillus amyloliquefaciens protoplasts with plasmid DNA [J]. FEMS Microbiology Letters 49:101-105.
    von der Weid I, Artursson V, Seldin L, Jansson JK (2005) Antifungal and root surface colonization properties of GFP-tagged Paenibacillus brasilensis PB177 [J]. World Journal of Microbiology and Biotechnology 12:1591-1597.
    Xue G P, Johnson J S, Dalrympl B P (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis [J]. Journal of Microbiological Methods 34:183-191.
    Yan X, Yu HJ, Hong Q, Li SP (2008) Cre/lox system and PCR-based genome engineering in Bacillus subtilis [J]. Applied and Environmental Microbiology 74:5556-5562.
    Yong XY, Raza W, Yu GH, Ran W, Shen QR (2011) Optimization of the production of poly-c-glutamic acid by Bacillus amyloliquefaciens C1 in solidstate fermentation using dairy manure compost and monosodium glutamate production residues as basic substrates [J]. Bioresource Technology 102: 7548-7554.
    Zakataeva NP, Gronskiy SV, Sheremet AS, Kutukova EA, Novikova AE, Livshits VA (2007) A new function for the Bacillus PbuE purine base efflux pump:efflux of purine nucleosides [J]. Research in Microbiology 158:659-665.
    Zakataeva NP, Nikitina OV, Gronskiy SV, Romanenkov DV, Livshits VA (2010) A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains [J]. Applied Microbiology and Biotechnology 85:1201-1209.
    Zhang GQ, Bao P, Zhang Y, Deng AH, Chen N, Wen TY (2011) Enhancing electro-transformation competency of recalcitrant Bacillus amyloliquefaciens by combining cell-wall weakening and cell-membrane fluidity disturbing [J]. Analytical Biochemistry 409:130-137.
    Zhang XZ, Percival Zhang YH (2011) Simple, fast and high-efficiency transformation system for directed evolution of cellulase in Bacillus subtilis [J]. Microbial Biotechnology 4:98-105.
    陈涛,王靖宇,班睿,等.(2004)枯草芽孢杆菌感受态研究新进展[J].生命的化学,24:130-134.
    Antje M (2005) Molecular analysis of virulence-relevant factors as targets for the development of new antibiotics [D]. Institut fur Molekulare Infektionsbiologie.
    Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production [J]. Plant Physiology 134:307-319.
    Branda SS, Chu F, Kearns DB, Losick R and Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix [J]. Molecular Microbiology 59:1229-1238.
    Bower S, Perkins JB, Yocum RR, Howitt CL, Rahaim P, Pero J (1996) Cloning, sequencing and characterization of the Bacillus subtilis biotin biosynthetic operon [J]. Journal of Bacteriology 178: 4122-4130.
    Cao Y, Zhang ZH, Ling N, Yuan YJ, Zheng XY, Shen B, Shen QR (2011) Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots [J]. Biology and Fertility of Soils 47: 495-506.
    Chastanet A, VItkup D, Yuan GC, Norman TM, Liu JS, Losick RM (2010) Broadly heterrogeneous activation of the master regulator for sporulation in Bacillus subtilis [J]. PNAS 107:8486-8491.
    Chen W, Honma K, Sharma A, Kuramitsu HK (2006) A universal stress protein in Porphyromonas gingivils is involved in stress responses and biofilm formation [J]. FEMS Microbiology Letters 264:15-21.
    Chen Y, Cao SG, Chai YR, Clardy J, Kolter R, Guo JH, Losick R (2012a) A Bacillus subtilis sensor kinase involved in triggering biofilm formation on the roots of tomato plants [J]. Molecular Microbiology 85:418-430.
    Chen Y, Yan F, Chai YR, Liu HX, Kolter R, Losick R, Guo JH (2012b) Biocontrol of tomato wilt disease by Bacillus subtilis isolates from natural environments depends on conserved genes mediating biofilm formation [J]. Environmental Microbiology DOI:10.1111/j.l462-2920.2012.02860.x.
    van Dijl JM, de Jong A, Vehmaanpera J, Venema G, Bron S (1992) Signal peptidase I of Bacillus subtilis: patterns of conserved amino acids in prokaryotic and eukaryotic type I signal peptidases [J]. EMBO Journal 11:2819-2828.
    Dunn AK, Kimowicz AK, Handelsman J (2003) Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens [J]. Applied and Environmental Microbiology 69:1197-1205.
    Shank EA, Kolter R (2011) Extracellular signaling and multicellularity in Bacillus subtilis [J]. Current Opinion in Microbiology 14:741-747.
    Fan B, Chen XH, Budiarjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein [J]. Journal of Biotechnology 151:303-311.
    Fan B, Carvalhais LC, Becker A, Fedoseyenko D, von Wiren N, Borriss R (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates [J]. BMC Microbiology 12:116-128.
    Hamon MA, Lazazzera BA (2001) The sporulation transcription factor SpoOA is required for biofilm formation development in Bacillus subtilis [J]. Molecular Microbiology 42:1199-1209.
    Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis [J]. Molecular Microbiology 52:847-860.
    Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006a) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria [J]. Molecular Plant-Microbe Interaction 19(3): 250-256.
    Kamilova F, Kravchenko LV, Shaposhnikov A I, Makarova N, Lugtenberg B (2006b) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate [J].19(10):1121-1126.
    Kobayashi K (2007) Bacillus subtilis pellicle formation proceeds through genetically defined morphological changes [J]. Journal of Bacteriology 189:4920-4931.
    Ling N, Raza W, Ma JH, Huang QW, Shen QR (2011) Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere [J]. Eurpean Journal of Soil Biology 47:374-379.
    Liu J, He D, Ma X, Wu HJ, Gao XW (2011) Identification of Up-regulated genes of Bacillus amyloliquefaciens B55 during the early stage of direct surface contact with rice R109 root [J]. Current Microbiology 62:267-272.
    Lopez D, Kolter R (2010) Extracellular signals that define distinct and coexisting cell fates in Bacillus subtilis [J]. FEMS Microbiology Review 34:134-149.
    Mao CH, Evans C, Jensen RV, Sobral BWS (2008) Identification of new genes in Sinorhizobium meliloti using the genome sequencer FLX system [J]. BMC Microbiology 8:72.
    Marguerat S, Bahler J (2010) RNA-seq:from technology to biology [J]. Cellular and Molecular Life Sciences 67:569-579.
    Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions [J]. PNAS 102:17454-17459.
    Matilla MA, Espinosa-Urgel M, Rodriguez-Herva JJ, Ramos JL, Ramos-Gonzalez MIR (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere [J]. Genome Biology 8: R179.
    McGrath PT, Lee H, Zhang L, Iniesta AA, Hottes AK, Tan MH, Hillson NJ, Hu P, Shapiro L, McAdams HH (2007) High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons [J]. Nature Biotechnology 25:584-592.
    McLoon AL, Kolodkin-Gal I, Rubinstein SM, Kolter R, Losick R (2011) Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis [J]. Journal of Bacteriology 193:679-685.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq [J]. Nature Methods 5(7):621-628.
    Passalacqua KD, Varadarajan A, Ondov BD, Okou DT, Zwick ME, Bergman NH (2009) Structure and complexity of a bacterial transcriptome [J]. Journal of Bacteriology 191:3203-3211.
    Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere [J]. Environmental Microbiology 1:243-257.
    Rudrappa T, Biedrzycki ML, Bais HP (2008a) Causes and consequences of plant-associated biofilm [J]. FEMS Microbiology Ecology 64:153-166.
    Rudrappa T, Czymmek KJ, Pare PW, Bais HP (2008b) Root-secreted malic acid recruits beneficial soil bacteria [J]. Plant Physiology 148:1547-1556.
    Sharma-Kuinkel BK, Mann EE, Ahn JS, Kuechenmeister LJ, Dunman PM, Bayles KW (2009) The Staphylococcus aureus LytSR two-component regulatory system affects biofilm formation [J]. Journal of Bacteriology 191:4767-4775.
    Sood GS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants [J]. FEMS Microbiology Ecology 45:219-227.
    Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acid production and biofilm formation [J]. Molecular Microbiology 57:1143-1158.
    Sullivan ER (1998) Molecular genetics of biosurfactant production [J]. Current Opinion in Microbiology 9:263-269.
    Timmusk S, Grantcharova N, Wagner EG (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Applied and Environmental Microbiology 71:7292-7300.
    Vlamakis H, Aguilar C, Losick R, Kolter R (2008) Control of cell fate by the formation of an architecturally complex bacterial community [J]. Genes & Development 22:945-953.
    Wang LK, Feng ZX, Wang X, Wang XW, Zhang XG (2010) DEGseq:an R package for identifying differerntially expressed genes from RNA-seq data [J]. Bioinformatics 26:136-138.
    de Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mol R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens [J]. Molecular Plant-Microbe Interactions 15:1173-1180.
    Weir TL, Stull VJ, Badri D, Trunck LA, Schweizer HP, Vivanco J (2008) Global gene expression profiles suggest an important role for nutrient acquisition in early pathogenesis in a plant model of Pseudomonas aeruginosa infection [J]. Applied and Environmental Microbiology 74:5784-5791.
    Wood TK, Gonzalez Barrios AF, Herzberg M, Lee J (2006) Motility influences biofilm architecture in Escherichia coli [J]. Applied Microbiology and Biotechnology 72:361-367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700