生物有机肥防控黄瓜土传立枯病效果及防控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜(Cucumis sativus Linn)广泛分布于世界各地,并且为主要的温室产品之一。黄瓜土传立枯病是一种土传病害,主要由立枯丝核菌(Rhizoctonia solani Kuhn)引起,在世界各地均有不同程度的发生,每年造成了大量的经济损失。土传立枯病的防控是一个世界性的难题,传统的化学和农业防控措施通常会带来环境问题、食品安全问题、成本高和劳动强度大等问题,因此不能成功的应用于农业生产。而利用生物防控土传病害由于具有高效、环保等优点日益受到人们重视。
     ·本文筛选出了对土传立枯病病原菌立枯丝核菌具有高效拮抗作用的拮抗菌哈茨木霉SQR-T37(T37)和短小芽孢杆菌SQR-N43(N43).利用这两株高效拮抗菌及其生物有机肥进行黄瓜土传立枯病盆栽防控试验,并检测了施用拮抗菌后根际土壤中病原菌和拮抗菌的数量,以及根际土壤中微生物区系的变化。研究了两株高效拮抗菌在黄瓜根系的定殖作用,以及对病原菌拮抗的作用机理。继而研究了植物根系分泌物对两株高效拮抗菌的影响。
     主要结果如下:
     1.利用科赫法则验证立枯丝核菌Q1是黄瓜土传立枯病的致病菌株。采用平板对峙法从黄瓜根际土壤中分离出的400余株细菌菌株中筛选出16株对立枯丝核菌具有拮抗效果的菌株,抑菌带直径在0.8~1.9cm之间;并从中选出3株抑菌带直径在1.6cm以上的菌株N33、N35和N43,三株拮抗菌均能产生可溶性和挥发性的拮抗物质,结合形态、生理生化特性及16S rDNA序列比对分析,鉴定N33菌株(登录号HM439651)为荧光假单胞菌Pseudomonas fluorescens, N35和N43菌株(登录号GQ465936和GQ465935)为短小芽孢杆菌Bacillus pumilus。复筛确定短小芽孢杆菌SQR-N43和哈茨木霉Trichoderma harzianum SQR-T37菌株用于后续试验。
     2.通过盆栽试验研究了拮抗菌及其生物有机肥对黄瓜的促生效果和土传立枯病的生物防控效果。结果表明短小芽孢杆菌SQR-N43和哈茨木霉SQR-T37能显著增加黄瓜地上部鲜重,与对照相比分别增加了38.6%和55.9%。拮抗菌N43和T37可以防控黄瓜土传立枯病,而且T37第二季的防效是第一季防效的1.25倍;此外,生物有机肥的防效(68.2%和81.8%)显著高于单独施用拮抗菌N43和T37的防效(22.7%和27.3%)。施用拮抗菌后,植物根际病原菌的数量由每克土106ITS拷贝数降低到每克土104ITS拷贝数。单独施用拮抗菌T37,接种后第0天到第20天哈茨木霉的数量从的每克土107ITS拷贝数降低到每克土105ITS拷贝数;生物有机肥的使用维持了拮抗菌T37的数量在每克土107ITS拷贝数;生物有机肥处理N43总数和N43芽孢数量所占百分比分别为1.67×108CFU g-1土和51.9%,与单独施用拮抗菌N43的处理(2.20×107CFUg-1土和78.6%)相比有显著差异。拮抗菌N43和T37及其生物有机肥降低了土壤中有害真菌的种类,如立枯丝核菌Rhizoctonia solani、玉米大斑病菌Setosphaeria sp和油瓶霉Lecythophora;增加了土壤细菌的种类和数量。综上所述,拮抗菌和生物有机肥可以促进黄瓜生长、防控黄瓜土传立枯病、降低根际土壤病原菌数量和改善根际土壤微生物区系,其中生物有机肥的处理效果最好。
     3.为了阐述哈茨木霉SQR-T37和短小芽孢杆菌SQR-N43对立枯丝核菌的拮抗机理,显微观察了两株拮抗菌对病原菌菌丝的作用,并检测了T37菌株产生的几丁质酶和p-1,3-葡聚糖酶活性,以及N43菌株分泌的拮抗物质。结果表明:T37菌丝缠绕并穿透病原菌菌丝,造成病原菌菌丝细胞质渗漏和细胞皱缩。新鲜的和烘干的病原菌细胞壁都可以诱导T37菌株几丁质酶(9.49和10.80nkat ml-1粗酶液)和p-1,3-葡聚糖酶的产生(37.57和43.18nkat ml-1粗酶液)。N43菌株在对数生长期产生对立枯丝核菌Q1具有抑制作用的拮抗物质,这种物质造成了病原菌菌丝的顶端膨大和细胞质的渗漏。当培养基中NaCl浓度为1%(w/v)时,拮抗物质的活性达到最大值。70%饱和度的硫酸铵可以完全沉淀发酵液中的拮抗物质。拮抗物质经蛋白酶K和胰蛋白酶处理后活性显著下降,与对照相比分别降低了79%和53%。这种物质分子量在500-1000Da之间,对高温敏感,对碱性条件具有耐受性。拮抗物质与N43细胞悬液对土传立枯病的防控效果无显著差异。综上所述,T37菌株对立枯丝核菌Q1的拮抗机理为重寄生作用;N43菌株产生对立枯丝核菌Q1具有拮抗作用的短肽类活性物质。
     4.本章构建了绿色荧光蛋白(Green Fluorescent Protein, GFP)标记的短小芽孢杆菌SQR-N43菌株(GFP-N43),并研究了GFP-N43菌株和哈茨木霉SQR-T37在黄瓜根系的定殖能力。结果表明:构建的GFP-N43菌株能发出绿色荧光;生长到89代时,还有43.33%的菌株含有pHAPⅡ质粒;GFP-N43菌株对立枯丝核菌Q1的抑制效果较N43菌株相比无显著差异;在每克土107和108GFP-N43CFU处理中,GFP-N43在植物根尖和伸长区定殖并形成了稳健的生物膜,保护植物根系不受病原菌侵害;定量结果表明在每克土107和108GFP-N43CFU处理中,GFP-N43菌体浓度有所下降,接种后14天的菌体浓度分别是每克土4.6×106CFU和1.1×107CFU;0到14天,105和106浓度的处理中GFP-N43的数量呈上升趋势,第14天菌体浓度分别是第0天的3.55和2.09倍;T37菌丝可以缠绕黄瓜根系,在黄瓜根表形成保护层。
     5.利用高效液相色谱鉴定了黄瓜根系分泌的有机酸,并检测了拮抗菌短小芽孢杆菌SQR-N43对有机酸的趋化作用、哈茨木霉SQR-T37对有机酸的利用和有机酸对T37孢子萌发和菌丝生长的影响。结果表明:黄瓜根系分泌物中有机酸主要有草酸、苹果酸、乙酸、柠檬酸、琥珀酸和延胡索酸。N43菌株对苹果酸和柠檬酸具有浓度依赖性的正向趋化作用,趋化系数分别为3.1和2.3。除琥珀酸外,另4种有机酸都对T37孢子萌发具有不同程度的促进作用;30μgm1-1的草酸具有最大促进作用,T37孢子萌发数较对照处理提高了39%。5种有机酸对T37菌丝生长都具有不同程度的促进作用;80μgm1-1的苹果酸具有最大促进作用,T37菌落直径是对照处理的1.1倍。在5种有机酸都存在的情况下,T37优先利用乙酸、草酸和苹果酸。
Cucumber (Cucumis sativus Linn) is one of the main greenhouse vegetables which widely distributes around the world. The soil-born disease of cucumber Rhizoctonia damping-off is mainly caused by Rhizoctonia solani, which occurs around the world with different degree and causes a lot of economic loss every year. The control of the disease is a world wide problem. Traditional chemical and farming control methods result in serious environmental, foot safety problems and time-and labor-consuming, thus can not be successfully applied in agricultural production. Biological control of soil-born disease is an efficient and environmentally friendly way and is receiving increased attention.
     In the present study, we isolated and screened Trichoderma harzianum SQR-T37(T37) and Bacillus pumilus SQR-N43(N43) which showed highly antagonistic effect against Rhizoctonia solani, the pathogen of damping-off disease. The two antagonistic strains and their bio-organic fertilizers were used in pot experiments to assess their control efficiencies of cucumber damping-off disease. The populations of pathogen and antagonistic strains and microbial communities in the rhizosphere soils after applied with antagonistic strains and their bio-organic fertilizers were also determined. Besides, the abilities of colonization in cucumber rhizosphere and the mechanisms of antagonism against the pathogen of the antagonists were studied. The influences of plant root exudates on the antagonistic strains were also investigated.
     The main results obtained were listed as follows:
     1. In this study, Rhizoctonia solani Q1was verified as the pathogen of cucumber damping-off disease using Koch's postulates. More than400bacterial strains were isolated from rhizosphere soil of cucumber plants, and the dual culture method was used to screen bacterial antagonists against R. solani. Sixteen strains of bacterial antagonists were isolated and their inhabiting zone against R. solani ranged from0.8cm to1.9cm. Three strains (N33, N34and N43) with inhabiting zone more than1.6cm could produce volatile antibiotics and soluble antibiotics. Based on the results of morphologic characteristics, physiological and biochemical properties and phylogenetic analysis of16S rDNA, the three strains (Genbank accession number HM439651, GQ465936and GQ465935, respectively) were identified as Pseudomonas fluorescens, Bacillus pumilus and Bacillus pumilus, respectively. Antagonists of B. pumilus SQR-N43and Trichoderma harzianum SQR-T37were further chosen for following experiments.
     2. Pot Experiments were performed to assess the promotional efficiency on the growth of cucumber and in vivo disease-control efficiency of the antagonistic microbes and bio-organic fertilizers (BIOs). Results indicated that compared with control, Bacillus pumilus SQR-N43and Trichoderma harzianum SQR-T37increased the dry weight of cucumber shoot by38.6%and55.9%, respectively. The antagonists N43and T37could control damping-off disease of cucumber; further more, the control efficiency of T37increased during the second growth cycle by25.0%as compared with the first growth cycle. Besides, the control efficiencies of BIO products (68.2%and81.8%, respectively) were higher than those applied with antagonist N43or T37solely (22.7%and27.3%, respectively). The population of R. solani in the rhizosphere soil of cucumber was decreased from106ITS copies g-1soil to104ITS copies g-1soil in the presence of the antagonists. Twenty days after incubation, the population of T. harzianum was107ITS copies g-1soil in the BIO treatment, which was much higher than that in the treatment only T37was applied (105ITS copies g-1soil). Significant differences in the number of CFUs and the percentage of spores of N43were recorded between the N treatment (2.20×107CFU g'1of soil and79%, respectively) and the BIO treatment (1.67×108CFU g-1of soil and52%, respectively). The antagonists N43and T37and BIOs decreased the number of harmful fungal species, such as Rhizoctonia solani, Setosphaeria sp. and Lecythophora, and increased the population of bacteria and the number of bacterial species. As a conclusion, the antagonistic microbes and BIOs could promote the growth of cucumber, prevent the damping-off disease of cucumber, decrease the population of the pathogen in the rhizosphere soil, and improve the rhizosphere microbial community. Among of them, the BIOs had the best efficiency.
     3. For clarification of the mechanisms of the antagonism of Trichoderma harzianum SQR-T37and Bacillus pumilus SQR-N43against Rhizoctonia solani Q1, the effect of two antagonistic strains on the pathogen mycelium was microscopically observed and the activities of chitinase and β-1,3-glucanase produced by T37and production of antibiotic by N43were determined. Result showed that the mycelia of T37coiled themselves round and penetrated into the mycelia of pathogen, causing leakage of cytoplasm and crimple of pathogen cell walls. Both fresh and dried cell walls of the pathogen could induce the production of chitinase (9.49and10.80nkat ml-1crude enzyme, respectively) and β-1,3-glucanase (37.57and43.18nkat ml-1crude enzyme, respectively). N43produced antibiotic substances towards R. solani Ql at logarithmic growth phase. The antibiotics caused enlargement of cytoplasmic vacuoles and cytoplasmic leakage in R. solani Q1mycelia. The activities of the antibiotics had the highest value when the concentration of NaCl in the medium was1%(w/v).70%saturation of ammonium sulfate made complete precipitation of the antibiotics in culture broth. When treated with protease K and trypsase, the activities of antibiotics were decreased by79%and53%, respectively, compared with control. The antibiotics were sensitive to high temperature and were alkaline stable. The molecular weights of the substances were between500-1000Da. The control efficiencies of the antibiotics and cell suspension of N43on damping-off disease had no significant difference. As a conclusion, the mechanism of antagonism of T37against R. solani Q1was mycoparasitism. N43produced oligopeptides which had inhibitory effect on R. solani Q1.
     4. In this study, green fluorescent protein tagged Bacillus pumilus SQR-N43strain (GFP-N43) was constructed and abilities of both GFP-N43and Trichoderma harzianum SQR-T37to colonize roots and the rhizosphere soil of cucumber were determined. Results showed that constructed GFP-N43strain could emit green fluorescent. When grew up to89generations,43.3%of population of the strain still contained plasmid pHAPⅡ. The inhibitory effect of GFP-N43against Rhizoctonia solani Q1was identical with that of N43strain. In the treatments inoculated with107and108GFP-N43CFU g-1of soil, the presence of GFP-N43through colonization and formation of biofilm on tips and elongation zones of plant roots could ensure the protection of the hosts from the pathogen. Quantitative measurement showed that in the treatments of10and10GFP-N43CFU g-1soil, the numbers of GFP-N43strain decreased to4.6×106CFU g-1soil and1.1×107CFU g-1soil, respectively, at14days after inoculation (DAI). However, in the treatments inoculated with105and106GFP-N43CFU g-1soil, the populations of GFP-N43strain had upward trends in the period from0to14DAI, and GFP-N43strain at14DAI were3.55and2.09times higher than those at0DAI, respectively. The hyphae of T37strain coiled round cucumber roots and formed protection layer on cucumber root surfaces.
     5. The organic acids in cucumber root exudates were identified by high performance liquid chromatography (HPLC). Chemotaxis of B. pumilus SQR-N43towards organic acids, utilization of organic acids by T. harzianum SQR-T37strain and the influences of organic acids on T37conidial germination and mycelial growth were also determined. Results indicated that oxalic acid, malic acid, acetic acid, citric acid and succinic acid were the mainly organic acids in cucumber root exudates. N43exhibited positive, concentration-dependent chemotactic behavior towards malic acid and citric acid with a relative chemotaxis index3.1and2.3, respectively. Except for succinic acid, the organic acids had different degrees of promotional effects on T37conidial germination. The largest number of germinated conidia which increased by39%, compared with control, was obtained with30μg ml-1oxalic acid. The five organic acids had various degree of promotional effect on T37mycelial growth. The largest diameter of T37colony, which was1.1times wider than that in control, was obtained with80μg ml-1malic acid. When supplied with the five organic acids, T37strain had a preference for acetic acid, oxalic acid and malic acid.
引文
[1]周新根,朱宗源,汪树俊,等.根际微生物对蔬菜苗期立枯丝核菌的生物防治作用[J].植物保护学报,1994,21(3):200-214.
    [2]周而勋,叶永武,林如泉.拮抗菌的筛选及其对黄瓜苗期立枯病的防治作用[J].广东农业科学,2000,(1):44-46.
    [3]彭绍裘,范坤成.水稻纹枯病研究的新进展[J].湖南农业科学,1979,(4):1-5.
    [4]KAI M., EVMERT U., BERG G., et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani[J]. Archives of Microbiology,2007,187:351-360.
    [5]王海英,高林旭.几种杀菌剂对立枯丝核菌的室内毒力测定[J].北京农业科技论文,2007,(5):20-23.
    [6]田淑慧,张启林,杜宜新,等.拮抗立枯丝核菌的木霉菌株筛选[J].仲恺农业技术学院学报,2006,19(1):14-17.
    [7]TRILLAS M.I., CASANOVA E., COTXARRERA L., et al. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biological Control,2006,39:32-38.
    [8]NIELSEN P., SORENSEN J. Multi-target and medium-independent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from the barley rhizosphere[J]. FEMS Microbiology Ecology,1997,22:183-192.
    [9]BREWER M.T., LARKIN R.P. Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato[J]. Crop Protection,2005,24:935-950.
    [10]MONTEALEGRE J.R., REYES R., PEREZ L.M., et al. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato.[J]. Electronic Journal of Biotechnology, 2003,6(2):115-127.
    [11]YU G.Y., SINCLAIR J.B., HARTMAN G.L., et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biology & Biochemistry,2002,34: 955-963.
    [12]BENHAMOU N., CHET I.. Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani:Ultrastructure and gold cytochemistry of the mycoparasitic process[J]. Phytopathology, 1993,83:1062-1071.
    [13]夏伟,张红,颜艳伟.棘孢木霉L4对立枯丝核菌的拮抗机制[J].植物保护学报,2010,37(5):477-478.
    [14]CARDINALE F., FERRARIS L., VALENTINO D., et al. Induction of systemic resistance by a hypovirulent Rhizoctonia solani isolate in tomato[J]. Physiological and Molecular Plant Pathology, 2006,69:160-171.
    [15]LARTEY R.T., CURL E.A., PETERSON C.M., et al. Control of Rhizoctonia solani and cotton seedling disease by Laetisaria arvalis and a mycophagous insect Proisotoma minuta (Collembola)[J]. Journal of Phytopathology,1991,133:89-98.
    [16]杨佐忠.枯草杆菌拮抗体在植物病害生物防治中的应用[J].四川林业科技,2001,(9):41-43.
    [17]马成涛,胡青,杨德奎.土壤有益微生物防治植物病害的研究进展[J].山东科学,2007,20(6):61-67.
    [18]毕江涛,贺达汉.植物对土壤微生物多样性的影响研究进展[J].中国农学通报,2009,25(9):244-250.
    [19]吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J].土壤,2003,(1):18-21.
    [20]JEON J.S., LEE S.S., KIM H.Y., et al. Plant growth promotion in soil by some inoculated microorganisms[J]. Journal of Microbiology,2003,41:271-276.
    [21]GLICK B.R. The enhancement of plant growth by free-living bacteria[J]. Canadian Journal of Microbiology,1995,41:109-117.
    [22]王茹华,张启发,周宝利,等.浅析植物根分泌物与根际微生物的相互作用关系[J].土壤通报,2007,38(1):167-172.
    [23]BAIS H.P., PARK S.W., WEIR T.L., et al. How plants communicate using the underground information superhighway[J]. Trends in Plant Science,2004,9(1):26-32.
    [24]陈龙池,廖利平,汪思龙,等.根系分泌物生态学研究[J].生态学杂志,2002,21(6):57-62.
    [25]赵官成,梁健,淡静雅,等.土壤微生物与植物关系研究进展[J].西南林业大学学报,2011,31(1):83-88.
    [26]吴凤芝,孟立君,文景芝.黄瓜根系分泌物对枯萎病菌菌丝生长的影响[J].中国蔬菜,2005,5:26-27.
    [27]WANG R.H., ZHOU B.L., ZHANG Q.F. Allelopathic effects of root extracts on verticillium wilt[J]. Allelopathy Journal 2005,15(1):75-84.
    [28]BOLWERK A., LAGOPODI A.L., WIJFJES A.H. M., et al. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici [J]. Molecular Plant-Microbe Interactions,2003,16(11):983-993.
    [29]赵达,傅俊范,裘季燕,等.枯草芽孢杆菌在植病生防中的作用机制与应用[J].辽宁农业科学,2007,(1).
    [30]ASAKA O., SHODA M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14[J]. Applied and Enviromental Microbiology,1996,62(11):4081-4085.
    [31]LI J., YANG Q., ZHAO L.H., et al. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29[J]. Journal of Zhejiang University SCIENCE B,2009,10(4): 264-272.
    [32]BERTAGNOLLI B., DALY S., SINCLAIR J.B. Antimycotic compounds from the plant pathogen Rhizoctonia solani and its antagonist Trichoderma harzianum[J]. Journal of Phytopathology 1998,146:131-135.
    [33]朱天辉,邱德勋.Trichoderma harzianum对Rhizoctonia solani的抗生现象[J].四川农业大学学报,1994,12(1):11-15.
    [34]BAKER R. Diversity in biological control [J]. Crop Protection,1991, (10):85-94.
    [35]邵红涛,许艳丽.具有生防能力的木霉菌(Trichoderma spp.)与两株大豆根腐病病原菌(Fusarium oxysporum、Rhizoctonia solani)对碳、磷、铁的竞争研究[J].黑龙江大学自然科学学报,2007,24(1):26-29.
    [36]LEONG J. Siderophores:their biochemistry and possible role in the biocontrol of plant pathogens[J]. Annual Review of Phytopathology,1986,24:187-209.
    [37]陈双雅,张永祥,蔡向群.三株拮抗细菌对水仙叶大褐斑病的拮抗机理[J].中国生物防治,2003,19(1):11-15.
    [38]张硕成.木霉菌生态学及其在生防中的应用[J].应用生态学报,1991,2(1):85-88.
    [39]CELAR F. Competition for ammonium and nitrate forms of nitrogen between some phytopathogenic and antagonistic soil fungi[J]. Biological Control,2003,28:19-24.
    [40]ELAD Y, BARAK R., CHET I. Parasitism of Sclerotium rolfsii by Trichoderma harzianum[J]. Soil Biology & Biochemistry,1984,16:381-386.
    [41]ELAD Y, BARAK R., CHET I. The possible role of lectins in mycoparasitism[J]. Journal of Bacteriology,1983,154:1431-1435.
    [42]ALMEIDA F.B.D.R., CERQUEIRA F.M., SILVA R.D.N., et al. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani:evaluation of coiling and hydrolytic enzyme production[J]. Biotechnol Lett,2007,29:1189-1193.
    [43]HOWELL C. R. Mechanisms employed by Trichoderma species in the biological control of plant diseases:The history and evolution of current concepts [J]. Plant Disease,2003,87(1):4-10.
    [44]王芊.木霉菌在生物防治上的应用及拮抗机制[J].黑龙江农业科学,2001,(1):41-43.
    [45]徐同,柳良好.木霉几丁质酶及其对植物病原真菌的拮抗作用[J].植物病理学报,2002,32(2):97-102.
    [46]余朝阁,李天来,杜妍妍,等.植物诱导抗病性及其信号转导途径[J].北方园艺,2007,(7): 73-76.
    [47]刘晓光,高克祥,康振生,等.生防菌诱导植物系统抗性及其生化和细胞学机制[J].应用生态学报,2007,18(8):1861-1868.
    [48]赵蕾,滕安娜.木霉对植物的促生及诱导抗性研究进展[J].植物保护学报,2010,36(3):43-46.
    [49]JETIYANON K., KLOEPPER J.W. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases[J]. Biological Control, 2002,24:285-291.
    [50]KLOEPPER J.W., RYU C.M., ZHANG S. Induced systemic resistance and promotion of plant growth by Bacillus spp. [J]. Phytopathology,2004,94(11):1259-1266.
    [51]田兆丰,刘伟成,董丹.诱导抗性预防植物病害的原理及应用[J].安徽农业科学,2010,38(27):15022-15023.
    [52]李冠,薛应龙.诱导免疫哈密瓜植株的苯丙烷类代谢酶活力及新蛋白的出现[J].植物生理学报,1989,15(4):360-364.
    [53]年洪娟,陈丽梅.土壤有益细菌在植物根际竞争定殖的影响因素[J].生态学杂志,2010,29(6):1235.1239.
    [54]CAVAGLIER1 L., ORLANDO J., RODRIGUEZ M.I. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level[J]. Research in Microbiology,2005, 156:748-754.
    [55]JI X.L., LU GB., GAI Y.P., et al. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain[J]. FEMS Microbiology Ecology,2008,65: 565-573.
    [56]董越梅,安千里,李久蒂,等.利用GFP和抗性双类型标记监测联合固氮菌在玉米根际的定殖[J].应用与环境生物学报,2000,6(1):61-65.
    [57]HO WELL C.R. Mechanisms employed by Trichoderma species in the biological control of plant diseases:the history and evolution of current concepts[J]. Plant Disease,2002,87(1):4-10.
    [58]SCHER F.M., KLOEPPER J.W., SINGLETON C. Colonization of soybean roots by Pseudomonas and Serratia species Relationship to bacterial motility, chemotaxis and generation time[J]. Phytopathology,1988,78:1055-1059.
    [59]LUGTENBERG B.J., KRAVCHENKO L.V., SIMONS M. Tomato seed and root exudate sugars:Composition,utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization[J]. Environmental Microbiology,1999,1:439-446.
    [60]顾金刚,方敦煌,李天飞,等.荧光假单胞杆菌RB42、RB89的趋化性与烟草根部定殖研究 [J].土壤肥料,2004,(4):34-39.
    [61]MATTHYSSE A.G., MARRY M., KRALL L. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens[J]. Molecular Plant-Microbe Interactions,2005,18:1002-1010.
    [62]CAMACHO-CARVAJA L.M.M., WIJFJES A.H., MULDERS I.H. Characterization of NADH dehydrogenases of Pseudomonas fluorescens WCS365 and their role in competitive root colonization[J]. Molecular Plant-Microbe Interactions,2002,15:662-671.
    [63]LING N., RAZA W., MA J., et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology,2011,47:374-379.
    [64]WEERT S.D., VERMEIREN H., MULDERS I.H.M., et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions,2002,15(11):1173-1180.
    [65]STREIT W.R., PHILLIPS D.A. A biotinregulated locus, bioS, in a possible survival operon of Rhizobium meliloti[J]. Molecular Plant-Microbe Interactions,1997,10:933-937.
    [66]SIMONS M., VAN DER BIJ A.J., BRAND J. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria [J]. Molecular Plant-Microbe Interactions,1996,9:600-607.
    [67]KUSKE C.R., TICKNOR L.O., MILLER M.E. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland [J]. Applied and Enviromental Microbiology,2002,68:1854-1863.
    [68]BERGSMA-VLAMI M., PRINS M.E., RAAIJMAKERS J.M. Influence of plant species on population dynamics,genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp[J]. FEMS Microbiology Ecology,2005,52:59-69.
    [69]LAWRENCE J.R., DELAQUIS P.J., KORBER D.R. Behavior of Pseudomonas fluorescens within the hydrodynamic boundary layers of surface microenvironments[J]. Microbial Ecology,1987,14: 1-14.
    [70]LOPER J.E., HAACK C., SCHROTH M.N. Population dynamics of soil Pseudomonads in the rhizosphere of potato[J]. Applied and Enviromental Microbiology,1985,49:416-422.
    [71]仝赞华,郭荣君.生防菌AS-818-抗药性标记株在大豆根际定殖[J].微生物学通报,2001,28(4):40-44.
    [72]KLOEPPER J.W., BEAUCHAMP C.J. A review of issues related to measuring colonization of plant roots by bacteria[J]. Canadian Journal of Microbiology,1992,38:1219-1232.
    [73]RAMOS C., MOLBAK L., MOLIN S. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates[J]. Applied and Enviromental Microbiology,2000,66:801-809.
    [74]UNGE A., JANSSON J. Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat[J]. Microbial Ecology, 2001,41:290-300.
    [75]刘健,李俊,姜昕,等.巨大芽胞杆菌1uxAB标记菌株的根际定殖研究[J].微生物学通报,2001,28(6):1-4.
    [76]WILSON K.J. Molecular techniques for the study of rhizobial ecology in the field[J]. Soil Biology & Biochemistry,1995,27:501-514.
    [77]CHALFIE M., EUSKIRCHEN Y.T.G., WARD W.W., et al. Green fluorescent protein as a marker for gene expression[J]. Science,1994,264:802-805.
    [78]李世贵,吕天晓,顾金刚,等.绿色荧光蛋白在微生物根际定殖研究中的应用[J].生物技术通报,2009,(2):34-37.
    [79]LIU X.M., ZHOU H.X., CHEN S.F. Colonization of maize and rice plants by strain Bacillus megaterium C4[J]. Current Microbiology,2006,52:186-190.
    [80]NJOLOMA J., TANAKA K., SHIMIZU T., et al. Infection and colonization of aseptically micropropagated sugarcane seedlings by nitrogen-fixing endophytic bacterium, Herbaspirillum sp. B501gfp[J]. Biology and Fertility of Soils,2006,43:137-143.
    [81]NEVEU B., LABBE C., BELANGER R.R. GFP technology for the study of biocontrol agents in tritrophic interactions:A case study with Pseudozyma flocculosa[J]. Journal of Microbiological Methods,2007,68:275-281.
    [82]CAO Y., ZHANG Z., LING N., et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils,2011,47(5):495-506.
    [83]GAGE D.J., BOBO T., LONG S.R. Use of green fluorescent protein to visulize the early events of symbiosis between Rhizobium meliloti and Alfalfa (Medicago sativa)[J]. Journal of Bacteriology, 1996,178:7159-7166.
    [84]BLOEMBERG G.V., OTOOLE G.A., LUGTENBERG B.J.J., et al. Green fluorescent protein as a marker for Pseudomonas spp[J]. Applied and Enviromental Microbiology,1997,63:4543-4551.
    [85]BURLAGE R.S., YANG Z.K., MEHLHORN T. A transposon for green fluorescent protein transcriptional fusions:Applications for bacterial transport experiments[J]. Gene,1996,173: 53-58.
    [86]UNGE A., TOMBOLINI R., MOLBAK L., et al. Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB marker system[J]. Applied and Enviromental Microbiology,1999,65:813-821.
    [87]崔金香,王帅.土壤微生物多样性研究进展[J].河南农业科学,2010,(6):165-169.
    [88]黄艳霞.土壤微生物多样性分析技术研究进展[J].安徽农业科学,2009,37(32):15924-15925.
    [89]赵艳,张晓波.影响植物根际微生物区系之因素研究进展[J].生态农业科学,2007,23(8):425-430.
    [90]SCHIPPERS B. Interaction of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices[J]. Annual Review of Phytopathology,1987,25(3):339-358.
    [91]张洪霞,谭周进,张祺玲,等.土壤微生物多样性研究的DGGE/TGGE技术进展[J].核农学报,2009,23(4):721-727.
    [92]FISCHER S.G, LERMAN L.S. DNA fragments differing by single base-pair substitutions are separated in denaturing gradint gels:Correspondence with melting theory[J]. Proceedings of the National Academy of Sciences of the United States of America,1983,80:1579-1583.
    [93]MUYZER G, WAALE C., UITTERLINDEN A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplfied genes coding for 16S rRNA[J]. Applied and Enviromental Microbiology,1993,59:695-700.
    [94]WARD D.M., BATESON M.M., WELLER R., et al. Ribosomal RNA analysis of microorganisms as they occur in nature[J]. Adv Microb Ecol,1992,12:219-286.
    [95]邢德峰,任南琪,宋业颖,等.DG-DGGE分析产氢发酵系统微生物群落动态及其种群多样性[J].生态学报,2005,2(7):296-301.
    [96]高淑静,吴凤芝PCR-DGGE技术在土壤微生物多样性研究中的应用[J].生物信息学,2007,(4):174-175.
    [1]周新根,朱宗源,汪树俊,等.根际微生物对蔬菜苗期立枯丝核菌的生物防治作用[J].植物保护学报,1994,21(3):200-214.
    [2]沙月霞,王国珍,陈惠娟,等.水稻立枯病的探讨及分析[J].宁夏农林科技,2007,(4):51-53.
    [3]TRILLAS M.I., CASANOVA E., COTXARRERA L., et al. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biological Control,2006,39:32-38.
    [4]KAI M., EVMERT U., BERG G, et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani[J]. Archives of Microbiology,2007,187:351-360.
    [5]夏伟,张红,颜艳伟.棘孢木霉L4对立枯丝核菌的拮抗机制[J].植物保护学报,2010,37(5):477-478.
    [6]张慧,杨兴明,冉炜,等.土传棉花黄萎病拮抗菌的筛选及其生物效应[J].土壤学报,2008,45(6):1095-1101.
    [7]周而勋,叶永武,林如泉.拮抗菌的筛选及其对黄瓜苗期立枯病的防治作用[J].广东农业科学,2000,(1):44-46.
    [8]BENHAMOU N., CHET I. Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani:Ultrastructure and gold cytochemistry of the mycoparasitic process [J], Phytopathology, 1993,83:1062-1071.
    [9]COS-KUNTUNA A., OZER N. Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment J]. Crop Protection,2008,27:330-336.
    [10]REITHNER B., SCHUHMACHER R., STOPPACHER N., et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmkl differentially affects mycoparasitism and plant protection[J]. Fungal Genetics and Biology,2007,44:1123-1133.
    [11]田淑慧,张启林,杜宜新,等.拮抗立枯丝核菌的木霉菌株筛选[J].仲恺农业技术学院学报,2006,19(1):14-17.
    [12]王刚,李志强,彭娟,等.利用植物根际细菌生物防治黄瓜立枯病研究[J].北方园艺,2009,(3):52-54.
    [13]KAZEMPOUR M.N.. Biological control of Rhizoctonia solani, the causal agent of rice sheath blight by antagonistics bacteria in greenhouse and field conditions[J]. Plant Pathology Journal, 2004,3(2):88-96.
    [14]LI S. Quantitative assay of Rhizoctonia solani Kiihn AG-1 in soil[J]. Soil Biology & Biochemistry, 1995,27(3):251-256.
    [15]方中达.植病研究方法(3版)[M].北京;中国农业出版社.1998.
    [16]MONTEALEGRE J.R., REYES R., PEREZ L.M.A, et al. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato.[J]. Electronic Journal of Biotechnology,2003,6(2):115-127.
    [17]布坎南RE,吉本斯NE.伯杰细菌鉴定手册(第八版)[M].北京;科学出版社.1989.
    [18]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京;科学出版社.2001.
    [19]WILSON K.J. Molecular techniques for the study of rhizobial ecology in the field[J]. Soil Biology & Biochemistry,1995,27:501-514.
    [20]WELLER D.H. Biological control of soilborne plant pathogen in the rhizosphere with bacteria[J]. Annual Review of Phytopathology,1998,26:379-407.
    [21]LEONG J. Siderophores:their biochemistry and possible role in the biocontrol of plant pathogens[J]. Annual Review of Phytopathology,1986,24:187-209.
    [22]NEILANDS J.B. Microbial iron compounds[J]. Annual Review of Biochemistry,1981,50: 715-731.
    [23]HAAS D., DEFAGO G. Biological control of soil-borne pathogens by fluorescent pseudomonads[J]. Nature Reviews Microbiology,2005,3(4):307-319.
    [24]CHEN L., YANG X., RAZA W., et al. Solid-state fermentation of agro-industrial wastes to produce bioorganic fertilizer for the biocontrol of Fusarium wilt of cucumber in continuously cropped soil[J]. Bioresource Technology,2011,102:3900-3910.
    [25]LING N., XUE C., HUANG Q., et al. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt[J]. BioControl,2010,55(5): 673-683.
    [I]BAKER K F. Types of Rhizoctonia diseases and their occurrence[M]. Rhizoctonia solani, biology and pathology. Berkeley, California; University of California.1970:125-148.
    [2]ANDERSON N.A. The genetics and pathology of Rhizoctonia solani[J]. Annual Review of Phytopathology,1982,20:329-374.
    [3]LI S. Quantitative assay of Rhizoctonia solani Kuhn AG-1 in soil[J]. Soil Biology & Biochemistry, 1995,27(3):251-256.
    [4]LUCAS G.B. Diseases of tobacco, third ed[M]. Raleigh, North California; Biological Consulting Associates.1975.
    [5]SNEH B., JABAJI-HARE S., NEATE S., et al. Rhizoctonia species:taxonomy, molecular biology, ecology, pathology, and disease control, fifth ed[M]. Dordrecht, The Netherlands; Kluwer Academic Publishers.1996.
    [6]GROSCH R., FALTIN F., LOTTMANN J., et al. Effectiveness of three antagonistic bacterial isolates to suppress Rhizoctonia solani Kiihn on lettuce and potato[J]. Canadian Journal of Microbiology,2005,51:345-353.
    [7]KAI M., EVMERT U., BERG G., et al. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani[J]. Archives of Microbiology,2007,187:351-360.
    [8]COMPANT S., DUFFY B., NOWAK J., et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles, mechanisms of action and future prospects[J]. Applied and Enviromental Microbiology,2005,71:4951-4959.
    [9]GERHARDSON B. Biological substitutes for pesticides[J]. Trends in Biotechnology,2002,20: 338-343.
    [10]ADESINA M.F., LEMBKE A., COSTA R., et al. Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum:Site-dependent composition and diversity revealed[J]. Soil Biology & Biochemistry, 2007,39:2818-2828.
    [11]TRILLAS M.I., CASANOVA E., COTXARRERA L., et al. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings[J]. Biological Control,2006,39:32-38.
    [12]REITHNER B., SCHUHMACHER R., STOPPACHER N., et al. Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmkl differentially affects mycoparasitism and plant protection[J]. Fungal Genetics and Biology,2007,44:1123-1133.
    [13]HADAR Y., CHET I., HENIS Y. Biological control of Rhizoctonia solani damping-off with wheat bran culture of Trichoderma harzianum[J], Phytopathology,1979,69:64-68.
    [14]NAGARAJKUMAR M., BHASKARAN R., VELAZHAHAN R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen[J]. Microbiological Research,2004,159: 73-81.
    [15]ASAKA O., SHODA M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14[J]. Applied and Enviromental Microbiology,1996,62(11):4081-4085.
    [16]LING N., XUE C., HUANG Q., et al. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt[J]. BioControl,2010,55(5): 673-683.
    [17]HOITINK H.A.J, BOEHM M.J. Biocontrol within the context of soil microbial communities:a substrate-dependent phenomenon[J]. Annual Review of Phytopathology,1999,37:427-446.
    [18]KUTER GA., NELSON E.B., HOITINK H.A.J., et al. Fungal populations in container media amended with composted hardwood bark suppressive and conducive to Rhizoctonia damping-off[J]. Journal of Phytopathology,1983,73:1450-1456.
    [19]TUITERT G., SZCZECH M., BOLLEN G.J. Suppression of Rhizoctonia solani in potting mixtures amended with compost made from organic household waste[J]. Journal of Phytopathology,1998, 88:764-773.
    [20]SCHEUERELL S.J., SULLIVAN D.M., MAHAFEE W.F. Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in contained media amended with a diverse range of Pacific Northwest compost sources[J]. Journal of Phytopathology,2005, 95:306-315.
    [21]LITTERICK A., HARRIER L., WALLACE P., et al. The role of uncomposted materials, composts, manures and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production-a review[J]. Critical Review in Plant Science,2004,23:453-479.
    [22]DONG X., REDDY G.B. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique[J]. Bioresource Technology,2010,101:1175-1182.
    [23]SHARMA R., RANJAN R., KAPARDAR R.K., et al. "Unculturable" bacterial diversity:an untapped resource[J]. Current Science,2005,89:72-77.
    [24]NIEMI R.M., HEISKANEN I., WALLENIUS K., et al. Extraction and purification of DNA in rhizosphere soil samples for PCR-DGGE analysis of bacterial consortia[J]. Journal of Microbiological Methods,2001,45:155-165.
    [25]FISHER S.G., LERMAN L.S. DNA fragments differing by single base pair substitutions are separated in denaturing gradient gels:correspondence with melting theory[J]. Proceedings of the National Academy of Sciences of the United States of America,1983,80:1579-1583.
    [26]LI X., ZHANG H., WU M., et al. Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis[J]. Journal of Environmental Sciences,2008,20:619-625.
    [27]LUO J., RAN W., HU J., et al. Application of bio-organic fertilizer signifficantly affected fungal diversity of soils[J]. Soil Science Society of America Journal,2010,74(6):2039-2048.
    [28]ERCOLINI D. PCR-DGGE fingerprinting:novel strategies for detection of microbes in food[J]. Journal of Microbiological Methods,2004,56:297-314.
    [29]HERV S.A., LANDA B., DATNOFF L.E. Effects of commercial and indigenous microorganisms on Fusarium wilt development in chickpea[J]. Biological Control,1998,13:166-176.
    [30]D1NEEN S.M., ARANDA R., ANDERS D. L., et al. An evaluation of commercial DNA extraction kits for the isolation of bacterial spore DNA from soil[J]. Journal of Applied Microbiology,2010, 109(6):1886-1896.
    [31]LIEVENS B., BROUWER M., VANACHTER A.C.R.C, et al. Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples[J]. Plant Science,2006,171:155-165.
    [32]LOPEZ-MONDEJAR R., ANTON A., RAIDL S., et al. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass[J]. Bioresource Technology,2010,101(8):2888-2891.
    [33]DAS M., ROYER T.V., LEFF L.G. Diversity of fungi, bacteria, and actinomycetes on leaves decomposing in a stream[J]. Applied and Environmental Microbiology,2007,73(3):756-767.
    [34]HU P., ZHOU G.H., XU X.L., et al. Characterization of the predominant spoilage bacteria in sliced vacuum-packed cooked ham based on 16S rDNA-DGGE[J]. Food Control,2009,20:99-104.
    [35]KLOEPPER J., LEIONG J., TEINTZE M., et al. Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria[J]. Nature,1980,286:885-886.
    [36]GLICK B.R. The enhancement of plant growth by free-living bacteria[J]. Canadian Journal of Microbiology,1995,41(2):109-117.
    [37]陶晶,李晖,李春.芽孢杆菌组合BCL-8的筛选及其促生抗病效果[J].植物保护学报,2009,36(2):123-128.
    [38]朱双杰,高智谋.木霉对植物的促生作用及其机制[J].菌物研究,2006,4(3):107-111.
    [39]HARMAN G.E., HOWELL C.R., VITERBO A., et al. Trichoderma species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology,2004,2(1):43-56.
    [40]MEW T.W., ROSALES A.M. Bacterization of rice plants for control sheath blight caused by Rhizoctonia solani[J]. Journal of Phytopathology,1986,76(11):1260-1264.
    [41]JAGNOW G. Inoculation of cereal crops and forage grasses with nitrogen-fixing rhizosphere bacteria:possible causes of success and failure with regard to yield response-a review[J]. Z Pflanzenernahr Bodenkd,1987,150:361-368.
    [42]JAGNOW G., HOFLICH G, HOFFMANN K.H. Inoculation of non-symbiotic rhizosphere bacteria-possibilities of increasing and stabilizing yields[J]. Journal of Applied Botany,1991,65: 97-126.
    [43]VAN VEEN J.A., VAN OVERBEEK L.S., VAN ELSAS J.D. Fate and activity of microorganisms introduced into soil[J]. Microbiology and Molecular Biology Reviews,1997,61:121-135.
    [44]UYANOZ R. The effects of different bio-organic, chemical fertilizers and their combination on yield, macro and micro nutrition content of dry bean (Phaseolus vulgaris L.)[J]. International Journal of Environmental Research,2007,2:115-125.
    [45]WU H., YANG X., FAN J., et al. Suppression of Fusarium wilt of watermelon by a bio-organic fertilizer containing combinations of antagonistic microorganisms[J]. BioControl,2009,54: 287-300.
    [46]ZHAO Q., DONG C., YANG X., et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilize[J]. Applied Soil Ecology,2011,47(1):67-75.
    [47]YANG X., CHEN L., YONG X., et al. Formulations can affect rhizosphere colonization and biocontrol efficiency of Trichoderma harzianum SQR-T037 against Fusarium wilt of cucumbers[J]. Biology and Fertility of Soils,2011,47:239-248.
    [48]周而勋,叶永武,林如泉.拮抗菌的筛选及其对黄瓜苗期立枯病的防治作用[J].广东农业科学,2000,(1):44-46.
    [49]KAY S.L., STEWART A. Evaluation of fungal antagonists for control of white rot in soil box trials[J]. Plant Pathology Journal,1994,43:371-377.
    [50]MINUTO A., SPADARO D., GARIBALDI A., et al. Control of soilborne pathogens of tomato using a commercial formulation of Streptomyces griseoviridis and solarization[J]. Crop Protection, 2006,15:735-742.
    [51]CHEN L., YANG X., RAZA W., et al. Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers[J]. Applied Microbiology and Biotechnology,2010,89(5):1653-1663.
    [52]LEWIS J.A., LUMSDEN R.D. Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp.[J]. Crop Protection,2001,20:49-56.
    [53]BORRERO C., ORDOVAS J., TRILLAS M.I., et al. Tomato Fusarium wilt suppressiveness. The relationship between the organic plant growth media and their microbial communities as characterized by Biology[J]. Soil Biology & Biochemistry,2006,38:1631-1637.
    [54]POSTMA J., MONTANARI M., BOOGERT P.H.J.F. VAN DEN. Microbial enrichment to enhance the disease suppressive activity of compost[J]. European Journal of Soil Biology,2003, 39:157-163.
    [55]EL-HASSAN S.A., GOWEN S.R. Formulation and delivery of the bacterial antagonist Bacillus subtilis for management of lentil vascular wilt caused by Fusarium oxysporum f. sp. lentis[J]. Journal of Phytopathology,2006,154:148-155.
    [56]GARBEVA P., POSTMA J., VEEN J.A., et al. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3[J]. Environmental Microbiology,2006,8:233-246.
    [57]BRUSSAARD L., RUITER P.C., BROWN GG. Soil biodiversity for agricultural sustainability[J]. Agriculture Ecosystems & Environment,2007,121:233-244.
    [58]SIMCOX K.D., BENNETZEN J.L. The use of molecular markers to study Setosphaeria turcica resistance in maize[J]. Journal of Phytopathology,2003,83:1326-1330.
    [59]SCOTT I.U., CRUZ-VILLEGAS V, FLYNN H.W., et al. Delayed-onset, bleb-associated endophthalmitis caused by Lecythophora mutabilis[J]. American Journal of Ophthalmology,2004, 137:583-585.
    [60]BOULTER J.I., TREVORS J.T., BOLAND G.J. Microbial studies of compost:bacterial identification, and their potential for turfgrass pathogen suppression[J]. World Journal of Microbiology & Biotechnology,2002,18:661-671.
    [61]NELSON E.B. Biological control of Pythium seed rot and preemergence damping-off of cotton with Enterobacter cloacae and Ervinis herbicola applied as seed treatments[J]. Plant Disease, 1998,72:140-142.
    [62]MAYAK S., TIROSH T., GLICK B.R. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings[J]. Journal of Plant Growth Regulation,1999, 18:49-53.
    [63]RAMOS B., GARCIA J.A.L., PROBANZA A., et al. Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis[J]. Environmental and Experimental Botany,2003,49:61-68.
    [1]BEN1TEZ T., RINCON A.M., LIMON M.C., et al. Biocontrol mechanisms of Trichoderma strains[J]. International Microbiology,2004,7:249-260
    [2]MENDOZA-MENDOZA A., POZO M.J., GRZEGORSKI D., et al. Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(26):15965-15970.
    [3]顾真荣,魏春妹,马承铸.枯草芽孢杆菌G3菌株抑制立枯丝核菌菌核形成的影响因子分析[J].中国生物防治,2005,21(1):33-36.
    [4]CAO Y, ZHANG Z., LING N., et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils,2011,47(5):495-506.
    [5]YU G.Y., SINCLAIR J.B., HARTMAN G.L., et al. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani[J]. Soil Biology & Biochemistry,2002,34: 955-963.
    [6]LI L., MO M., QU Q., et al. Compounds inhibitory to nematophagous fungi produced by Bacillus sp. strain H6 isolated from fungistatic soil[J]. European Journal of Plant Pathology,2007,117(4): 329-340.
    [7]RAMARATHNAM R., BO S., CHEN Y., et al. Molecular and biochemical detection of fengycin-and bacillomycin D-producingBacillusspp., antagonistic to fungal pathogens of canola and wheat[J]. Canadian Journal of Microbiology,2007,53(7):901-911.
    [8]王帅,高圣风,高学文,等.枯草芽孢杆菌脂肽类抗生素发酵和提取条件[J].中国生物防治,2007,23(4):342-347.
    [9]HSIEH F., LIN T., MENG M., et al. Comparing Methods for Identifying Bacillus Strains Capable of Producing the Antifungal Lipopeptide Iturin A[J]. Current Microbiology,2007,56(1):1-5.
    [10]MIZUMOTO S., HIRAI M., SHODA M. Enhanced iturin A production by Bacillus subtilis and its effect on suppression of the plant pathogen Rhizoctonia solani[J]. Applied Microbiology and Biotechnology,2007,75(6):1267-1274.
    [11]陈华,袁成凌,蔡克周,等.枯草芽孢杆菌JA产生的脂肽类抗生素_iturinA的纯化及电喷雾质谱鉴定[J].微生物学报,2008,48(1):116-120.
    [12]HSIEH F., LI M., LIN T., et al. Rapid Detection and Characterization of Surfactin-Producing Bacillus subtilis and Closely Related Species Based on PCR[J]. Current Microbiology,2004,49(3).
    [13]KINSELLA K., SCHULTHESS C.P., MORRIS T.F., et al. Rapid quantification of Bacillus subtilis antibiotics in the rhizosphere[J]. Soil Biology and Biochemistry,2009,41(2):374-379.
    [14]LI J., YANG Q., ZHAO L., et al. Purification and characterization of a novel antifungal protein from Bacillus subtilis strain B29[J]. Journal of Zhejiang University SCIENCE B,2009,10(4): 264-272.
    [15]OARD S., RUSH M.C., OARD J. H. Characterization of antimicrobial peptides against a US strain of the rice pathogen Rhizoctonia solani[J]. Journal of Applied Microbiology,2004,97(1):169-180.
    [16]EL-KATATNY M.H., SOMITSCH W., ROBRA K.H., et al. Production of chitinase and B-1,3-glucanase by Trichoderma harzianum for control of the phytopathogenic fungus Sclerotium rolfsii[J]. Food technol biotechnol,2000,38(3):173-180.
    [17]LEE Y.G., CHUNG K.C., WI S G., et al. Purification and properties of a chitinase from Penicillium sp. LYG 0704[J]. Protein Expression and Purification,2009,65:244-250.
    [18]NORONHA E.F., ULHOA C.J. Characterization of a 29-KDa β-1,3-glucanase from Trichoderma harzianum[J]. FEMS Microbiology Letters,2000,183:119-123.
    [19]LOPEZ-MONDEJAR R., ANTON A., RAIDL S., et al. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass[J]. Bioresource Technology,2010,101(8):2888-2891.
    [20]BENHAMOU N., CHET I. Hyphal interactions between Trichoderma harzianum and Rhizoctonia solani:Ultrastructure and gold cytochemistry of the mycoparasitic process[J]. Phytopathology, 1993,83:1062-1071.
    [21]ALMEIDA F.B.D.R., CERQUEIRA F.M., SILVA R.D.N., et al. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani:evaluation of coiling and hydrolytic enzyme production[J]. Biotechnol Lett,2007,29:1189-1193.
    [22]VERMA M., BRAR S.K., TYAGI R.D., et al. Antagonistic fungi, Trichoderma spp.:Panoply of biological control[J]. Biochemical Engineering Journal,2007,37:1-20.
    [23]ELAD Y., BARAK R., CHET I. The possible role of lectins in mycoparasitism[J]. Journal of Bacteriology,1983,154:1431-1435.
    [24]FIDDAMAN D.J., ROSSALL S. The production of antifungal volatiles by Bacillus subtilis[i]. Journal of Applied Bacteriology,1993,74:119-126.
    [25]MONTEALEGRE J.R., REYES R., PEREZ L.M.A., et al. Selection of bioantagonistic bacteria to be used in biological control of Rhizoctonia solani in tomato.[J]. Electronic Journal of Biotechnology,2003,6(2):115-127.
    [26]YANGUI T., RHOUMA A., TRIKI M.A., et al. Control of damping-off caused by Rhizoctonia solani and Fusarium solani using olive mill waste water and some of its indigenous bacterial strains[J]. Crop Protection,2008,27:189-197.
    [27]ASAKA O., SHODA M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14[J]. Applied and Enviromental Microbiology,1996,62(11):4081-4085.
    [28]CHO K.M., MATH R.K., HONG S.Y., et al. Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi[J]. Food Control, 2009,20(4):402-406.
    [29]NAGARAJKUMAR M., BHASKARAN R., VELAZHAHAN R. Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen[J]. Microbiological Research,2004,159:73-81.
    [30]何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽的分离纯化与理化性质研究[J].中国水稻科学,2002,16(4):361-365.
    [31]BOTTONE E. J., PELUSO R.W. Production by Bacillus pumilus (MSH) of an antifungal compound that is active against Mucoraceae and Aspergillus species:preliminary report[J]. Journal of Medical Microbiology,2003,52(1):69-74.
    [32]于婷,尚玉珂,李艳芳,等.短小芽孢杆菌BSH-4抗菌物质的提取及其特性[J].植物保护学报,2009,36(1):65-69.
    [33]李昌庆,杨致邦,夏丽君,等.渗透压对痢疾志贺菌水通道蛋白g1pF基因表达的影响[J].中国微生态学杂志,2010,22(6).
    [1]VESSEY J.K. Plant growth-promoting rhizobacteria as biofertilizers[J]. Plant Soil,2003,255: 571-586.
    [2]DEGENHARDT J., GERSHENZON J., BALDWIN I.T., et al. Attracting friends to feast and foes: engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Curr Opin Biotechnol,2003,14:169-176.
    [3]LUGTENBERG B.J., DEKKERS L., BLOEMBERG GV. Molecular determinants of rhizosphere colonization by Pseudomonas[J]. Annual Review of Phytopathology,2001,39:461-490.
    [4]KLOEPPER J.W., BEAUCHAMP C.J. A review of issues related to measuring colonization of plant roots by bacteria[J]. Canadian Journal of Microbiology,1992,38:1219-1232.
    [5]RAMOS C., MOLBAK L., MOLIN S. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates[J]. Applied and Enviromental Microbiology,2000,66:801-809.
    [6]UNGE A., JANSSON J. Monitoring population size, activity, and distribution of gfp-luxAB-tagged Pseudomonas fluorescens SBW25 during colonization of wheat[J]. Microbial Ecology, 2001,41:290-300.
    [7]CHALF1E M., EUSKIRCHEN Y.T.G, WARD W.W., et al. Green fluorescent protein as a marker for gene expression[J]. Science,1994,264:802-805.
    [8]CHELIUS M.K., TRIPLETT E.W. Immunolocalization of dinitrogenase reductase produced by Klebsiela pneumoniae in association with Zea mays L..[J]. Applied and Enviromental Microbiology,2000,66:783-787.
    [9]RAJASEKARAN K., CARY J.W., COTTY P.J., et al. Development of a GFP-expressing Aspergillus flavus strain to study fungal invasion, colonization, and resistance in cottonseed[J]. Mycopathologia,2008,165:89-97.
    [10]LIU X.M., ZHOU H.X., CHEN S.F. Colonization of maize and rice plants by strain Bacillus megaterium C4[J]. Current Microbiology,2006,52:186-190.
    [11]NJOLOMA J., TANAKA K., SHIMIZU T., et al. Infection and colonization of aseptically micropropagated sugarcane seedlings by nitrogen-fixing endophytic bacterium, Herbaspirillum sp. B501gfp1[J]. Biology and Fertility of Soils,2006,43:137-143.
    [12]NEVEU B., LABBE C., BELANGER R.R. GFP technology for the study of biocontrol agents in tritrophic interactions:A case study with Pseudozyma flocculosa[J]. Journal of Microbiological Methods,2007,68:275-281.
    [13]CAO Y., ZHANG Z., LING N., et al. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots[J]. Biology and Fertility of Soils,2011,47(5):495-506.
    [14]ROSADO A., DUARTE G., SELDIN L. Optimization of electroporation procedure to transform B. polymyxa SCE2 and other nitrogen-fixing Bacillus[J]. Journal of Microbiological Methods,1994, 19:1-11.
    [15]TIMMUSK S., GRANTCHAROVA N., WAGNER E.G. Paenibacillus polymyxa invades plant roots and forms biofilms[J]. Applied and Enviromental Microbiology,2005,71:7292-7300.
    [16]CAVAGLIERI L., ORLANDO J., RODRIGUEZ M.I. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level[J]. Research in Microbiology,2005, 156:748-754.
    [17]JI X.L., LU G.B., GAI Y.P., et al. Biological control against bacterial wilt and colonization of mulberry by an endophytic Bacillus subtilis strain[J]. FEMS Microbiology Ecology,2008,65: 565-573.
    [18]WELLER D.H. Biological control of soilborne plant pathogen in the rhizosphere with bacteria[J]. Annual Review of Phytopathology,1998,26:379-407.
    [19]TIMMUSK S., GRANTCHAROVA N., WAGNER E.G.H. Paenibacillus polymyxa invades plant roots and forms biofilm[J]. Applied and Enviromental Microbiology,2005,71(11):7292-7300.
    [20]彭,谭悠久,黄永春.GFP标记的多粘芽孢杆菌1114在番茄根际的定殖[J].中国生物防治,2010,26(3):307-311.
    [21]连玲丽,谢荔岩,陈锦明,等.生防菌EN5的定殖能力及其对根际土壤微生物类群的影响[J].植物保护,2011,37(2):31-35.
    [22]殷幼平,袁训娥,李强,等.生防菌枯草芽孢杆菌CQBS03的绿色荧光蛋白基因标记及其在柑橘叶片上的定殖[J].中国农业科学,2010,43(17):3555-3563.
    [23]刘健,李俊,姜昕,等.巨大芽孢杆菌luxAB标记菌株的根际定殖研究[J].微生物学通报,2001,28(6):1-4.
    [24]刘健,李俊,姜听,等.荧光假单胞菌AS1.867和3-PHB的luxAB基因标记及其在小麦根际的定殖[J].华东理工大学学报,2002,28(6):606-609.
    [25]顾金刚,方敦煌,李天飞,等.荧光假单胞杆菌RB42、RB89的趋化性与烟草根部定殖研究[J].土壤肥料,2004,(4):34-39.
    [26]胡军华,张伏军,蓝希钳,等.烟草根际细菌铜绿假单胞菌swu31-2的定殖能力及其对烟草青枯病的防治作用[J].植物保护,2009,35(5):89-94.
    [27]刘国坤,张绍升,潘东明,等.淡紫拟青霉PL050705菌株的根际定殖及对根际真菌群落结构 影响[J].中国农学通报,2009,25(18):324-328.
    [28]鲁海菊,刘云龙.哈茨木霉强根际定殖能力菌株的筛选[J].中国生物防治,2008,24(2):138-142.
    [29]杨震元,赵军,郝蕾蕾,等.用gfp基因标记法研究金龟子绿僵菌在玉米根际的定殖动态[J].中国生物防治,2009,25(3):215-219.
    [30]肖相政,刘可星,廖宗文.短小芽孢杆菌BX-4抗生素标记及定殖效果研究[J].农业环境科学学报,2009,28(6):1172-1176.
    [31]DE-BASHAN L.E., HERNANDEZ J., BASHAN Y., et al. Bacillus pumilus ES4:Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings[J]. Environmental and Experimental Botany,2010,69(3):343-352.
    [32]BADRI D.V., VIVANCO J.M. Regulation and function of root exudates[J]. Plant Cell Environ, 2009,32:666-681.
    [33]RUDARPPA T., BIEDRZYCKI M.L., BAIS H.P. Causes and consequences of plant-associated biofilm[J]. FEMS Microbiology Ecology,2008,64:153-166.
    [34]COMPANT S., CLEMENT C., SESSITSCH A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization[J]. Soil Biology & Biochemistry,2010,42:669-678.
    [35]RUDARPPA T., CZYMMEK K.J., PARE P.W., et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology,2008,148:1547-1556.
    [36]WEERT S.D., VERMEIREN H., MULDERS I.H.M., et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions,2002,15(11):1173-1180.
    [37]ZHANG N., WU K., HE X., et al. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11 [J]. Plant Soil,2011,344:87-97.
    [38]周林,程萍,喻国辉,等.枯草芽孢杆菌TR21在香蕉体内及根际的定殖动态[J].中国农学通报,2010,26(19):392-396.
    [39]RABEENDRAN N., JONES E.E., MOOT D.J., et al. Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum[J]. Biological Control,2006,39(3):352-362.
    [40]HARMAN G.E. Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatments[J]. Plant Disease,2000,84(4):377-393.
    [1]郜红建,常江,张自立,等.研究植物根系分泌物的方法[J].植物生理学通讯,2003,39(1):56-60.
    [2]韩丽梅,鞠会艳,杨振明.两种基因型大豆根分泌物对大豆根腐病菌的化感作用[J].应用生态学报,2005,16(1):137-141.
    [3]刘雯,丘锦荣,卫泽斌,等.植物及其根系分泌物对污水净化效果的影响[J].环境工程学报,2009,3(6):971-976.
    [4]刘苹,江丽华,万书波,等.花生根系分泌物对根腐镰刀菌和固氮菌的化感作用研究[J].中国农业科技导报,2009,11(4):107-111.
    [5]MORGAN J.A.W., BENDING G.D., WHITE P.J. Biological costs and benefits to plant-microbe interactions in the rhizosphere[J]. Journal of Experimental Botany,2005,56(417):1729-1739.
    [6]史刚荣.植物根系分泌物的生态效应[J].生态学杂志,2004,23(1):97-101.
    [7]王茹华,张启发,周宝利,等.浅析植物根分泌物与根际微生物的相互作用关系[J].土壤通报,2007,38(1):167-172.
    [8]刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品,2006,8(9A):37-40.
    [9]李德华,贺立源,李建生,等.一种根系分泌物中有机酸的前处理和高效液相色谱检测方法[J].植物生理学通讯,2004,40(2):219-222.
    [10]JONES D.L. Organic acids in the rhizosphere-a critical review[J]. Plant and Soil,1998,205: 25-44.
    [11]LING N., RAZA W., MA J., et al. Identification and role of organic acids in watermelon root exudates for recruiting Paenibacillus polymyxa SQR-21 in the rhizosphere[J]. European Journal of Soil Biology,2011,47:374-379.
    [12]BAN WART W. L., PORTER P. M., GRANATO T. C., et al. HPLC separation and wavelength area ratios of more than 50 phenolic acids and flavonoids[J]. Journal of Chemical Ecology,1985,11: 383-395.
    [13]WEERT S.D., VERMEIREN H., MULDERS I.H.M., et al. Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens[J]. Molecular Plant-Microbe Interactions,2002,15(11):1173-1180.
    [14]RUDARPPA T., CZYMMEK K.J., PARE P.W., et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology,2008,148:1547-1556.
    [15]GORDILLO F., CHAVEZ F.P., JEREZ C.A. Motility and chemotaxis of Pseudomonas sp. B4 towards polychlorobiphenyls and chlorobenzoates[J]. FEMS Microbiology Ecology,2007,60: 322-328.
    [16]BADRI D.V., VIVANCO J.M. Regulation and function of root exudates[J]. Plant Cell and Environment,2009,32:666-681.
    [17]朱静平,程凯.3种水培植物根系分泌的有机酸对氮循环菌的影响[J].环境工程学报2011,5(9):2139-2143.
    [18]刘军,温学森,郎爱东.植物根系分泌物成分及其作用的研究进展[J].食品与药品,2007,9(3):63-65.
    [19]NARASIMHAN K., BASHEER C., BAJIC V.B., et al. Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls[J]. Plant Physiology,2003,132:146-153.
    [20]CHEN Z., JIN X., WANG Q., et al. Confirmation and determination of carboxylic acids in root exudates using LC-ESI-MS[J]. Journal of Separation Science 2007,30:2440-2446.
    [21]胡小加,谢立华,余常兵,等.巨大芽孢杆菌A6对油菜根系分泌物所含有机酸和糖类的趋化性[J].中国油料作物学报,2011,33(4):416-419.
    [22]RUDRAPPA T., CZYMMEK K.J., PARE P.W., et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology,2008,148:1547-1556.
    [23]郝文雅,冉炜,沈其荣,等.西瓜、水稻根分泌物及酚酸类物质对西瓜专化型尖孢镰刀菌的影响[J].中国农业科学,2010,43(12):2443-2452
    [24]LENIAN L.H., LILLY V.G. Studies on the nutrition of fungi. IV. Factors influencing the growth of some thiamine-requiring fungi[J]. American Journal of Cardiology 1940,27:18-26.
    [25]MORTON A.G., MACMILLAN A. The assimilation of nitrogen from ammonium salts and nitrate by fungi[J]. Journal of Experimental Botany,1954,5:232-252.
    [26]BRIAN P.W., CURTIS P.J., HEMMING H.G. Glutinosin:a fungistatic metabolic product of the mold Metarrhizium glutinosum S[J]. Proceedings of the Royal Society of London Series Biological sciences,1947,135:106-132.
    [27]TOLBA M.K., SALEB A.J. Effect of organic acids on the growth, respiration and nitrogen metabolism of mycelial felts of Fusarium culmorum[J]. Archives of Microbiology,1963,47: 214-218.
    [28]黄河,王春平,徐大难.有机酸在疫霉营养中作用的进一步研究[J].真菌学报,1987,6(3):161-169.
    [29]NELSON E.B., HARMAN GE., NASH G.T. Enhancement of Trichoderma-induced biological control of Pythium seed rot and pre-emergence dapming-off of peas[J]. Soil Biology & Biochemistry,1988,20(2):145-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700