人工湿地污水处理系统N_2O的释放与相关微生物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
N_2O不仅是一种重要的温室气体,还参与平流层中臭氧的破坏,大气中N_2O浓度不断增加已成为影响自然生态系统、威胁人类生存的重大问题。污水处理过程中产生的N_2O是大气中N_2O的重要释放源,N_2O既产生于硝化过程又产生于反硝化过程。人工湿地污水处理系统内连续呈现好氧、缺氧及厌氧状态,硝化作用和反硝化作用可以同时进行,因而也被认为是N_2O排放的一个重要源。由于人工湿地具有投资省、运行管理简单、净化效果较好等优点,近些年来得到了广泛应用。因此,积极地研究人工湿地污水处理过程中N_2O的产生过程并控制N_2O释放,具有重要的现实意义。
     本文采用静态箱-气相色谱法研究了潜流和表面流人工湿地污水处理系统N_2O的空间和时间排放规律、特征,通过对植物、湿地结构、进水浓度、碳氮负荷、干湿交替等各种影响因素的研究,优化氮的迁移转化过程,控制人工湿地污水处理系统中N_2O的释放。并构建了人工湿地系统与N_2O产生相关的微生物DNA文库,采用变性梯度凝胶电泳(DGGE)研究了与N_2O产生相关的微生物群落结构,为从微生物种群结构方面调控N_2O的逸出提供了基础数据。主要研究内容及结果如下:
     (1)开展了人工湿地系统N_2O空间、时间排放规律和特征的研究工作。潜流、表面流人工芦苇湿地和潜流、表面流空白湿地系统的N_2O年平均通量分别为296.5、28.2、249.2和10.8μg·(m~2·h)~(-1),总体上均表现为大气N_2O的排放源。潜流人工芦苇湿地N_2O的最高释放量可达762.9μg·m~(-2)·h~(-1)±239.3μg·m~(-2)·h~(-1);潜流人工芦苇湿地N_2O的平均通量大大高于农田、森林、草原和沼泽湿地的,而表面流人工芦苇湿地N_2O平均通量高于森林和草原,但低于其他生态系统。2种类型人工芦苇湿地N_2O通量均有较大的季节性和日变化特征,N_2O的排放通量最高值出现在7月,1 d中的极大值和极小值分别出现在中午和凌晨。芦苇的生长情况和温度对N_2O通量有一定的影响。人工湿地进水端N_2O通量均高于出水端,进水端的硝化和反硝化强度、硝化和反硝化细菌数量均高于出水端;进水端污水浓度较高,充足的碳、氮源促进了硝化和反硝化过程,使得N_2O释放量较高。
     (2)对影响人工湿地N_2O通量的各因素进行研究。湿地结构、植物种类、进水浓度、碳氮负荷、水质、干湿交替、温度等因素均会影响N_2O的释放。潜流人工湿地N_2O的年平均通量大大高于表面流人工湿地,潜流方式促进了N_2O的释放。芦苇本身直接或间接参与了N_2O的排放,促进了N_2O的释放。香蒲和水葱系统的N_2O年平均释放量较高,芦苇系统的年平均释放量最低,其次为茭白系统。以N_2O形态释放的氮占进水总氮的0.33%(0.0033 kg N_2O-N/kg TN)~0.65%(0.0065 kg N_2O-N/kg TN)。不同植物的湿地系统N_2O季节变化规律不同,但6种植物湿地系统冬季N_2O释放量均最低。随着进水浓度的增加,N_2O的年平均通量增加,但差异不显著。进水碳氮比对N_2O的释放有重要影响,进水COD/N=20的系统,N_2O释放量显著高于其他系统(p<0.05);当进水COD/N=5时,N_2O释放量较低,而且有较好的污水处理效果。进水COD/N=0的系统,即不添加碳源时,N_2O释放量也较高,且释放规律与其他系统显著不同,表明人工湿地系统中硝化过程可产生大量的N_2O。亚硝态氮的积累和较低的pH值促进了N_2O的释放。采用干湿交替操作的人工湿地放水后N_2O的释放量增加。温度会对N_2O产生一定的影响。通过选择表面流湿地类型、稳定进水碳氮负荷(控制进水COD/N=5或10)、避免干湿交替、控制污水pH值、减少亚硝态氮的积累等措施可以有效地控制N_2O释放。从N_2O释放和水质净化效果两方面综合考虑,芦苇可以作为当地构建人工湿地污水处理系统优先考虑的植物。
     (3)构建了人工湿地系统中总细菌16S rDNA文库。芦苇人工湿地存在的微生物具有高度的多样性,包含根际微生物、脱氮和固氮菌。构建了人工湿地系统中amoA功能基因文库,结果表明人工芦苇湿地中的氨氧化细菌大多属于Nitrosomonas sp.和Nitrosospira sp.,这两类细菌与人工湿地污水处理系统中N_2O的产生相关。
     (4)开展了人工湿地基质微生物群落多样性的研究工作。PCR-DGGE图谱表明植物种类、进水浓度、干湿交替对人工湿地系统中微生物群落结构产生了明显的影响,微生物群落结构之间的相似性较差。不同处理的湿地系统中,既存在共同的微生物种属,也存在着各自独特的微生物种属。不同的引物扩增的靶序列得到的微生物多样性是不同的,采用引物对F357/R518得到的DGGE图谱较F968/R1401的条带丰富,多样性好。在利用DGGE分析人工湿地基质样品时采用引物F357/R518是比较适宜的。对于芦苇湿地系统和保持淹水的湿地系统,nosZ的DGGE图谱在变性剂浓度为40%~42%之间条带丰富,且亮度高,表明在系统内对应的反硝化优势种属多,且数量丰富。由于nosZ是反硝化过程中氧化亚氮还原酶对应的功能基因,说明这类湿地系统内存在大量的还原N_2O的微生物,将系统内产生的N_2O还原为N_2,所以这类湿地系统中N_2O年释放量低。
N_2O is not only an important greenhouse gas,and also contribute to ozone destruction in the stratosphere,and it has become the major issue influencing the natural ecosystem and threatening the survival of mankind.Wastewater treatment process potentially contributes to N_2O emission,which can be produced in the process of nitrification and denitrification as well.Constructed wetlands(CWs) is a mosaic of aerobic and anaerobic microsites that nitrification and denitrification could be occurring at the same time.Therefore,it is likely that multiple processes are contributing simultaneously to N_2O formation.CWs are widely used for wastewater treatment with many advantages,including low cost,easy operation and maintenance. Therefore,active study on production mechanism and control of N_2O in CWs is of important practical significance.
     The nitrous oxide fluxes in two typical CWs,i.e.subsurface flow(SF) and free water surface(FWS) were studied by the method of static chamber-gas chromatography.They were investigated that the correlations between N_2O emission and its influential factors,including CW structure,plant species,influent concentration,C/N ratio,water quality,wet-dry alternation and temperature.Based on this,the measures were put forward for controlling N_2O emission.Colony libraries were constructed and the gene diversity were analyzed by the denaturing gradient gel electrophoresis(DGGE) of functional gene in close relationship with N_2O emission, which provided fundamental data for the regulation and control of N_2O release in the way of microbial population structure.The main contents and results are following:
     (1) The nitrous oxide fluxes in two typical CWs were studied,and the results showed that the mean N_2O fluxes were 296.5,28.2,249.2 and 10.8μg·(m~2·h)~(-1) in SF and FWS systems with and without Phragmites australis,respectively.The two typical wetlands were all the sources of atmosphere nitrous oxide as a whole.SF wetland with Phragmites australis exhibited a higher risk of N_2O emission,and the mean N_2O flux in this system was higher than the values reported in the literature for ecosystems e.g.farmland,forest,grassland and marsh.The mean N_2O flux in FWS wetland with Phragmites australis was higher than the values reported in the literature for forest and grassland marsh,but lower than other ecosystems.The nitrous oxide fluxes in test wetlands presented obvious seasonal and diurnal variation,and the highest N_2O emission flux was in July.The highest flux was(762.9±239.3)μg·(m~2·h)~(-1) and(91.9±20.3)μg·(m~2·h)~(-1) in SF and FWS wetlands with Phragmites australis,respectively.The peak flux mostly occurred around midday,whereas the minimum flux likely occurred in the early morning.The results indicated that the growth of Phragmites australis and temperature were the key factor controlling the variation of N_2O fluxes.The average N_2O emission from the microsites above the inflow zones was higher than that above the outflow microsites.High influent strength promoted nitrification and denitrification,and high fluxes were obtained.
     (2) It was found that N_2O emission of microcosm wetlands were significantly affected by CW structure,plant species,influent concentration,C/N ratio,water quality,wet-dry alternation and temperature.SF wetland exhibited a higher risk of N_2O emissions,and the mean N_2O flux in this system was higher than FWS wetland. Phragmites australis participate in the N_2O emission directly or indirectly.The results showed that N_2O fluxes had obvious differences in vegetation systems ranging from -130.2μg N_2O m~(-2) h~(-1) to 1847.8μg N_2O m~(-2) h~(-1),and the highest flux of N_2O was observed in the TL systems.The higher risk of N_2O emissions was observed in CWs planted with Typha latifolia and Scirpus validus,while the lowest N_2O emission was in Phragmites australis systems.The proportion of loaded N emitted as N_2O-N in this work was 0.33%-0.65%,or 0.0033-0.0065 kg N_2O-N produced per kg of N input. The seasonal variation of N_2O fluxes was different in six vegetation systems,but the lowest N_2O fluxes were all in winter.The mean N_2O flux increased with influent concentration,but they had no significant difference.It was found that N_2O emission and the performance of microcosm wetlands were significantly affected by COD/N ratio of wastewater influent.A large quantity of N_2O emission was detected from lower and higher COD/N ratio systems.The total N_2O emission at a COD/N ratio of 20 was 10 times greater than that at a COD/N ratio of 10 and 5.During the operation of the microcosm wetland at a COD/N ratio of 5,both successful treatment performance and N_2O emission control were obtained.There was no organic carbon input in the systems with an influent COD/N ratio of 0 and nitrification was the dominant process for N_2O emission.The accumulation of NO_2~- and low pH value stimulate N_2O emission.N_2O emission increased after discharge in the system with wet-dry alternation.Temperature was the key factor controlling the variation of N_2O fluxes.Therefore,using FWS structure,stabilization of C/N ratio and pH,avoiding wet-dry alternation and reducing accumulation of NO_2~- would be very important measures for controlling the greenhouse-effect gas emission of N_2O.Phragmites australis should be given priority to adopt for the lower risk of N_2O emissions and successful treatment performance.
     (3) The clone result showed the microbial diversity in subsurface constructed wetlands of reeds is very abundance,which including rhizophere bacterium, nitrogen-removing bacterium and nitrogen-fixing bacterium.According to the data obtained in this study,ammonia-oxidizing bacterial community showed little diversity in the system.Nitrosomonas sp.and Nitrosospira sp.were the dominant bacterium containing amoA functional gene which may play a leading role in contributing to N_2O production in constructed wetlands.
     (4) The bacterial community in the substrate was analyzed by PCR-DGGE,and the results showed that bacterial communities were significantly affected by plant species, influent concentration and wet-dry alternation.The similarity of communities between each other was low in the DGGE profiles.In order to realize effect of different sets of universal primers on the analysis of microbial community based on targeted sequence of 16S rDNA,16S rDNA fragments were amplified with two primer sets(F357/R518 and F968/R1401).Separated patterns of the targeted sequence of primer F357/R518 were better than of F968/R1401.Thereby,while the sample of CWs was analyzed by DGGE,primer F357/R518 was more effective than F968/R1401.For the CWs with Phragmites australis and wet-dry alternation,the band in nosZ DGGE profiles was abundant in some region with 40%-42%denaturant concentration.These microorganisms were important for reducing N_2O to N_2,and the N_2O emission was lower in Phragmites australis and wet-dry alternation systems.
引文
[1]Vymazal J.The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic:10 years experience[J].Ecological Engineering,2002,18(5):633-646.
    [2]吴振彬,梁威,成水平.人工湿地植物根区土壤酶活性与污水净化效果及其相关分析[J].环境科学学报,2001,21(5):621-624.
    [3]梁继东,周启星,孙铁珩.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [4]肖笃宁,胡远满,李秀珍.环渤海三角洲师弟的景观生态学研究[M].北京:科学出版社,2001.
    [5]IPCC.Climate Change[M].UK:Cambridge University Press,2001:239-287.
    [6]Tallec G,Garnier J,Billen G,et al.Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants,under anoxia and low oxygenation[J].Bioresource Technology,2008,99(4):2200-2209.
    [7]IPCC,Climate Change[M].UK:Cambridge University Press,2004.
    [8]杨晶,张桂玲,郑立晓,等.北黄海溶解氧化亚氮的分布与通量的季节变化[J].环境科学,2009,30(3):656-662.
    [9]吕锡武,稻森悠平,水落元之.同步硝化反硝化脱氮及处理过程中N_2O的控制研究[J].东南大学学报,2001,31(1):95-99.
    [10]Khalil M,Rasmussen R.The global source of nitrous oxide[J].Journal of Geophysical Research,1992,91(D13):14651-14660.
    [11]Yuzuru K,Yuhei I,Motoyuki M.Nitrogen removal and N_2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration[J].Journal of Fermentation Bioengineering,1998,86(2):202-206.
    [12]李平,晏波,吴锦华,等.污水处理中N_2O的产生及减量化控制[J].中国给水排水,2005,21(1):25-27.
    [13]Freeman C,Lock M A,Hughes S,et al.Nitrous oxide emissions and the use of wetlands for water quality amelioration[J].Environmental Science &Technology,1997,31:2438-2440.
    [14]焦燕,黄耀,宗良纲,等.氮肥水平对不同土壤N_2O排放的影响[J].环境科学,2008,29(8):2094-2098.
    [15]王重阳,郑靖,顾江新,等.下辽河平原几种旱作农田N_2O排放通量及相关影响因素的研究[J].农业环境科学学报,2006,25(3):657-663.
    [16]邹建文,黄耀,宗良纲,等.稻田CO_2、CH_4和N_2O排放及其影响因素[J].环境科学学报,2003,23(6):758-764.
    [17]刘晔,牟玉静,钟晋贤,等.氧化亚氮在森林和草原中的地-气交换[J].环境科学,1997,18(9):15-18.
    [18]张秀君,徐慧,陈冠雄.影响森林土壤N_2O排放和CH_4吸收的主要因素[J].环境科学,2002,23(5):8-11,21.
    [19]王毅勇,郑循华,宋长春,等.三江平原典型沼泽湿地氧化亚氮通量[J].应用生态学报,2006,17(3):493-497.
    [20]Sφvik A K,Klφve B.Emission of N_2O and CH_4 from a constructed wetland in southeastern Norway[J].Science of the Total Environment,2007,380(1):28-37.
    [21]杨晶,张桂玲,郑立晓,等.北黄海溶解氧化亚氮的分布与通量的季节变化[J].环境科学,2009,30(3):656-662.
    [22]Inamori R H,Wang Y H,Yamamoto T,et al.Seasonal effect on N_2O formation in nitrification in constructed wetlands[J].Chemosphere,2008,73(7):1071-1077.
    [23]Maltais L G,Maranger R,Brisson J,et al.Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands[J].Environmental Pollution,2009,157(3):748-754.
    [24]Picek T,Cizkova H,Dusek J.Greenhouse gas emissions from a constructed wetland—plants as important sources of carbon[J].Ecological Engineering,2007,31(2):98-106.
    [25]李建政,任南琪.污染控制微生物生态学[M].哈尔滨:哈尔滨工业大学出版社,2005,87-96.
    [26]Broek T D.The study of microorganisms in situ:Progress and Problem[J].Symptom Social Gene Microbiology,1987,41:1-17.
    [27]Torsvik V,φvreas L,Thingstad T F.Prokaryotic diversity-magnitude,dynamics,and controlling factors[J].Science,2002,296:1064-1066.
    [28]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J].Microbiological Reviews,1995,59(1):143-169.
    [29]Houghton J T.Climate Change:The IPCC Assessment on Climate Change.UK:Cambridge University Press,1990,1.
    [30]IPCC.Estimated source and sink of nitrous oxide.UK:Cambridge University Press,1992.
    [31]高素华,潘亚茹.温室效应对气候和农业的影响[J].环境科学,1991,12(2):73-76.
    [32]IPCC.Climate Change[A].Houghton J T,Callander B A,Vamey S K.The Supplementary Report to the IPCC Scientific Assessment[M].UK:Cambridge University Press,1992.
    [33]Crutzen P J.The influence of nitrogen oxide on the atmospheric ozone content[J].Quart J Roy Meterol Soe,1970,96:7311-7327.
    [34]郭李萍,林而达,李少杰.大气氮化物的源汇及气候与环境效应[J].农业环境保护,1999,18(5):193-199.
    [35]Prather M,Dervent R,Enhalt D,et al.Other trace gases and atmospheric chemistry[A].Houghton J T.Climate change 1994[M].Cambridge:Cambridge University Press,1995:73-126.
    [36]Blaeklner A M,Bremner J M.Potential of soil as a sink for atmospheric nitrous oxide[J].Geophysical Research Letters,1976,3:739-742.
    [37]Bouwman A F.Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere IN:Bouwman,A.F.(ED).Soil and Greenhouse Effect[M].Wiley and sons.Chiekster,New York,1990:61-127.
    [38]Davidson E A.Sources of nitric oxide and nitrous following wetting of dry soil [J].Soil science,1992,56:95-102.
    [39]IPCC.Climate changes.The science of climate change.Contribution of group 1to second.Assessment report of the intergovemmental panel on climate change,1995,15.
    [40]陈欣,沈善敏,张璐,等.交叉培养法研究养分对作物幼苗释放N_2O的影响[J].应用生态学报,1997,8(2):177-180.
    [41]陈冠雄,商曙辉,于克伟,等.植物释放N_2O的研究[J].应用生态学报,1990,(1):94-96.
    [42]黄国宏,陈冠雄.无菌大豆植株释放N_2O的研究[J].植物学报,1992,34(1):835-839.
    [43]徐惠,张秀君,韩士杰,等.自然状态下树木排放N_2O的研究[J].环境科学,2001,22(5):8-11.
    [44]Lensi R,Chalamet A.Absorption of nitrous oxide by shoots of maize[J].Plant Soil,1981,59:91-98.
    [45]姜翠玲,崔广柏.湿地对农业非点源污染的去除效应[J].农业环境科学学报,2002,21(5):471-473,476.
    [46]王宝贞,王琳.水污染治理新技术[M].北京:科学出版社.2004:159-168.
    [47]Brix H.Functions of macrophytes in constructed wetlands[J].Water Science and Technology,1994,29(6):71-78.
    [48]Hanuner D A.Constrceted wetlands for wastewater treatment[M].Michigan:Lewis Publishers Inc.,1989.
    [49]Scot W E.Engineered Wetlands Lead the Way[J].Features Available Online.2004,5(48):13-16.
    [50]Knight R L,Kadlce R H.Constructed Treatment Wetlands-A Global Technology [J].Water,2000,21(6):57-58
    [51]张毅敏,张水春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232-234.
    [52]梁继东,周启星,孙铁衍.人工湿地污水处理系统研究及性能改进分析[J].生态学杂志,2003,22(2):49-55.
    [53]陈韫真,叶纪良.深圳白泥坑、雁田人工湿地处理场[J].电力保护,1996,12(1):47-51.
    [54]卢少勇,张彭义,余刚,等.滇池王家庄湖滨带人工湿地农业径流中磷去除的干湿季节性规律[J].农业环境科学学报,2006,25(5):1313-1317.
    [55]吴振斌,李谷,付贵萍,等.基于人工湿地的循环水产养殖系统工艺设计及净化效能[J].农业工程学报,2006,22(1):129-133.
    [56]向长生,祝万鹏,张彭义,等.人工湿地在植物生长停滞期处理农田排灌余水的中试研究[J].农业环境科学学报,2003,22(6):279-284.
    [57]尹炜,李培军,叶闽,等.复合潜流人工湿地处理城市地表径流研究[J].中国给水排水,2006,22(1):5-8.
    [58]Brix H.Gas exchange through the soil-atmosphere interphase and through dead culms of Phragrnites australis in a constructed reed bed receiving domestic sewage[J].Water Research,1990,24:259-266.
    [59]Freedman B.Environmental ecology[M].Sandiego:Academic Press,2002.
    [60]Pu P M,Wanf G X,Hu C H,et al.Can we control the lake eutrophication by dredging Eighth Intemational Symposium on the interactions between sediments and water.1999,Beijing.
    [61]王国祥,蹼培民.若干人工调控措施对富营养化湖泊藻类种群的影响[J].环境科学,1999,20(7):71-74.
    [62]Dieberg F E,DeBusk T A,Jackson S D,et al.Submerged aquatic vegetation based treatment wetlands for removing phosphorus from agricultural runoff:response to hydraulic and nutrient loading[J].Water Research,2002,36(6):1409-1422.
    [63]曹向东,王宝贞,蓝云栏,等.强化塘—人工湿地复合生态塘系统中氮和磷的去除规律[J].环境科学研究,2000,13(2):15-19.
    [64]Romero J A,Comin F A,Garcia C.Restored wetlands as filters to removal nitrogen[J].Chemosphere,1999,39(2):323-332.
    [65]Fleming S M S,Home A J.Enhanced nitrate removal efficiency in Wetland microcosms using an episediment layer for denitrification[J].Environmental Science & Technology,2002,36(6):1231-1237.
    [66]Bremner J M,Blackmer A M.Nitrous oxide:Emission from soils during nitrification of fertilizer nitrogen[J].Science,1978,199(1):295-297.
    [67]叶欣,李俊,王迎红,等.华北平原典型农田土壤氧化亚氮的排放特征[J].农 业环境科学学报,2005,24(6):1186-1191.
    [68]邹国元,李新慧,张福锁,等.农田土壤硝化-反硝化作用与N_2O的排放[J].土壤与环境,2001,10(4):273-276.
    [69]杜睿,王庚辰,吕达仁,等.内蒙古大针茅草原的N_2O和CH_4通量变化特征[J].中国环境科学,2001,21(4):289-292.
    [70]David S R,David B N,Niall M.Physical determinants of methane oxidation capacity in a temperate soil[J].Water,Air,and Soil Pollution,2001,1(5-6):401-414.
    [71]Richard D B,Mark S C,Jerry M M,et al.Fluxes of greenhouse gases between soils and the atmosphere in a temperate forest following a simulated hurricane blowdown[J].Biogeochemistry,1993,21(2):61-71.
    [72]齐玉春,罗辑,董云社,等.贡嘎山山地暗针叶林带森林土壤温室气体和排放研究[J].中国科学,2002,32(11):934-941.
    [73]宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO_2、CH_4和N_2O排放动态[J].环境科学,2005,26(4):7-12.
    [74]Senga Y,Hirota M,Hirao M,et al.Nitrogen dynamics and N_2O emission in restored salt marsh,Lake Shinji,Japan[J].International Association of Theoretical and Applied Limnology.2009,30:907-910.
    [75]Czepiel P,Crill P,Harriss R.Nitrous oxide emissions from municipal wastewater treatment[J].Environmental Science & Technology,1995,29,2352-2356.
    [76]S(u|¨)mer E,Weiske A,Benckiser G.Influence of environmental conditions on the amount of N_2O released from activated sludge in a domestic waste-water treatment plant[J].Experientia,1995,51,419-422.
    [77]Park KY,Inamori Y,Mizuochi M,et al.Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration[J].Journal of Bioscience and Bioengineering,2000,90(3):247-252.
    [78]Kong H N,Kimochi Y,Mizuochi M,et al.Study of the characteristics of CH4 and N_2O emission and methods of controlling their emission in the soil-trench wastewater treatment process[J].Science of the Total Environment,2002,290,59-67.
    [79]Mander U, Kuusemets V, Lohmus K, et al. Nitrous oxide, dinitrogen and methane emission in a subsurface flow constructed wetland [J]. Water Science and Technology, 2003, 48, 135-142.
    [80] Liikanen A, Huttunen J T, Karjalainen S M, et al. Temporal and seasonal changes in greenhouse gas emissions from a constructed wetland purifying peat mining runoff waters [J]. Ecological Engineering, 2006, 26(3): 241-251.
    [81]Inamori R, Gui P, Dass P, et al. Investigating CH4 and N_2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms [J]. Process Biochemistry, 2007, 42, 363-373.
    [82] Gui P, Inamori R, Matsumura M, Inamori Y. Evaluation of constructed wetlands by wastewater purification ability and greenhouse gas emissions [J]. Water Science and Technology, 2007, 56, 49-55.
    [83] Wang Y H, Inamori R H, Kong H N, et al. Nitrous oxide emission from polyculture constructed wetlands: Effect of plant species [J]. Environmental Pollution, 2008, 152, 351-360.
    [84]Ritcbie G A F, Nicholas D J D. Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea [J]. Biochemical Journal, 1972, 126(5): 1181-1191.
    [85]Hynes R K, Knowles R. Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen [J]. Canadian Journal Microbiology, 1984, 30(11): 1397-1404.
    [86]Mckenney D J. Drury C F, Findlay W I, et al. Kinetics of denitrification by Pseudomonas fiuorescens: oxygen effects [J]. Soil Biology and Biochemistry, 1994, 26(7): 901-908.
    [87] Davis K J P, Lloyd D, Boddy L. The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa [J]. Journal of General Microbiology, 1989, 135(9): 2445-2451.
    [88]Hanaki K, Zheng H, Matsuo T. Production of nitrous oxide gas during denitrification of wastewater [J]. Water Science and Technology, 1992, 526(26): 1027-1036.
    [89] Garrido J M, Moreno J, Mendez-Pampín R, et al. Nitrous oxide production under toxic conditions in a denitrifying anoxic filter [J]. Water Research, 1998, 32(8): 2550-2552.
    [90] Schulthess R V, Wild D, Gujer W. Nitric and nitrous oxide from denitrifying activated sludge at low oxygen concentration [J]. Water Science and Technology, 1994, 30(6): 123-132.
    [91]Poth M, Focht D D. ~(15)N kinetic analysis of N_2O production by Nitrosomonas europaea: an examination of nitrifier denitrification [J]. Applied and Environmental Microbiology, 1985,49(5): 1134-1141.
    [92]Papen H, Renneberg H. Microbial processes involved in emissions of radioactively important trace gases [A]. Transactions 14 th International Congress of Soil Science [C]. Kyoto, 1990: 232-237.
    [93] Anderson I C, Levine J S. Relative rates of NO and N_2O production by nitrifiers, denitrifiers and nitrate respirers [J]. Applied and Environmental Microbiology, 1986, 51(5): 938-945.
    [94] Gupta A B. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nitrification and aerobic denitrification [J]. Enzyme and Microbial Technology, 1997, 21(8): 589-595.
    [95]Lloyld D, Boddy L, Davies K J P. Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception [J]. FEMS Microbiology Letters, 1987, 45(3): 185-190.
    [96]Stutzer H, Hartleb R. Uber nitratbidung [J]. Zentralbl Bakteriol Parasitenkd Infektionskr. Hyg Abt 1 Orig Reihe A, 1894, 22: 701.
    [97]Papen H, Regina Von B, Hinkel I, et al., Heterotrophic nitrification by alcaligenes faecalis: NO_2~-、NO_3~-、N_2O and NO production in exponentially growing cultures [J]. Applied and Environmental Microbiology, 1989, 55(8): 2068-2072.
    [98]Blackmer A M, Bremner J M, Schmidt E L. Production of nitrous oxide by ammonia oxidizing chemoautotrophic microorganisms in soil [J]. Applied and Environmental Microbiology, 1980,40(6): 1060-1066.
    [99]Brown K,Fesefeldt A,Gliesche C G,et al.A novel type of catalytic copper cluster in nitrous oxide reducatase[J].Natural Structural Biology,2000,7(3):191-195.
    [100]Rasmussen T,Berks B C,Sanders-Loehr J,et al.The catalytic center in nitrous oxide reductase,Cuz,is a copper-sulfide cluster[J].Biochemistry,2000,39(42):12573-12576.
    [101]Bonin P,Tamburini C,Michotey V.Determination of the bacterial processes which are sources of nitrous oxide production in marine samples[J].Water Research,2002,36(3):722-732.
    [102]Otte S,Seviour R J,Kuenen J G,et al.Nitrous oxide(N_2O) production by Alcaligenes faecalls during feast and famine regimes[J].Water Research,2000,34(7):2080-2085.
    [103]Shiba T.Roseobacter litoralis gen.nov.sp.nov.,and Roseobacter denitrificans sp.nov.,aerobic pink-pigmented bacteria which contain bacterilchlorophyll a.Syst[J].Applied Microbiology,1991,14:140-145.
    [104]Greenberg E P,Becker G E.Nitrous oxide as end product of denitrification by strains of fluorescent pseudomonads[J].Canadian Journal Microbiology,1997,23(7):903-907.
    [105]Takaya N,Catalan M A B,Sakaguchi Y,et al.Aerobic denitrifying bacteria that produce low levels of nitrous oxide[J].Applied and Environmental Microbiology,2003,69(6):3152-3157.
    [106]Robertson L A,Kuenen J G.Physiology of nitrifying and denitrifying bacteria[A].Rogers J E,Whitman W B.Microbial production and consumption of greenhouse gases:methane,nitrogen oxides and halomethanes[M].American Society for Microbiology.Washington,D.C.,1991,189-199.
    [107]张朝晖,吕锡武.污水生物处理过程中N_2O的逸出控制[J].给水排水,2004,30(4):32-36.
    [108]Park K Y,Lee J W,Inamori Y,et al.Effects of fill modes onN_2O emission from the SBR treating domestic wastewater[J].Water Science and Technology,2001,43(3):147-150.
    [109]Zheng H,Hanaki K,Matsuo T.Producation of nitrous oxide gas during nitrification of wastewater[J].Water Science and Technology,1994,30(6):133-141.
    [110]刘俊女,汪苹,柯国华,等.废水脱氮过程中N_2O的控逸理论及研究进展[J].北京工商大学学报(自然科学版),2005,23(6):14-19.
    [111]Oh J,Silverstein J.Oxygen in inhibition of acitivated sludge denitrification [J].Water Research,1999,33(8):1925-1937.
    [112]Dorland and Beauehamp.Denitrification and ammonifieation at low soil temperature[J].Soil Science,1991,71:293-303.
    [113]杜睿,吕达仁,王庚辰,等.温度对内蒙古典型草原土壤N_2O排放的影响[J].自然科学进展,2003,13(1):64-68.
    [114]徐文彬,刘维屏,刘广深.温度对旱田土壤N_2O排放的影响研究[J].土壤学报,2002,39(1):1-8.
    [115]Bremner J M,Robbins S G,Blacklner A M.Seasonal variability emission of nitrous oxide from soil[J].Geophysical Research letters,1980,7(9):641-644.
    [116]郑循华,王明星,王跃思,等.温度对农田N_2O产生与排放的影响[J].环境科学,1997b,18(5):1-5
    [117]Park K Y,Inamori Y,Mizuochi M,et al.Emission and control of nitrous oxide from a biological wastewater treatment system with intermittent aeration [J].Journal of Bioscience and Bioengineering,2000,90(3):247-252.
    [118]Kishida N,Kim J H,Kimochi Y,et al.Effect of C/N ratio on nitrous oxide emission from swine wastewater treatment process[J].Water Science and Technology,2004,49(5-6):359-371.
    [119]Alinsafi A,Adouani N,Beline F,et al.Nitrite effect on nitrous oxide emission from denitrifying activated sludge[J]Process Biochemistry,2008,43(6):683-689.
    [120]Th(o|¨)rn M,S(o|¨)rensson F.Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal[J].Water Research,1996,30(6):1543-1547.
    [121]Wicht H.A model for predicting nitrous oxide production during denitrification in activated sludge[J].Water Science and Technology,1996,34(5-6):99-106.
    [122]阮文权,陈坚.好氧颗粒污泥同步硝化反硝化脱氮过程中N_2O的产生[J].无锡轻工大学学报,2004,23(4):37-64.
    [123]Wrage N,Velthof G L,Beusichem M L,et al.Role of nitrifier denitrification in the production of nitrous oxide[J].Soil Biology and Biochemistry,2001,33(12-13):1723-1732.
    [124]Murray R E,Knowles R.Production of NO and N_2O in the presence and absence of C_2H_2 by soil slurries and batch cultures of denitrifying bacteria[J].Soil Biology and Biochemistry,2003,35(8):1115-1122.
    [125]Kim E W,Bae J H.Alkalinity requirements and the possibility of simultaneous heterotrophic denitrification during sulfur utilizing autotrophic denitrification[J].Water Science and Technology,2000,42(3-4):233-238.
    [126]Sch(o|¨)nharting B,Rehner R,Metzger J W,et al.Release of nitrous oxide(N_2O)from denitrifying activated sludge caused by H_2S-containing wastewater:Quantification and application of a new mathematical model[J].Water Science and Technology,1998,38(1):237-246.
    [127]Gejlsbjerg B,Frette L,Westermann P.Dynamics of N_2O production from activated sludge[J].Water Research,1998,32(7):2113-2121.
    [128]Tsunedaa S,Mikamia M,Kimochib Y,et al.Effect of salinity on nitrous oxide emission in the biological nitrogen removal process for industrial wastewater[J].Journal of Hazardous Materials,2005,119(1-3):93-98.
    [129]Munch J C.Organism specific denitrification in samples of an udifluvent with different nitrate concentrations[J].Z.Pflanzenernahr.Bodenk,1989,152:395-400.
    [130]章家恩,蔡燕飞,高爱霞,等.土壤微生物多样性实验研究方法概述[J].土壤,2004,36(4):346-350.
    [131]Ward D M,Bateson M M,Wefler R,et al.Ribosomal RNA analysis of microorganisms as they occur in nature[J].Advances in Microbial Ecology,1992,12:219-286.
    [132]Pace N R,Stahl D A,Lane D J,et al.The analysis of natural microbial populations by ribosomal RNA sequence[J].Advances in Microbial Ecology,1986,9:1-55.
    [133]李世贵,吕天晓,顾金刚,等.土壤微生物分子生态学研究方法[J].中国土壤与肥料,2008,(6):1-4.
    [134]Bomeman J,Skroeh P W,Osullivan K M,et al.Molecular microbial diversity of an agricultural soil in Wisconsin[J].Applied and Environmental Microbiology,1996,62:1935-1943.
    [135]焦晓丹,吴凤芝.土壤微生物多样性研究方法的进展[J].土壤通报,2004,35(6):789-792.
    [136]Hadry S H,Balic K M,Schierwate R B.Applications of random amplified polymorphic DNA(RAPD) in Molecular Ecology[J].Molecular Ecology,1992,1:55-63.
    [137]Olsen G J,Lnae D J,Giovnnaoni S J,et al.Microbiology and evolution:aribosomal RNA approach[J].Annual Reviews of Microbiology,1986.40:337-365.
    [138]魏群.基因克隆和DNA分析(中文版).北京:高等教育出版社,2007.
    [139]张维铭.现代分子生物学实验手册[M].北京:科学出版社,2007:451.
    [140]Fischer S G,Lerman L S.DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels:correspondence with melting theory[J].Proceeding of the National Academy of Sciences,USA,1983,80(6):1579-1583.
    [141]Muyzer G,Waal de E C,Uitterlinden A G.Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J].Applied and Environmental Microbiology,1993,59(3):695-700.
    [142]Muyzer G,Smalla K.Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology[J].Antonie Van Leeuwenhoek,1998,73(1):127-141.
    [143]Myers R M,Fischer S G,Lerman L S,et al.Nearly all single base substitutions in DNA fragments joined to a GC-clamp can be detected by denaturing gradient gel electrophoresis [J]. Nucleic Acids Research, 1985, 13(9): 3131-3145.
    [144] Sheffield V C, Cox D R, Lerman L S, et al. Attachment of a 40-base-pair G+C rich sequence (GC clamp) to genomic DNA fragments by polymerase chain reaction results in improved detection of single-base changes [J]. Proceeding of the National Academy of Sciences, USA, 1989, 86(1): 232-236.
    [145] Gomes NCM, Fagbola O, Costa R, et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics [J]. Applied and Environmental Microbiology, 2003, 69(7): 3758-3766.
    [146] Nicolaisen M H, Ramsing N B. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria [J]. Journal of Microbiological Methods, 2002, 50(2): 189-203.
    
    [147] 罗海峰.变性梯度凝胶电泳技术研究土壤微生物多样性[D].北京:中国科学院研究生院,2004.
    [148] Wawer C, Jetten M S, Muyzer G.Genetic diversity and expression of the [NiFe] hydrogenase large-subunit gene of Dessulfovibrio spp. in environmental samples [J]. Applied and Environmental Microbiology, 1997, 63(11): 4360-4369.
    [149] Santegoeds C M, Nold S ,Ward D M. Denaturing gradient gel electrophoresis used to monitor the enrichment culture of aerobic chemoorganotrophic bacterial from a hot spring cyanobacterial mat [J]. Applied and Environmental Microbiology, 1996, 62(11): 3922-3928.
    [150] Vallaeys T, Topp E, Muyzer G, et al. Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs [J]. FEMS Microbiology Ecology, 1997, 24(3): 279-285.
    [151] Jackson C R, Roden E E, Churchill P F. Denaturing gradient gel eletrophoresis can fail to seperate 16S rDNA fragments with multiple base differences [J]. Molecular biology today, 2000, 1: 49-51.
    [152] Sekiguchi H, Tomioka N, Nakahara T, et al. A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis[J].Biotechnology Letters,2001,23(15):1205-1208.
    [153]Wu J,Zhang J,Jia W L,et al.Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J].Bioresource Technology,2009,100(12):2910-2917.
    [154]国家环境保护局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002.210-280.
    [155]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.110-118,234-241.
    [156]南京土壤所.土壤农化分析方法[M].北京:中国农业科学出版社,1999
    [157]叶维青译.(日)土壤微生物研究会编.土壤微生物实验法[M].北京:科学出版社,1983.
    [158]Brix H.Macrophyte medicated oxygen transfer in wetlands;transport mechanism and rates.In:Moshiri,G.A.(Eds.).Constructed wetlands for water quality improvement.Lewis,Boca Raton,1993:391-398.
    [159]Rousseau D,Vanrolleghem P,Pauw N.Constructed wetlands in Flanders:a performance analysis[J].Ecological Engineering,2004,23:151-163.
    [160]Healy M G,Rodgers M,Mulqueen J.Treatment of dairy wastewater using constructed wetlands and intermittent sand filters[J].Bioresource Technology,2007,98:2268-2281.
    [161]Brix H.Do macrophytes play a role in constructed treatment wetlands[J]?Water Science and Technology,1997,35:11-17.
    [162]Hammer D A.Constructed wetlands for wastewater treatment-municipal,industrial,and agricultural.Lewis,Chelsea,1989.
    [163]Kozub D D,Liehr S K.Assessing denitrification rate limiting factors in a constructed wetland receiving landfill leachate[J].Water Science and Technology,1999,40:75-82.
    [164]Vymazal J.Removal of nutrients in various types of constructed wetlands[J].Science of the Total Environment,2007,380:48-65.
    [165]Verhoeven J T A,Meuleman A F M.Wetlands for wastewater treatment: opportunities and limitations[J].Ecological Engineering,1999,12:5-12.
    [166]Bremner J M,Blackmer A M.Nitrous oxide:Emission from soils during nitrification of fertilizer nitrogen[J].Science,1978,199(1):295-297.
    [167]王少斌.中国大气中氧化亚氮浓度及土壤排放通量的测定[J].中国科学(B辑),1994,24(12):1275-1280.
    [168]孙志高,刘景双,杨继松,等.三江平原典型小叶章湿地土壤硝化反硝化作用与氧化亚氮排放[J].应用生态学报,2007,18(1):185-192.
    [169]Schimel J P.Plant transport and methane production as controls on methane flux from arctic wet meadow tundra[J].Biogeochemisty,1995,28:183-200.
    [170]Johansson A E,Klemedtsson A K,Klemedtsson L,et al.Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater:Parameters and implications for emission factors.Tellus B,2003,55(3):737-750.
    [171]Teiter S,Mander(U|¨).Emission of N_2O,N_2,CH_4 and CO_2 from constructed wetlands for wastewater treatment and from riparian buffer zones[J].Ecological Engineering,2005,25:528-541.
    [172]Fey A,Benckiser G,Ottow J C G.Emissions of nitrous oxide from a constructed wetland using a ground filter and macrophytes in waste-water purification of a dairy farm.Biology and Fertility of Soils 1999,29(4):354-359.
    [173]Saggar S,Hedley C B,Giltrap D L,et al.Measured and modelled estimates of nitrous oxide emission and methane consumption from a sheep-grazed pasture.Agricultural,Ecosystems and Environment,2007,122(3):357-365.
    [174]Zhu R B,Sun L G.,Ding W X.Nitrous oxide emissions from tundra soil and snowpaek in the maritime Antarctic.Chemosphere,2005,59(11):1667-1675.
    [175]Smith K A,Thomson P E,Clayton H,et al.Effects on temperature,water content and nitrogen fertilization on emissions of nitrous oxide by soil[J].Atmospheric Environment,1998,32(19):3301-3309.
    [176]Gr(u|¨)nfeld S,Brix H.Methanogenesis and CH_4 emissions:effects of water table,substrate type and presence of Phragmites australis[J].Aquatic Botany,1999,64(1):63-75.
    [177]Holzapfel-Pschom A,Conrad R,Seiler W.Effects of vegetation on the emission of methane from submerged paddy soil. Plant and Soil, 1986, 92: 223- 322.
    [178] Kim J, Verma S B, Billebach D P. Seasonal variation in methane emission from a remperate Phragmites-dominated marsh, effect of grow th stage and plant-mediated transport. Global Chang e Biology, 1998, 5: 433-440.
    [179] Chanton J P, Whiting G J. Methane stable isotopic distributions as indicators of gas transport mechanisms in emergent aquatic plants.A quatic Botany, 1996, 54: 227-236.
    [180] Chanton J P,Whiting G J, Happell J D, et al. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany, 1993,46: 111-128.
    [181] Arkebauer T J , Chanton J P, V erma S B, et al. Field measurements of internal pressurization in Phragmites australis (Poaceae) and implications for regulation of methane emissions in a Midlatitude Prairie Wetland. American Journal of Botany, 2001, 88 (4): 653-658.
    [182] Poth M, Focht D D. ~(15)N kinetic analysis of N_2O production by Nitrosomonas europaea: an examination of nitrifier denitrification [J]. Applied Environmental Microbiology, 1985,49: 1134-1141.
    [183] Gupta A B. Thiosphaera pantotropha: a sulphur bacterium capable of simultaneous heterotrophic nit rifica2t ion and aerobic denitrification [J]. Enzyme and Microbial Technology, 1997, 21: 589-595.
    [184] Lloyld D, Boddy L, Davies K J P. Persistence of bac2terial denitrification capacity under aerobic conditions: the rule rather than the exception [J]. FEMS Microbiology Ecology, 1987,45: 185-190.
    [185] Oh J, Silverstein J. Acetate limitation and nitrite accumulation during denitrification. Journal of Environmental Engineering, 1999,125: 234-242.
    [186] Rijn J V, Tal Y, Barak T. Influence of volatile fatty acids on nitrite accumulation by a Pseudomonas stutzeri strain isolated from a denitrifying fluidized bed reactor [J]. Applied and Environmental Microbiology, 1996, 62: 2615-2620.
    [187]Stevens R J,Laughlin R J.Measurement of nitrous oxide and di-nitrogen emissions from agricultural soils[J].Nutrient Cycling in Agroecosystems,1998,52:131-139.
    [188]Knowles R.Denitrification[J].Microbiological Reviews,1982,46:43-70.
    [189]Bonin P,Tamburini C,Michotey V.Determination of bacterial processes which are sources of nitrous oxide production in marine samples[J].Water Research,2002(3),36:722-732
    [190]Itokawa H,Hanaki K,Matsuo T.Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition[J].Water Research,2001,35(3):657-664.
    [191]侯学新,陈冠雄,吴杰,等.稻田CH_4和N_2O排放关系及其微生物学机理和一些影响因子[J].应用生态学报,1997,8(3):270-274.
    [192]郑循华,王明星,王跃思,等.华东稻田CH_4和N_2O排放[J].大气科学,1997,21(2):231-237.
    [193]杨继松,刘景双,王金达.三江平原生长季沼泽湿地CH_4、N_2O排放及其影响因素[J].植物生态学报,2006,30(3):432-440.
    [194]刘景双,王金达,李仲根.三江平原沼泽湿地N_2O浓度与排放特征初步研究[J].环境科学,2003,24(1):33-39.
    [195]孙丽,宋长春,黄耀.沼泽湿地N_2O通量特征及N_2O与CO_2排放间的关系[J].中国环境科学,2006,26(5):532-536.
    [196]Malhi S S,Meggill W B,Nyborg M.Nitrate losses in soils effect of temperature,moisture and substrate concentration[J].Soil Biology and Biochemistry,1990,22:733-737.
    [197]Zhou J,Bruns M A,Tiedje J M.DNA recovery from soils of diverse composition[J].Applied and Environmental Microbiology,1996,62(2):316-322.
    [198]Regan J M,Harrington G W,Noguera D R.Ammonia- and nitrite-oxidizing bacterial communities in a pilot-scale chloraminated drinking water distribution system[J].Applied Environmental Microbiology,2002,68(1):73-81.
    [199]Rotthauwe J H,Witzel K P,Liesack W.The ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Applied and Environmental Microbiology,1997,63(12):4704-4712.
    [200]陈德富,陈喜文.现代分子生物学实验原理与技术[M].北京:科学出版社,2006:135.
    [201]Mobarry B K,Wagner M,Urbain V,et al.Phylo-genetic probes for analyzing abundance and spatial organization of nitri-fying bacteria[J].Applied and Environmental Microbiology,1996,6:2156-2162.
    [202]Rotthauwe J H,Witzel K P,Liesack W.The Ammonia monooxygenase structural gene amoA as a functional marker:molecular fine-scale analysis of natural ammonia-oxidizing populations[J].Applied and Environmental Microbilogy,1997,63:4704-4712.
    [203]Kowalchuk G A,Stephens J R,Boer W D,et al.Analysis of ammonia-oxidizing bacteria of the L subdivision of the class Proteobacteria in coastal san dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16SrDNA fragments[J].Applied and Environmental Microbilogy,1997,63:1489-1497.
    [204]Hyens R K,Knowles R.Production of nitrous oxide by N itrosomonas europaea:Effects of acetylene,pH and oxygen[J].Canadian Journal of Microbiology,1984,30:1397-1403.
    [205]He Y W,Mizuochi M,Kong H N,et al.NO emission from waste management systems[J].Japanese Journal of Waer Tret Biological,1996,35(2):67-78.
    [206]Anderson J H.The metabolism of hydroxylamine to nitrite by Nitrosomonas [J].Biochemical Journal,1964,91(8):8-17.
    [207]Jetten M S M,Logemann S,Muyer G,et al.Novel principles in the microbial conversion of nitrogen compounds[J].Antonie van Leeuwenhock,1997,71:75-93.
    [208]Jenkinson D S.An introduction to the global nitrogen cycle[J].Soil Use and Management,1990,6:56-61.
    [209]J iang Q Q,Bakken L R.Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria [J]. Applied and Environmental Microbiology, 1999, 65 (6): 2679-2684.
    [210] Muyzer, Ellen C W, Andre G U. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59: 695-700.
    [211] Brons J K, Elsas J D V. Analysis of bacterial communities in soil by use of denaturing gragient gel electriphoresis reverse primers [J]. Applied and Environmental Microbiology, 2008, 74(9):2717-2727.
    [212] Erik J, van H, Gabriel Z, et al. Changes in Bacterial and Eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with virus [J]. Applied and Environmental Microbiology, 1999, 65: 795-801.
    [213] Throback I N, Enwall K, Jarvis A, et al. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE [J]. FEMS Microbiology Ecology, 2004, 49(3): 401-417.
    
    [214] 邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,2006,46(2):33 1-335.
    [215] Araya R, Tani K, Takagi T, et al. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis [J]. FEMS Microbiology Ecology, 2003,43: 111-119.
    [216] Vander G K, Sabbe K, Meester L, et al. Contrasting bacterioplankton community composition and seasonal dynamics in two neighbouring hypertrophic freshwater lakes [J]. Environmental Microbiology, 2001, 3:680-690.
    [217] Muller A K, Westergaard K, Christensen S, et al. The effect of long-term mercury pollution on the soil microbial community [J]. FEMS Microbiology Ecology, 2001, 36: 11-19.
    [218] Ogino A, Koshikawa H, Nakahara T, et al. Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analysis [J]. Journal of Applied Microbiology, 2001, 91: 625-635.
    [219]Yang C H,Crowley D E,Menge J A.16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophtora infected avocado roots[J].FEMS Microbiology Ecology,2001,35:129-136.
    [220]Decamp O,Warren A.Bacterivory in ciliates isolated from constructed wetlands(reed beds)used for wastewater treatment[J].Water Research,1998,32:1989-1996.
    [221]苏俊峰,马放,王弘宇,等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态[J].环境科学学报,2007,27(3):386-390.
    [222]Vacca G,Wand H,Nikolausz M,et al.Effect of Plants and filter materials on bacteria removal in Pilot-scale constructed wetlands[J].Water Research,2005,39(7):1361-1373.
    [223]邢德峰,任南琪,宋佳秀,等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响[J].环境科学,2006,27(7):1424-1428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700