IDH基因表达在成人急性髓细胞白血病中的临床意义及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分IDH基因表达在成人核型正常急性髓细胞白血病中的预后分析
     目的:探讨IDH基因mRNA表达与CN-AML患者预后的关系。
     方法:采用实时荧光定量PCR技术检测我院232例初发核型正常的急性髓细胞白血病(CN-AML)患者的骨髓单个核细胞、11例正常对照骨髓CD34‘细胞和20例正常对照外周血单个核细胞中IDH1和IDH2基因mRNA表达水平;同时应用PCR后直接测序方法检测CN-AML患者和正常对照的IDH1、IDH2、NMP1、 FLT3-ITD、DNMT3A和CEBPA突变。比较IDH1和IDH2基因mRNA表达水平在CN-AML患者和正常对照之间的差异。分析IDH1和IDH2基因mRNA表达水平与CN-AML患者总体生存(OS)、无事件生存(EFS)和无复发生存(RFS)的关系;并分析IDH1和IDH2基因mRNA表达水平与其它临床指标和基因突变的关系。
     结果:
     1、与正常对照相比,CN-AML患者IDH1基因mRNA表达水平高于正常对照骨髓CD34+细胞和正常对照外周血单个核细胞,p值分别为0.01和<0.001;CN-AML患者IDH2基因mRNA表达水平高于正常对照外周血单个核细胞P<0.001。
     2、米用Kaplan-Meier分析,IDH1基因mRNA低表达组患者3年的OS和EFS分别为50%和31%,IDH1基因mRNA高表达组患者3年的OS和EFS分别为26%和16%,IDH1基因mRNA低表达组的预后明显优于高表达组,其OS和EFS的P值均<0.001。而IDH2基因mRNA表达与CN-AML患者预后没有关系,OS、EFS和RFS差异均无统计学意义,p值均>0.05。
     3、用Cox回归模型纠正年龄、白细胞数、基因突变等因素,IDH1基因mRNA低表达组的预后明显优于高表达组,其OS和EFS的P值均<0.001。IDH1基因mRNA高表达是CN-AML患者的预后因素,IDH1基因mRNA高表达者预后差。
     4、通过分析IDH1基因mRNA表达与临床指标和基因突变关系发现:IDH1基因mRNA高表达主要集中M5患者中,其高表达与DNMT3A突变有关系,在DNMT3A突变患者中高表达者占16%,低表达者占5%,两者差异具有统计学意义,P=0.007;IDH1基因mRNA高表达与CEBPA双突变有关系,在CEBPA双突变患者中高表达者占7%,低表达者占17%,两者差异具有统计学意义,P=0.019。
     结论:
     我们首次发现IDH1基因mRNA高表达是独立于临床指标和高频基因突变的预后不良的标志物,IDH1基因mRNA表达水平可作为临床预后危险分层。
     第二部分IDH1基因表达在成人急性髓细胞白血病中的机制研究
     目的:(1)探索IDH1基因在AML中的作用机制;(2)寻找调控IDH1基因mRNA表达的microRNA。
     方法:
     (1)采用siRNA干扰方法沉默THP-1和HL-60/ADR细胞的IDH1基因,MTT法、流式细胞术检测其对生长、周期和凋亡影响,western blot检测凋亡和信号通路蛋白变化。
     (2)根据IDH1基因mRNA表达量高低从CN-AML中挑选16个患者标本,IDHl基因mRNA高表达和低表达各8例,采用Agilent Microarray芯片(SBC Human miRNA Microarray Release16.0)进行microRNA表达谱芯片分析,寻找与IDH1基因mRNA表达相关的microRNA。荧光定量PCR检测CN-AML患者的microRNA变化,对芯片结果进行验证。
     结果:
     (1)沉默THP-1细胞IDH1基因后,小干扰组细胞生长明显低于阴性对照组(p=0.04);小干扰组48小时凋亡率为37.22±8.27%,明显高于阴性对照组19.50±1.18%(p=0.021),并伴随Caspase-3和PARP剪切带增加,PI3K/AKT/mTOR信号通路抑制,但是小干扰组细胞与阴性对照组细胞相比,周期变化差异无统计学意义(p=0.89)。
     (2)沉默THP-1细胞IDH1基因后给予临床常用化疗药物如:HHT. ACR和DNR,能增加这些药物对THP-1细胞的敏感性。
     (3)沉默HL-60ADR细胞IDH1基因48小时后,Caspase-3和PARP剪切带增加,PI3K/AKT信号通路抑制,能部分逆转HL-60/ADR对阿霉素的耐药。
     (4)芯片结果显示:IDH1基因mRNA高表达组的患者中miR-181家族(miR-181a、miR-181a-2、miR-181b、miR-181c*、miR-181c、miR-181a*和miR-181d)、iR-146a、miR-128、miR-625、miR-25和miR-335低表达,miR-4286、miR-660、miR-107和miR-324-5p高表达,而在IDH1基因mRNA低表达组的患者中上述microRNAs表达相反。
     (5)荧光定量PCR也证实了在IDH1基因mRNA高表达组的患者miR-181d和miR-181b低表达,miR-4286高表达;而在IDH1基因mRNA低表达组的患者中上述microRNA表达相反。
     结论:
     (1)下调IDH1基因表达能降低AML细胞株的增殖,导致细胞凋亡,增加化疗药物的敏感性和逆转耐药。
     (2)在CN-AML患者中miR-181家族(miR-181d和miR-181b)起到抑癌基因作用,可能抑制IDH1基因mRNA的表达,miR-4286起到癌基因作用,可能促进IDH1基因mRNA的表达。
Part one, The prognostic significance of expression of IDH1/2in cytogenetically normal adult acute myeloid leukemia.
     Purpose:
     To evaluate the prognostic significance of the expression levels of IDH1/2mRNA in cytogenetically normal AML (CN-AML).
     Methods:
     The IDH1/2mRNA expression levels were measured in pretreatment bone marrow mononuclear cells using qRT-PCR in232AML patients with mornal cytogenetic and healthy controls. Genes mutation status of IDH1, IDH2, NMP1.FLT3-ITD, DNMT3A and CEBPA were sequenced as well. Expression differences of IDH1/2mRNA between CN-AML patients and normal controls were compared. The relationship among IDH1/2mRNA expression and overall survival (OS), relapse-free survival (RFS) and event-free survival (EFS) of CN-AML patients were analyzed. At the same time, we analyzed the relationship among IDH1/2mRNA expression and other clinical indicators and gene mutation.
     Results:
     1. Compared with normal control, The IDH1mRNA expression level of CN-AML patients was higher than CD34+cells and peripheral blood mononuclear cells of normal control (p=0.01and p<0.001, respectively), IDH2mRNA expression level of CN-AML patients was higher than peripheral blood mononuclear cells of normal control (p<.001).
     2. After expression of IDH genes were analyzed by Kaplan-Meier method, the3-year overall (OS) and event-free survival (EFS) in low IDH1mRNA expressing group are better than those in high expressing group (50%vs.26%,31%vs.16%, both P values:<0.001, respectively) in232CN-AML cases. We did not find the prognostic value of IDH2mRNA expression levels in CN-AML patients (p>0.05for OS, EFS and RFS).
     3. After adjusting the impact of clinical data include age, WBC count and highly frequent mutations of genes, the low IDH1mRNA expressing group are better than those in high expressing group (p<0.001for OS and EFS), the expression of higher IDH1mRNA was an independent biomarker and had poor prognosis.
     4. With analysis the relationship among the IDH1mRNA expression and clinical data, gene mutation, Higher level expression of patients was mainly in M5patients, and closely associated with the higher frequency of DNMT3A mutation and less common in CEBPA mutation(P=0.007and0.019, respectively).
     Conclusion:
     To our knowledge, we provide the first evidence that higher IDH1mRNA expression was an independent biomarker after adjusting the impact of clinical variables and highly frequent mutations of genes in CN-AML and may refine their molecular risk classification.
     Part two, The mechanisms of isocitrate dehydrogenase1genes expression in adult acute myeloid leukemia
     Purpose:
     (1) To explore the mechanism of IDH1in AML
     (2) To seek that microRNAs regulate IDH1mRNA expression.
     Methods:
     (1) Silencing the IDH1gene of THP-1and HL-60/ADR using small interfering RNA (siRNA), cell growth, cycle and apoptosis were examined by MTT and flow cytometry, apoptosis and signaling pathway of proteins were detected by western blot
     (2) According to the expression level of IDH1mRNA, we select specimens of16patients from CN-AML(8from high expression group and8from low expression group) and conducted a microRNA expression analysis using SBC Human miRNA Microarray Release16.0to seek microRNA associated with IDH1mRNA expression. qRT-PCR was used to validate the result of the microRNA chip.
     Results:
     (1) IDH1gene expression of THP-1cells was silenced by siRNA, cultivated for7days, cell viability of siRNA IDH1group was lower than that of negative control group(p=0.04). Apoptotic rate of siRNA IDH1group was37.22±8.27%, higher than that of negative control group (19.50±1.18%, p=0.021). Accordingly, Caspase-3and PARP were activated and PI3K/AKT/mTOR pathway was inhibited in siRNA IDH1group. However, down-regulated of IDH1expression has no effect on cell cycle in THP-1cell as compared to negative control group (p=0.89).
     (2) After silencing IDH1, THP-1cells increase the sensitivity to chemotherapeutic drugs such as HHT, ACR and DNR.
     (3) After silencing IDH1of HL-60/ADR for48hours, Caspase-3and PARP were activated and PI3K/AKT pathway was inhibited. The sensitivity of HL-60/ADR to doxorubicin was increased by silenceing IDH1.
     (4) Result of chip:Patients with high IDH1mRNA expression had low expression of microRNAs, which were miR-181family (miR-181a, miR-181a-2, miR-181b, miR-181c*, miR-181c miR-181a*and miR-181d), miR-146a, miR-128, miR-625, miR-25and miR-335, and had low expression of4microRNAs, which were miR-4286, miR-660, miR-107and miR-324-5p. The microRNA expression were contrary in patients with low IDH1mRNA expression.
     (5) qRT-PCR confirmed that, low expression of miR-181family(miR-181b and miR-181d) and high expression of miR-4286in samples with high IDH1mRNA expression; above microRNA had opposite expression level in sample with low IDH1mRNA expression.
     Conclusion:
     (1) Silenceing IDH1of THP-1and HL-60/ADR, decreased AML cell proliferation, induced apoptosis, increased sensitivity to chemotherapeutic drugs in THP-1, and reversed drug resistance of HL-60/ADR.
     (2) miR-181family has played the role of tumor suppressor genes, inhibiting the expression of IDH1mRNA in the CN-AML patients. miR-4286has played the role of oncogenes, promoting the expression of IDH1mRNA in the CN-AML patients.
引文
[1]Siegel R, Naishadham D, Jemal A. Cancer statistics,2012. CA Cancer J Clin. 2012 Jan-Feb;62(1):10-29.
    [2]Estey, E. and H. Dohner. Acute myeloid leukaemia. Lancet,2006.368(9550): 1894-907.
    [3]JW Vardiman,J Thiele,DA Arber, et al. The 2008 revision of the World Health Organization(WHO) classification of myeloid neoplasms and acute leukemia: rational and important changes.Blood.2009; 114:937-51.
    [4]Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011.43(4):309-15.
    [5]Shen Y, Zhu YM, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood,2011. 118(20):5593-603.
    [6]Dohner H, Estey EH, Admadori S, et al. Diagnosis and management of acute myeloid leukemia in adults:recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood,2009.115(3):453-74.
    [7]Parsons D.W,S. Jones X. Zhang, et al. An intergrated genomic analysis of human glioblastoma multiforme.Science.2008:321:1807-1812.
    [8]Mardis E.R.,L Ding.D.J. Dooling, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N.Engl.J.Med. 2009;361:1058-1066.
    [9]Nomdedeu J, Hoyos M, Carricondo M, et al. Adverse impact of IDH1 and IDH2 mutations in primary AML:experience of the Spanish CETLAM group. Leukemia Research.2012; 36(8):990-7.
    [10]Takahashi S. Current findings for recurring mutations in acute myeloid leukemia. J Hematol Oncol.2011; 14;4:36.
    [11]Patel JP, Gonen M, Figueroa ME, et al. Prognostic Relevance of Integrated Genetic Profiling in Acute Myeloid Leukemia. N Engl J Med.2012 Mar 22;366(12):1079-89.
    [12]Schnittger S, Haferlach C, Ulke M, et al. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood.2010 Dec 16; 116(25):5486-96.
    [13]Chotirat S, Thongnoppakhun W, Promsuwicha O, et al. Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients. J Hematol Oncol.2012.7;5.
    [14]Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia A Cancer and Leukemia Group B Study J Clin Oncol.2010 May 10;28(14):2348-55.
    [15]Chou WC, Hou HA, Chen CY, et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood.2010 Apr 8;115(14):2749-54.
    [16]Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-lalpha.Science.2009; 324:261-265.
    [17]Dang L,White DW,Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate.Nature.2009;462:739-744.
    [18]Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate.Cancer Cell.2010; 17:225-234.
    [19]S Gross.RA Cairns,MD Minden, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations.J Exp Med.2010;207:339-344.
    [20]Chen Z, Zang J, Wheststine J, et al. Structural insights into histone demethylation by JMJD2 family members.Cell.2006; 125:691-702.
    [21]Krieg AJ, Rankin EB, Chan D,et al. Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhance hypoxic gene expression and tumor growth.Mol Cell Biol.2010;30:344-353.
    [22]W Xu, H Yang, Y Liu, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of a-ketoglutarate dependent dioxygenases. Cancer Cell.2011;19:17-30.
    [23]Figueroa ME. Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function. and Impair Hematopoietic Differentiation. Cancer Cell.2010 Dec 14;18(6):553-67.
    [24]Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004; 116:281-97.
    [25]J Hu,YF Liu, CF Wu, et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. PNAS.2009; 106:3342-47.
    [26]Juratli TA, Kirsch M, Robel K, et al. IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade Ⅱ and their consecutive secondary high-grade gliomas. J Neurooncol,2012.108(3):403-10.
    [27]Lin, J, Yao DM, Qian J, et al. IDH1 and IDH2 mutation analysis in Chinese patients with acute myeloid leukemia and myelodysplastic syndrome. Ann Hematol,2011.91(4):p.519-25.
    [28]Ravandi F, Patel K, Luthra R, et al., Prognostic significance of alterations in IDH enzyme isoforms in patients with AML treated with high-dose cytarabine and idarubicin. Cancer,2011.118(10):p.2665-73.
    [29]Zhou, KG, Jiang LJ, Shang Z, et al. Potential application of IDH1 and IDH2 mutations as prognostic indicators in non-promyelocytic acute myeloid leukemia:a meta-analysis. Leuk Lymphoma,2012.53(12):2423-9.
    [30]Jia ZX, Zhou M, Chao HY, et al, Analysis of IDH1 and IDH2 mutations in patients with acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi,2012. 33(5):397-401.
    [31]Abbas S, Lugthart S, Kavelears FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia:prevalence and prognostic value. Blood,2010.116(12):2122-6.
    [32]Shang Z, Wang D, Xiao M, et al. Detection of Isocitrate Dehydrogenase 1 Gene Mutation in 205 AML Patients and Its Clinical Significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2012.20(6):1307-11.
    [33]Chou, WC, Hou HA, Chen CY, et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood,2010.115(14):2749-54.
    [34]Rakheja D, Konoplev S, Su M, et al. High incidence of IDH mutations in acute myeloid leukaemia with cuplike nuclei. Br J Haematol,2011.155(1):125-8.
    [35]Shen Y, Zhu YM, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood,2011. 118(20):5593-603.
    [36]Wen-Chien Chou, Yen-Ning Huang, Chi-Fei Huang, et al. A single-tube, sensitive multiplex method for screening of isocitrate dehydrogenase 1 (IDH1) mutations. Blood,2010 116:495-496.
    [37]Reitman ZJ, Jin G, Karoly ED, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad SciUSA,2011.108(8):3270-5.
    [38]Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature,2012.483(7390):474-8.
    [39]Grassian AR, Lin F, Barrett R, et al. Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT). J Biol Chem,2012.287(50): 42180-94.
    [40]Ambros V. The functions of animal microRNAs. Nature.2004; 431(7006): 350-355.
    [41]Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell. 2009;136(2):215-233.
    [42]He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature.2005;435(7043):828-833.
    [43]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science.2007;318(5858):1931-1934.
    [44]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletionsanddown--regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A.2002;99(24):15524-9.
    [45]Michael MZ, O'Connor SM, van Holst Pellekaan NG, et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1(12):882-91.
    [46]Takamizawa J, Konishi H, Yanagisawa K, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res.2004 Jun 1;64(11):3753-6.
    [47]Iorio MV, Ferracin M, Liu CG, Veronese A,et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.2005;65(16):7065-70.
    [48]Murakami Y, Yasuda T, Saigo K, et al. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene.2006 Apr 20;25(17):2537-45.
    [49]Corsten MF, Miranda R, Kasmieh R, et al. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res.2007; 67(19):8994-9000.
    [50]Marcucci G, Mrozek K, Radmacher MD, et al. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood.2011; 27;117(4):1121-9.
    [51]Georgantas RW 3rd, Hildreth R, Morisot S, et al. CD34+hematopoietic stem-progenitor cell microRNA expression and function:a circuit diagram of differentiation control. Proc Natl Acad Sci U S A.2007; 20;104(8):2750-5
    [52]Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A.2005 13; 102(50):18081-6.
    [53]Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A.2006; 28;103(13):5078-83.
    [54]Jongen-Lavrencic M, Sun SM, Dijkstra MK,et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood.2008; 111(10):5078-5085.
    [55]Li Z, Lu J, Sun M, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci USA. 2008;105(40):15535-15540.
    [56]Dixon-McIver A, East P, Mein CA, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoSONE. 2008;3(5):2141.
    [57]Cammarata G, Augugliaro L, Salemi D, et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am J Hematol. 2010;85(5):331-339.
    [58]Garzon R, Volinia S, Liu C-G, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood.2008; 111(6):3183-3189.
    [59]Popovic R, Riesbeck LE, Velu CS, et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood. 2009;113(14):3314-3322.
    [60]Mi S, Li Z, Chen P, et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA.2010;107(8):3710-3715
    [61]Wong P, Iwasaki M, Somervaille TC, et al. The miR-17-92 micro RNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res.2010;70(9):3833-3842.
    [62]Hackanson B, Bennett KL, Brena RM, et al. Epigenetic modification of CCAAT/enhancer binding protein a expression in acute myeloid leukemia. Cancer Res.2008;68(9):3142-3151.
    [63]Mro'zek K, Marcucci G, Paschka P, et al. Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics:are we ready for a prognostically prioritized molecular classification? Blood.2007;109(2):431-448.
    [64]Mro'zek K, Heerema NA, Bloomfield CD. Cytogenetics in acute leukemia. Blood Rev.2004;18(2):115-136.
    [65]Schlenk RF, Do"hner K, Krauter J, et al. Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 2008;358(18):1909-1918.
    [66]Kottaridis PD, Gale RE, Frew ME, et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) addsimportant prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy:analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood. 2001;98(6):1752-1759.
    [67]Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia:association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002;99(12):4326-4335.
    [68]Whitman SP, Maharry K, Radmacher MD, et al. FLT3 internal tandem duplication associates with adverse outcome and gene-and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B study. Blood.2010;116(18):3622-3626.
    [69]Caligiuri MA, Strout MP, Lawrence D, et al. Rearrangement of ALL 1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res. 1998;58(1):55-59.
    [70]Paschka P, Marcucci G, Ruppert AS, et al. Wilms'tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B study. J Clin Oncol. 2008;26(28):4595-4602
    [71]Virappane P, Gale R, Hills R, et al. Mutation of the Wilms'tumor 1 gene is a poor prognostic factor associated with chemotherapy resistance in normal karyotype acute myeloid leukemia:the United Kingdom Medical Research Council Adult Leukaemia Working Party. J Clin Oncol. 2008;26(33):5429-5435.
    [72]Becker H, Marcucci G, Maharry K. et al. Mutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B study. Blood. 2010;116(5):788-792.
    [73]Marcucci G, Maharry K, Wu Y-Z, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B study. J Clin Oncol.28(14):2348-2355.
    [74]Paschka P, Schlenk RF, Gaidzik Ⅵ, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol.2010;28(22):3636-3643.
    [75]Marcucci G, Maharry K. Whitman SP. et al. High expression levels of the ETS-related gene, ERG,predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia Group B study. J Clin Oncol.2007;25(22):3337-3343.
    [76]Heuser M, Beutel G, Krauter J, et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood.2006;108(12):3898-3905.
    [77]Do'hner K, Schlenk RF, Habdank M, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics:interaction with other gene mutations. Blood 2005;106(12):3740-3746.
    [78]Schnittger S, Schoch C, Kern W, et al. Nucleophosmin gene mutations are predictors of favorable prognosis in acute myelogenous leukemia with a normal karyotype. Blood.2005;106(12):3733-3739.
    [79]Wouters BJ, Lo"wenberg B, Erpelinck-Eerschueren CAJ, et al. Double CEBPAmutations, but not single CEBPAmutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood.2009; 113(13):3088-3091.
    [80]Dufour A, Schneider F, Metzeler KH, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol. 2010;28(4):570-577.
    [81]O'Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA. 2009;106(17):7113-7118.
    [82]Costinean S, Sandhu SK, Pedersen IM, et al. Srchomology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emu-MiR-155 transgenic mice. Blood.2009; 114(7):1374-1382.
    [83]Garzon R, Garofalo M, Martelli MP, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A.2008;105(10):3945-3950.
    [84]Becker H, Marcucci G, Maharry K, et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal denovo acute myeloid leukemia and associated gene-and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol.2010;28(4):596-604.
    [85]Marcucci G, Maharry K, Radmacher MD, et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPAmutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features:a Cancer and Leukemia Group B study. J Clin Oncol. 2008;26(31):5078-5087.
    [86]Marcucci G, Mrozek K, Radmacher MD, et al. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood.2011 Jan 27;117(4):1121-9.
    [87]1 Sukowati CH, Rosso N, Pascut D, et al. Gene and functional up-regulation of the BCRP/ABCG2 transporter in hepatocellular carcinoma. BMC Gastroenterol.2012,15;12:160.
    [88]2. Pallis M, Hills R, White P, et al. analysis of the interaction of induction regimens with p-glycoprotein expression in patients with acute myeloid leukaemia:results from the MRC AML 15 trial. Blood Cancer J.2011 I(6):e23.
    [89]3. Scheiner MA, da Cunha Vasconcelos F, da Matta RR, et al. ABCB1 genetic variation and P-glycoprotein expression/activity in a cohort of Brazilian acute myeloid leukemia patients. J Cancer Res Clin Oncol.2012 Jun;138(6):959-69.
    [90]4. Carnicer MJ, Bernardini S, Bellincampi L, et al. Role of gamma-glutamyl cysteine synthetase (gamma-GCS) gene expression as marker of drug sensitivity in acute myeloid leukemias. Clin Chim Acta.2006 Mar;365(1-2):342-5.
    [91]5. Zhou FL, Zhang WG, Wei YC, et al. Involvement of oxidative stress in the relapse of acute myeloid leukemia. J Biol Chem.2010 May 14;285(20):15010-5.
    [92]6. Song JH, Kweon SH, Kim HJ, et al. High TOP2B/TOP2A expression ratio at diagnosis correlates with favourable outcome for standard chemotherapy in acute myeloid leukaemia. Br J Cancer.2012 Jun 26; 107(1):108-15.
    [93]7. Cowell IG, Sondka Z, Smith K, et al. Model for MLL translocations in therapy-related leukemia involving topoisomerase Ⅱβ-mediated DNA strand breaks and gene proximity. Proc Natl Acad Sci U S A.2012 5;109(23):8989-94.
    [94]8. Chauhan PS, Bhushan B, Singh LC, et al. Expression of genes related to multiple drug resistance and apoptosis in acute leukemia:response to induction chemotherapy. Exp Mol Pathol.2012;92(1):44-9.
    [95]9. Xu B, Shi P, Fombon IS, et al. Disulfiram/copper complex activated JNK/c-jun pathway and sensitized cytotoxicity of doxorubicin in doxorubicin resistant leukemia HL60 cells. Blood Cells Mol Dis.2011;15;47(4):264-9.
    [96]Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell.2007;129(1):147-161.
    [97]Pekarsky Y, Cimmino A, Palamarchuk A, et al.Tcll expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590-11593.
    [98]Wei Zhu, Xia Shan, Tongshan Wang, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines, nt. J. Cancer: 2010,127,2520-2529.
    [99]Haitao Bai, Zhongwei Cao, Chong Deng, et al. miR-181a sensitizes resistant leukaemia HL-60/Ara-C cells to Ara-C by inducing apoptosis. J Cancer Res Clin Oncol,2012,138:595-602.
    [100]Hao Li, Lulu Hui, Wenlin Xu. miR-181 a sensitizes a multidrug-resistant leukemia cell line K562/A02 to daunorubicin by targeting BCL-2. Acta Biochim Biophys Sin 2012,44:269-277.
    [101]Gong Chen, Wei Zhu, Dezhi Shi, et al.MicroRNA-181a sensitizes human malignant glioma U87MG cells to radiation by targeting Bcl-2. ONCOLOGY REPORTS,201023:997-1003.
    [102]Dan-Xia Zhu,Wei Zhu,Cheng Fang, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes. Carcinogenesis,2012,33:1294-1301.
    [103]Kohrt HE, Coutre SE. Optimizing therapy for acute myeloid leukemia. J Natl Compr Cane Netw.2008;6:1003-1016.
    [104]Valent P. Targeting of leukemia-initiating cells to develop curative drug therapies:straightforward but nontrivial concept. Curr Cancer Drug Targets. 2011;11:56-71.
    [105]Tamburinin J, Elie C, Bardet V, et al. Constitutive phosphoinositide 2-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood.2007; 110:1025-1028.
    [106]Xu Q, Simpson SE, Scialla TJ, et al. A,Cruel M.Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood.2003; 102:972-980.
    [107]Gallay N, Dos Santos C, Cuzin L, et al. The level of AKT phosphorylation on threonine 308 but not on serine 473 is associated with high-risk cytogenetics and predicts poor overall survival in acute myeloid leukaemia. Leukemia. 2009;23:1029-1038.
    [108]Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia:SNP rs11554137 is an adverse prognostic factor. J Clin Oncol. 2010;28(14):2356-2364.
    [109]Yan XJ, Xu J, Gu ZH, et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet.2011;43(4):309-315.
    [110]Ota A, Tagawa H, Karana S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res.2004; 64(9):3087-95.
    [111]Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells.2007; 109(10):4399-405.
    [112]Mi S, Lu J, Sun M, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A.2007;104(50):19971-19976.
    [113]Zanette DL, Rivadavia F, Molfetta GA, et al. MiRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia J. Braz J Med Biol Res 2007 40 11:1435 1440.
    [114]Landais S, Landry S, Legault P, et al. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res. 2007;67(12):5699-707.
    [115]Bai H, Xu R, Cao Z,et al. Involvement of miR-21 in resistance to daunorubicin by regulating PTEN expression in the leukaemia K562 cell line. FEBS Lett. 2011;21;585(2):402-8.
    [116]O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med.2008;205(3):585-94.
    [117]Popovic R, Riesbeck LE, Velu CS, et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization.Blood. 2009;113(14):3314-3322.
    [118]Johnson SM, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family.Cell,2005,120(5):63-647.
    [119]Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and downregulation of microRNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukaemia. Proc Natl Acad Sci USA,2002,99(24):15524-15529.
    [120]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A.2005; 102(39):13944-9.
    [121]Zhao H, Kalota A, Jin S, et al. The c-myb proto-oncogene and microRNA-15a comprise an active autoregulatory feedback loop in human haematopoietic cells. Blood,2009,113(3):505-516.
    [122]Calin GA, Ferracin M, Cimmino A, et al. A microRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med.2005;353(17):1793-1801.
    [123]Yanaihara N, Caplen N, Bowman E, et al. Unique microRNAmolecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189-198.
    [124]Iorio MV, Ferracin M, Liu C-G, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.2005;65(16):7065-7070.
    [125]Han Y-C, Park CY, Bhagat G, et al. microRNA-29a induces aberrant self-renewal capacity in hematopoietic progenitors, biased myeloid develop-ment. and acute myeloid leukemia. J Exp Med.2010;207(3):475-489.
    [126]Garzon R, Heaphy CEA, Havelange V, et al. MicroRNA 29b functions in acute myeloid leukemia. Blood.2009:114(26):5331-5341.
    [127]Liu S, Wu L-C, Pang J. et al. Sp1/NFkappaB/HDAC/miR-29b regulatory network in KJT-driven myeloid leukemia. Cancer Cell.2010;17(4):333-347.
    [128]Garzon R, Croce CM. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol.2008;15(14):352-358.
    [129]Krivtsov AV, Twomey D, Feng Z, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;4427104):818-822.
    [130]Fazi F, Racanicchi S, Zardo G, et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell. 2007;12(5):457-466.
    [131]Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell.2007;129(1):147-161.
    [132]Pekarsky Y, Cimmino A, Palamarchuk A, et al.Tcll expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006;66(24):11590-11593.
    [133]Bhattacharya SD, Garrison J, Guo H, et at. MicroRNA-181 a regulates Osteopontin-dependent metastatic function in hepatocellular cancer cell lines. Surgery,2010;148(2):291-297.
    [134]Ji J, Yamashita T, Budhu A, et al. Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. HepatoIogy,2009,50(2):472-480.
    [135]Chen L, Yang Q, Kong WQ, et al. MicroRNA-181b targets cAMP responsive element binding proteinl in gastric adenocarcinomas. IUBMB Life,2012;64(7):628-635.
    [1]Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science 2006;314:268-74.
    [2]Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-12.
    [3]Mardis ER, Ding L, Dooling DJ, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009;361:1058-66.
    [4]Thol F, Damm F, Wagner K, et al. Prognostic impact of IDH2 mutations in cytogenetically normal acute myeloid leukemia. Blood 2010;116:614-6.
    [5]Abbas S, Lugthart S, Kavelaars FG, et al. Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia:prevalence and prognostic value. Blood 2010; 116:2122-6.
    [6]Boissel N, Nibourel O, Renneville A, et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol 2010;28:3717-23.
    [7]Green CL, Evans CM, Hills RK, Burnett AK, Linch DC, Gale RE. The prognostic significance of IDH1 mutations in younger adult patients with acute myeloid leukemia is dependent on FLT3/ITD status. Blood 2010; 116:2779-82.
    [8]Gross S, Cairns RA, Minden MD, et al. Cancer-associated metabolite 2-hydroxyglutarate accumulates in acute myelogenous leukemia with isocitrate dehydrogenase 1 and 2 mutations. J Exp Med 2010;207:339-44.
    [9]Ho PA, Alonzo TA, Kopecky KJ, et al. Molecular alterations of the IDH1 gene in AML:a Children's Oncology Group and Southwest Oncology Group study. Leukemia 2010;24:909-13.
    [10]Marcucci G, Maharry K, Wu YZ, et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia:a Cancer and Leukemia GroupB study. J Clin Oncol 2010;28:2348-55.
    [11]Paschka P, Schlenk RF, Gaidzik VI, et al. IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 2010;28:3636-43.
    [12]Schnittger S, Haferlach C, Ulke M, et al. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 2010;116:5486-96.
    [13]Tefferi A. Lasho TL, Abdel-Wahab O, et al. IDH1 and IDH2 mutation studies in 1473 patients with chronic-, fibrotic-or blast-phase essential thrombocythemia. polycythemia vera or myelofibrosis. Leukemia 2010:24:1302-9.
    [14]Green A, Beer P. Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 2010;362:369-70.
    [15]Thol F, Weissinger EM, Krauter J, et al. IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 2010;95:1668-74.
    [16]Cairns RA, Iqbal J, Lemonnier F, et al. IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 2012; 119:1901-3.
    [17]Dang L. White DW, Gross S, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009;462:739-44.
    [18]Pietrak B, Zhao H, Qi H, et al. A tale of two subunits:how the neomorphic R132H IDH1 mutation enhances production of alphaHG Biochemistry 2011;50:4804-12.
    [19]Choi C, Ganji SK, Deberardinis RJ, et al.2-Hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat Med 2012; 18:624-9.
    [20]Rakheja D, Konoplev S, Su M, et al. High incidence of IDH mutations in acute myeloid leukaemia with cuplike nuclei. Br J Haematol 2011;155:125-8.
    [21]Andersson AK, Miller DW, Lynch JA, et al. IDH1 and IDH2 mutations in pediatric acute leukemia. Leukemia 2011;25:1570-7.
    [22]Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010;17:225-34.
    [23]Frezza C, Tennant DA, Gottlieb E. IDH1 mutations in gliomas:when an enzyme loses its grip. Cancer Cell 2010;17:7-9.
    [24]Plaut GW, Cook M, Aogaichi T. The subcellular location of isozymes of NADP-isocitrate dehydrogenase in tissues from pig, ox and rat. Biochim Biophys Acta 1983;760:300-8.
    [25]Narahara K, Kimura S, Kikkawa K, et al. Probable assignment of soluble isocitrate dehydrogenase (IDH1) to 2q33.3. Hum Genet 1985;71:37-40.
    [26]Geisbrecht BV, Gould SJ. The human PICD gene encodes a cytoplasmic and peroxisomal NADP(+)-dependent isocitrate dehydrogenase. J Biol Chem 1999;274:30527-33.
    [27]Oh IU, Inazawa J,KimYO, Song BJ, Huh TL. Assignment of the human mitochondrial NADP(+)-specific isocitrate dehydrogenase (IDH2) gene to 15q26.1 by in situ hybridization. Genomics 1996;38:104-6.
    [28]Zhao S, Lin Y, Xu W, et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1 alpha. Science 2009;324:261-5.
    [29]Prensner JR, Chinnaiyan AM. Metabolism unhinged:IDH mutations in cancer. Nat Med 2011;17:291-3.
    [30]Aghili M, Zahedi F, Rafiee E. Hydroxyglutaric aciduria and malignant brain tumor:a case report and literature review. J Neurooncol 2009;91:233-6.
    [31]Xu W, Yang H, Liu Y, et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 2011;19:17-30.
    [32]Figueroa ME, Abdel-Wahab O, Lu C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010;18:553-67.
    [33]Chowdhury R, Yeoh KK, Tian YM, et al. The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 2011;12:463-9.
    [34]Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001:294:1337-40.
    [35]Ito S, D'Alessio AC, Taranova OV. Hong K, Sowers LC, ZhangY. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010;466:1129-33.
    [36]Chou WC, Chou SC, Liu CY, et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood 2011;118:3803-10.
    [37]Patel JP, Gonen M, Figueroa ME, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med 2012;366:1079-89.
    [38]Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature 2012;483:474-8.
    [39]Esteve PO, Chin HG, Smallwood A, et al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 2006;20:3089-103.
    [40]Wagner K, Damm F, Gohring G, et al. Impact of IDH1 R132 mutations and an IDH1 single nucleotide polymorphism in cytogenetically normal acute myeloid leukemia:SNP rs11554137 is an adverse prognostic factor. J Clin Oncol 2010;28:2356-64.
    [41]Chou WC, Hou HA, Chen CY, et al. Distinct clinical and biologic characteristics in adult acute myeloid leukemia bearing the isocitrate dehydrogenase 1 mutation. Blood 2010; 115:2749.
    [42]Patel KP, Ravandi F, Ma D, et al. Acute myeloid leukemia with IDH1 or IDH2 mutation:frequency and clinicopathologic features. Am J Clin Pathol 2011;135:35-45.
    [43]Yan H, Parsons DW, Jin G, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009;360:765-73.
    [44]Green CL, Evans CM, Zhao L, et al. The prognostic significance of IDH2 mutations in AML depends on the location of the mutation. Blood 2011;118:409-12.
    [45]Chen W, Konoplev S, Medeiros LJ, et al. Cuplike nuclei (prominent nuclear inaginations) in acute myeloid leukemia are highly associated with FLT3 internal tandem duplication and NPM1 mutation. Cancer 2009;115:5481-9.
    [46]Marcucci G, Mrozek K, Radmacher MD, Garzon R, Bloomfield CD. The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011;117:1121-9.
    [47]Chou WC, Lei WC, Ko BS, et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia2011;25:246-53.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700