染色体不稳定性与乳腺癌易感性及预后关系的分子流行病学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分博莱霉素诱导的突变敏感性与女性乳腺癌危险性关系的病例对照研究
     目的:遗传变异和环境因素共同参与了乳腺癌罹患风险的调控,DNA修复能力不足也与患乳腺癌相关。本研究的主要目的是:(1)评估可间接反映DNA修复能力的“突变敏感性”和乳腺癌罹患风险之间的相关性;(2)评估中国女性被动吸烟史与其罹患乳腺癌的风险之间的相关性。
     方法:本研究样本由196名中国女性乳腺癌患者(病例组)及211名无癌症家族史的健康对照组成。以博莱霉素作为诱变剂,本研究探讨了博莱霉素突变敏感性与乳腺癌罹患风险之间的关系。通过检测博莱霉素诱导短期体外培养的上述两组个体的外周血淋巴细胞染色体断裂数,估计博莱霉素诱导的个体突变敏感性。通过非参数检验和Fisher确切概率法比较病例对照组间差异性,并采用多因素Logistic回归(调整相关协变量)分析突变敏感性与乳腺癌危险性的关系。
     结果:与对照组相比,病例组博莱霉素诱导的平均每细胞染色体断裂数显著增加(0.81vs.0.73,P=0.016)。随着博莱霉素诱导的平均每细胞染色体断裂数增加,乳腺癌的罹患风险增加,校正后的OR值为1.82(95%可信区间:1.00-3.35,P<0.01)。对于绝经前和被动吸烟的女性而言,博莱霉素突变敏感性和乳腺癌罹患风险之间关系更为密切。既有博莱霉素突变敏感性又有被动吸烟史的女性患乳腺癌的风险更大,有被动吸烟史的乳腺癌的罹患风险增加了2.77倍(95%可信区间:1.33-5.80,P<0.01),长期被动吸烟者(>20年)乳腺癌罹患风险增加了5.02倍(95%可信区间:1.99-9.97,P<0.01)。
     结论:本研究结果表明,博莱霉素诱导的突变敏感性与中国女性乳腺癌的罹患风险呈正相关,随着博来霉素突变敏感性增加,中国女性患乳腺癌的可能性显著增加。有被动吸烟史也增加了乳腺癌的罹患风险,既有被动吸烟史又有博莱霉素高敏感性的中国女性患乳腺癌的风险更大。
     第二部分外周血粒细胞DNA特异性端粒长度与乳腺癌危险性关系的病例对照研究
     目的:导致染色体不稳定性的端粒异常在乳腺癌的发生发展中可能具有非常重要的作用,外周血粒细胞端粒缩短作为乳腺癌发生发展过程中的一个事件,可望成为乳腺癌的诊断和预后评价指标之一,但是目前它与肿瘤风险相关性报道结果不尽一致。为此。本研究探讨了乳腺癌外周血中性粒细胞DNA端粒长度与乳腺癌危险性的关系,并分析了其与乳腺癌病理组织学分级,病理分期,激素受体状态的关系。
     方法:本研究以213名女性乳腺癌患者及230名无癌症家族史的健康对照为研究对象,采用特殊设计的实时定量PCR技术测定研究对象外周血中性粒细胞染色体DNA端粒长度。Fisher确切概率、多因素Logistic回归和线性趋势性分析评价外周血中性粒细胞DNA端粒长度与乳腺癌危险性的关系。
     结果:乳腺癌患者外周血中性粒细胞染色体DNA端粒长度较对照组明显缩短(8.47vs.9.02,P=0.06)。随着端粒的变短,乳腺癌的危险性增大,线性趋势性检验P<0.01。这种端粒缩短的趋势在绝经前妇女中尤为明显(调整OR=1.95,95%CI:1.02-3.73,并且存在显著的剂量-效应关系(调整OR=3.41,95%CI:1.29-9.05,趋势性P<0.01)。乳腺癌病例的端粒长度与病理组织分级以及分期有关。分级高者和分期晚者端粒长度分别低于分级低者和分期早者。在分级高者和分期晚者中,其调整OR分别为1.72(95%CI:1.00-2.96)和1.65(95%CI:1.17-2.57)。而激素受体状态与染色体DNA端粒长度无相关性。
     结论:外周血中性粒细胞端粒长度缩短与乳腺癌发生风险密切正相关,而且与肿瘤的临床病理特征,如肿瘤的分化程度、肿瘤分期等密切相关,它可能是反映乳腺癌发生及预后相关的生物标志物之一。
     第三部分乳腺癌组织特异性端粒长度、肿瘤细胞端粒衰减与乳腺癌危险因素与预后因素的关系研究
     目的:端粒长度的维护在乳腺癌发生发展中起着重要的作用,端粒缩短见于乳腺癌前病变由导管增生到导管原位癌转化过程的细胞中。端粒长度的检测不仅作为重要的肿瘤发生生物标记,而且可以作为重要的临床预后指标。本研究检测了213例原发性乳腺癌病例组织中多种类型的细胞的端粒长度,通过对不同类型细胞端粒长度进行比较,探讨端粒长度与乳腺癌已知危险因素和预后因素的关系,为寻找可靠的乳腺癌生物标记来判断预后提供依据。
     方法:采用改进的端粒特异性定量荧光原位杂交技术,以及数字化端粒荧光信号的定量用软件ImageJ。检测219例原发性乳腺癌病例组中,213例收集到明确的临床病理资料和完整病理切片病例的多种类型细胞端粒长度。
     结果:乳腺癌细胞平均相对端粒长度(0.54±0.43)显著低于肿瘤浸润淋巴细胞(1.344±0.96,P<0.001)和邻近正常上皮细胞(0.88±0.56,P<0.001)。肿瘤相对端粒长度(端粒衰减)与乳腺癌相关危险因素的关系分析显示有主动吸烟史、长期饮酒者、无女性乳腺癌家族史病例与端粒衰减危险性有关,OR (95%CI)分别为1.83(0.52-6.11),1.02(0.39-2.48)和1.23(0.26-5.43),但无统计学意义。端粒衰减与乳腺癌临床病理特征关系分析结果显示,肿瘤大于1.5厘米病例的肿瘤相对端粒长度(0.43+0.41)显著低于肿瘤小于1.5厘米者(0.56±0.34,P=0.019)。肿瘤分期为Ⅲ和Ⅳ期病例的肿瘤相对端粒长度(0.45±0.52)显著低于肿瘤分期为Ⅰ和Ⅱ期者(0.59±0.56,P=0.05)。肿瘤组织分级为Ⅲ级者的肿瘤相对端粒长度(0.39±0.52)显著低于肿瘤分级为Ⅰ和Ⅱ级者(0.48±0.57,P=0.043)。多因素Logistic回归分析显示端粒衰减与肿瘤大小、肿瘤分期以及肿癌分级显著相关,调整后的OR值(95%CI)分别为1.71(1.12-2.79),1.97(1.06-3.25)和2.06(1.17-3.45)。而肿瘤端粒衰减与肿瘤组织学类型、ER和PR状态的未见具有统计学意义的相关性。
     结论:肿瘤细胞端粒长度显著短于肿瘤基质细胞和周围正常上皮细胞。肿瘤细胞端粒缩短与肿瘤大小,肿瘤分期,病理组织学分级显著相关。较大肿瘤、高分级和高分期者肿瘤端粒衰减程度增大。肿瘤组织端粒长度以及端粒衰减有望作为乳腺癌预后因素的生物学标记物之一。
Part1The Association Between Bleomycin-induced Mutagen Sensitivity and the Risk of Breast Cancer:A Case-Control Study
     Objective It is well recognized that genetic variation as well as environmental factors modulate breast cancer risk. Deficiencies in DNA repair capacity are thought to associate with breast cancer risk. The main aim of this study was to use the mutagen sensitivity assay (MSA) as an indirect measure of DNA repair capacity to assess breast cancer risk, and the relationship between passive smoking and breast cancer risk among women in China.
     Methods We carried out a case-control study, involving196Chinese patients with breast cancer and211controls without the disease and with no history of cancer. We investigated the association between mutagen sensitivity and breast cancer risk using bleomycin as the mutagen. Mutagen sensitivity was measured by quantifying the chromatid breaks induced by mutagens in short-term cultures of peripheral blood lymphocytes. Non-parametric tests and the Fisher's exact test were used to determine the statistical significance of the crude case-control comparisons, followed by logistic regression to adjust for important covariates.
     Results The mean number of bleomycin-induced breaks per cell was0.81for cases compared with0.73for the controls (P=0.016). A greater number of bleomycin-induced chromosomal breaks per cell was associated with an increased risk of breast cancer (adjusted odds ratio of1.82, P trend <0.01). The association between bleomycin sensitivity and breast cancer risk was greater for women who were premenopausal and exposed to tobacco smoke (passive smokers). The combination of bleomycin sensitivity and exposure to tobacco smoke increased risk further; women passive smokers with high sensitivity to bleomycin had a2.77-fold increased risk of breast cancer. Of these women, those who were exposed to tobacco smoke for>20hour-year had a5.02-fold increased risk of breast cancer.
     Conclusions Our data indicate that increased bleomycin-induced mutagen sensitivity is significantly associated with an increased risk of breast cancer among Chinese women. Exposure to passive smoke is also associated with increased breast cancer risk, and the correlation is even greater for women with both longer passive exposure to tobacco smoke and high sensitivity to bleomycin.
     Part2The case-control study of relationship between telomere length from blood cells and the risk of breat cancer
     Objective Telomere dysfunction, which leads to genomic instability, maybe played an important role in the development of breast cancer. Although the telomere in tumors was considered to be a potential promising biomarker for early diagnosis and indicator for prognostic judgment in breast cancer, current results in the research of the peripheral leukocyte telomere length are not consistent in breast cancer risk assessment. Thus, we examined telomere length in peripheral leukocyte DNA in breasts cancer patients and explore the association among telomere length and breast cancer risk as well as clinicopathological features such as tumor stage, grade of differential status.
     Method In this case-control study of breast cancer conducted in a Chinese population, we measured telomere length of peripheral leukocyte DNA in213breast cancer cases and230age-matched controls using telomere specific quantitative real-time PCR. The Fisher's exact test, multivariate Logstic regression and linear trend test were used to analysis the association between telomere length and breast cancer risk.
     Result It is showen that shorter telomere length in breast cancer cases (mean telomere length,8.47Kb) when compared with controls (9.02Kb; P=0.06). With the telomere length became shorter, the breast cancer risk increased (P for trend <0.01). Especially in premenopausal women, the adjusted OR was1.95(95%CI:1.02-3.73). There also showed a dose-dependent (adjusted OR was3.41,95%CI:1.29-9.05, P for treand<0.01). There is an association between telomere length and clinicopathological features such as tumor stage, grade of differential status. The letomere length in advanced TNM stage and higher tumor grade were shorter than those in earlier TNM stage and lower tumor grade respectively. Among advanced TNM stage and higher tumor grade, their adjusted OR was1.72(95%CI:1.00-2.96) and1.65(95%CI:1.17-2.57), respectively. Our data does not show that telomere length change in peripheral leukocyte DNA was associated with hormone receptors status.
     Conclusion Our results suggest that telomere length in peripheral leukocyte DNA was associated with breast cancer risk. Shortened telomeres not only increased breast cancer risk in Chinese women, but also are closely associated with clinicopathological features such as tumor stage, grade of differential status in cases. The peripheral leukocyte telomere length shorten could be an important screening marker for early diagnosis and indicator for prognosis in breast cancer.
     Part3The study of the relationship among telomere length, telomere attrition from tumor tissue and the risk and prognosis in breast cancer
     Objective Maintenance of telomere length is critical in tumorigenesis of breast cancer. Shortness of telomere attrition is frequently presented in the process of pre-cancer development of breast cancer from ductal hyperplasia to carcinoma in situ. Examination of telomere length can be used as bio-marker of tumorigenesis and provide pivotal prognostics in clinic. In this study, telomere length of multiple cell types from primary breast cancer samples of213from219patients, which were have clinicopathological data and tumor tissue slides, were examined and telomere length of different cell type was analyzed to correlate them with breast cancer risk factors and prognosis. Therefore, this study will provide evidence to finding reliable bio-markers for clinical prognosis.
     Methods A modified protocol for quantitative telomere-specific fluorescent-in-situ-hybridization (FISH) was used in this study. Image J was employed to quantify the data. Telomere length of multiple cell types from primary breast cancer samples of213patients was examined.213of219samples have complete clinical pathology data as well as slides.
     Results The average telomere attrition of tumor cells (0.54±0.43) is significantly shorter than that of tumor infiltrated lymphatic cells (1.34±0.96, P<0.001) and adjacent normal epithelial cells (0.88±0.56, P<0.001). The correlation analysis of tumor relative telomere length and breast cancer risk factors suggests that active smoker, long-term drinker, and females with no family history of breast cancer are highly related to the shortness of telomere. OR scores (95%CI) are1.83(0.52-6.11),1.02(0.39-2.48), and1.23(0.26-5.43), respectively. There is no statistically significant difference.The relationship between telomere attrition of tumor cells and breast cancer clinical pathological characteristics:telomere attrition of tumors larger than1.5cm (0.43±0.41) is significantly shorter than that of tumors smaller than1.5cm (0.56±0.34, P=0.019). Telomere attrition of tumors at stage Ⅲ and Ⅳ (0.45±0.52) is significantly shorter than that of tumors at stage I and II (0.59±0.56, P=0.05). Telomere attrition of tumors graded as Ⅲ (0.39±0.52) is significantly shorter than that of tumors graded as Ⅰ and Ⅱ (0.48±0.57, P=0.043). Logistic analysis shows that telomere attrition of tumor cells is closely related to tumor size, clinical tumor stage, and pathological tumor grade. The adjusted OR (95%CI) are1.71(1.12-2.79),1.97(1.06-3.25), and2.06(1.17-3.45), respectively. There is no significant correlation between telomere attrition of tumor cells and tumor histology type, ER and PR status.
     Conclusions The telomere attrition of tumor cells is significantly shorter than that of tumor stroma cells and adjacent normal epithelial cells. It is closely related to the size, clinical stage, and pathological grade of tumors. Tumors have large size, higher clinical stage, and pathological grade tend to have shorter telomeres. Both telomere length and telomere attrition are potential bio-markers for breast cancer prognosis.
引文
[1]Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin,2011; 61(2):69-90.
    [2]Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst, 2000,92(14):1126-1135.
    [3]Bray F, McCarron P, Parkin DM. The changing global patterns of female breast cancer incidence and mortality. Breast Cancer Res,2004; 6(6):229-239.
    [4]McPherson K, Steel CM, Dixon JM. ABC of breast diseases. Breast cancer-epidemiology, risk factors, and genetics. BMJ,2000; 321(7261):624-628.
    [5]Scully R. Role of BRCA gene dysfunction in breast and ovarian cancer predisposition. Breast Cancer Res,2000; 2(5):324-330.
    [6]Newman B, Mu H, Butler LM, Millikan RC, Moorman PG, King MC. Frequency of breast cancer attributable to BRCA1 in a population-based series of American women. JAMA,1998; 279(12):915-921.
    [7]Turnbull C, Rahman N. Genetic predisposition to breast cancer:past, present, and future. Annu Rev Genomics Hum Genet,2008;9:321-345.
    [8]Helzlsouer KJ, Harris EL, Parshad R, Perry HR, Price FM, Sanford KK. DNA repair proficiency: potential susceptiblity factor for breast cancer. J Natl Cancer Inst,1996; 88(11):754-755.
    [9]Parshad R, Price FM, Bohr VA, Cowans KH, Zujewski JA, Sanford KK. Deficient DNA repair capacity, a predisposing factor in breast cancer. Br J Cancer,1996; 74(1):1-5.
    [10]Patel RK, Trivedi AH, Arora DC, Bhatavdekar JM, Patel DD. DNA repair proficiency in breast cancer patients and their first-degree relatives. Int J Cancer,1997; 73(1):20-24.
    [11]Scott D, Spreadborough AR, Jones LA, Roberts SA, Moore CJ. Chromosomal radiosensitivity in G2-phase lymphocytes as an indicator of cancer predisposition. Radiat Res,1996; 145(1):3-16.
    [12]Natarajan TG, Ganesan N, Carter-Nolan P, Tucker CA, Shields PG, ms-Campbell LL. gamma-Radiation-induced chromosomal mutagen sensitivity is associated with breast cancer risk in African-American women:caffeine modulates the outcome of mutagen sensitivity assay. Cancer Epidemiol Biomarkers Prev,2006; 15(3):437-442.
    [13]Parshad R, Sanford KK. Radiation-induced chromatid breaks and deficient DNA repair in cancer predisposition. Crit Rev Oncol Hematol,2001; 37(2):87-96.
    [14]Cloos J, Spitz MR, Schantz SP, Hsu TC, Zhang ZF, Tobi H, Braakhuis BJ, Snow GB, et al. Genetic susceptibility to head and neck squamous cell carcinoma. J Natl Cancer Inst,1996; 88(8):530-535.
    [15]Spitz MR, Hoque A, Trizna Z, Schantz SP, Amos CI, King TM, Bondy ML, Hong WK, Hsu TC. Mutagen sensitivity as a risk factor for second malignant tumors following malignancies of the upper aerodigestive tract. J Natl Cancer Inst,1994; 86(22):1681-1684.
    [16]Zheng YL, Loffredo CA, Yu Z, Jones RT, Krasna MJ, Alberg AJ, Yung R, Perlmutter D, Enewold L, Harris CC, Shields PG. Bleomycin-induced chromosome breaks as a risk marker for lung cancer:a case-control study with population and hospital controls. Carcinogenesis,2003; 24(2):269-274.
    [17]Wu X, Gu J, Patt Y, Hassan M, Spitz MR, Beasley RP, Hwang LY. Mutagen sensitivity as a susceptibility marker for human hepatocellular carcinoma. Cancer Epidemiol. Biomarkers Prev, 1998; 7:567-570.
    [18]World Health Organization, International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans:Volume 83--Tobacco Smoke and Involuntary Smoking. Lyon, France:IARC Press; 2004.
    [19]CDC. Smoking and Tobacco Use:GATS:Fact Sheet:China:2010; Centers for Disease Control and Prevention:AtlantaGA,USA,2010;Availableonline:
    [20]http://www.cdc.gov/tobacco/global/gats/countries/wpr/fact_sheets/china/2010/index.htm (accessed on 2 May 2011).
    [21]Collishaw NE, Boyd NF, Cantor KP, et al. Canadian Expert Panel on Tobacco Smoke and Breast Cancer Risk. Toronto, Canada:Ontario Research Unit; 2009. OTRU Special Report Series.
    [22]Hsu TC, Johnston DA, Cherry LM, Ramkissoon D, Schantz SP, Jessup JM, Winn R.J, Shirley L, Furlong C. Sensitivity to genotoxic effects of bleomycin in humans:possible relationship to environmental carcinogenesis. Int J Cancer,1989; 43(3):403-409.
    [23]Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature,2001; 411(6835):366-374.
    [24]Berwick M, Vineis P. Markers of DNA repair and susceptibility to cancer in humans:an epidemiologic review. J Natl Cancer Inst,2000; 92(11):874-897.
    [25]Spitz MR, Wei Q, Dong Q, Amos CI, Wu X. Genetic susceptibility to lung cancer:the role of DNA damage and repair. Cancer Epidemiol Biomarkers Prev,2003;12(8):689-698.
    [26]Burger RM, Peisach J, Horwitz SB. Mechanism of bleomycin action:in vitro studies. Life Sci, 1981; 28(7):715-727.
    [27]Xu YJ, Kim EY, Demple B. Exicion of C-4-oxidized deoxyribose lesions from double-stranded DNA by human apurinic/apyrimidinic enconuclease (Apel protein) and DNA polymerase. J Biol Chem,1998; 273(44):28837-28844.
    [28]Dar M E, Winters TA, Jorgensen TJ. Identification of defective illegitimate recombinational repair of oxidatively-induced DNA double-strand breaks in ataxiatelangiectasia cells. Mutat Res, 1997; 384(3):169-179.
    [29]Jyothish B, Ankathil R, Chandini R, Vinodkumar B, Nayar GS, Roy DD, Madhavan J, Nair MK. DNA repair proficiency:a potential marker for identification of high risk members in breast cancer families. Cancer Lett,1998; 124(1):9-13.
    [30]Xiong P, Bondy ML, Li D, Shen H, Wang LE, Singletary SE, Spitz MR, Wei Q. Sensitivity to benzo(a)pyrene diol-epoxide associated with risk of breast cancer in young women and modulation by glutathione S-transferase polymorphisms:a case-control study. Cancer Res,2001; 61(23):8465-8469.
    [31]Wang LE, Han CH, Xiong P, Bondy ML, Yu TK, Brewster AM, Shete S, Arun BK, Buchholz TA, Wei Q. Gamma-ray-induced mutagen sensitivity and risk of sporadic breast cancer in young women:a case-control study. Breast Cancer Res Trea,2012; 132(3):1147-1155.
    [32]Spitz MR, Fueger JJ, Beddingfield NA, Annegers J F, Hsu TC, Newell GR, Schantz SP. Chromosome sensitivity to bleomycin-induced mutagenesis, an independent risk factor for upper aerodigestive tract cancers. Cancer Res 1989;49(16):4626-4628.
    [33]Roberts SA, Spreadborough AR, Bulman B, Barber JBP, Evans DGR, Scott D. Heritability of cellular radiosensitivity:a marker of low-penetrance predisposition genes in breast cancer. Am J Hum Genet,1999; 65(3):784-794.
    [34]Reynolds P, Goldberg D, Hurley S, Nelson DO, Largent J, Henderson KD, Bernstein L. Passive Smoking and Risk of Breast Cancer in the California Teachers Study.Cancer Epidemiol Biomarkers Prev,2009;18(12):3389-3398.
    [35]Pirie K, Beral V, Peto R, Roddam A, Reeves G, Green J. Passive smoking and breast cancer in never smokers:prospective study and meta-analysis. Int J Epidemiol,2008; 37(5):1069-1079.
    [36]Ambrosone CB, Kropp S, Yang J, Yao S, Shields PG, Chang-Claude J. Cigarette smoking, Nacetyltransferase 2 genotypes, and breast cancer risk:pooled analysis and meta-analysis. Cancer Epidemiol Biomarkers Prev,2008; 17(1):15-26.
    [37]Muller HJ. The remaking of chromosomes. Collecting Net,1938; 13:181-189.
    [38]McGrath M, Wong JY, Michaud D, Hunter DJ, De VI. Telomere length, cigarette smoking, and bladder cancer risk in men and women. Cancer Epidemiol Biomarkers Prev,2007; 16(4):815-819.
    [39]Wu X, Amos CI, Zhu Y, Zhao H, Grossman BH, Shay JW, Luo S, Hong WK, Spitz MR. Telomere dysfunction:a potential cancer predisposition factor. J Natl Cancer Inst,2003; 95(16):1211-1218.
    [40]Broberg K, Bjork J, Paulsson K, Hoglund M, Albin M. Constitutional short telomeres are strong genetic susceptibility markers for bladder cancer. Carcinogenesis,2005; 26:1236-1271.
    [41]Jang JS, Choi YY, Lee WK, Choi JE, Cha SI, Kim YJ, Kim CH, Kam S, Jung TH, Park JY.Telomere length and the risk of lung cancer. Cancer Sci,2008; 99(7):1385-1389.
    [42]Mirabello L, Garcia-Closas M, Cawthon R, Lissowska J, Brinton LA, Peplonska B, Sherman ME, Savage SA. Leukocyte telomere length in a population-based case-control study of ovarian cancer:a pilot study. Cancer Causes Control,2010;21(1):77-82.
    [43]Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, Pegoraro V, Dong LM, Zatonski W, Lissowska J, Chow WH, Baccarelli A. Telomere length in peripheral leukocyte DNA and gastric cancer risk. Cancer Epidemiol Biomarkers Prev,2009; 18(11):3103-3109.
    [44]Liu X, Bao G, Huo T, Wang Z, He X, Dong G. Constitutive telomere length and gastric cancer risk:case-control analysis in Chinese Han population. Cancer Sci,2009; 100(7):1300-1305.
    [45]Hosgood HD III, Cawthon R, He X, Chanock S, Lan Q. Genetic variation in telomere maintenance genes, telomere length, and lung cancer susceptibility. Lung Cancer,2009; 66(2):157-161.
    [46]Lee IM, Lin J, Castonguay AJ, Barton NS, Buring JE, Zee RY. Mean leukocyte telomere length and risk of incident colorectal carcinoma in women:a prospective, nested case-control study. Clin Chem Lab Med,2010;48(2):259-262.
    [47]Pooley KA, Sandhu MS, Tyrer J, Shah M, Driver KE, Luben RN, Bingham SA, Ponder BA, Pharoah PD, Khaw KT, Easton DF, Dunning AM. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res,2010; 70(8):3170-3176.
    [48]Zee RY, Castonguay AJ, Barton NS, Buring JE. Mean telomere length and risk of incident colorectal carcinoma:a prospective, nested casecontrol approach. Cancer Epidemiol Biomarkers Prev,2009; 18(8):2280-2282.
    [49]Shen J, Terry MB, Gurvich I, Liao Y, Senie RT, Santella RM. Short telomere length and breast cancer risk:a study in sister sets. Cancer Res,2007; 67(11):5538-5544.
    [50]Shen J, Gammon MD, Terry MB, Wang Q, Bradshaw P, Teitelbaum SL, Neugut AI, Santella RM. Telomere length, oxidative damage, antioxidants and breast cancer risk. Int J Cancer,2009; 124(7):1637-1643.
    [51]De Vivo I, Prescott J, Wong JY, Kraft P, Hankinson SE, Hunter DJ. A prospective study of relative telomere length and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev,2009; 18(4):1152-1156.
    [52]Zheng YL, Ambrosone C, Byrne C, Davis W, Nesline M, McCann SE. Telomere length in blood cells and breast cancer risk:investigations in two case-control studies. Breast Cancer Res Treat, 2010; 120(3):769-775.
    [53]Gramatges MM, Telli ML, Balise R, Ford JM. Longer relative telomere length in blood from women with sporadic and familial breast cancer compared with healthy controls. Cancer Epidemiol Biomarkers Prev,2010; 19(2):605-613.
    [54]Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P, Roos G. Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res,2008; 68(10):3618-3623.
    [55]Zheng YL, Loffredo CA, Shields PG, Selim SM. Chromosome 9 armspecific telomere length and breast cancer risk. Carcinogenesis,2009; 30(8):1380-1386.
    [56]Xing J, Ajani JA, Chen M, Izzo J, Lin J, Chen Z, Gu J, Wu X. Constitutive short telomere length of chromosome 17p and 12q but not 11q and 2p is associated with an increased risk for esophageal cancer. Cancer Prev Res,2009; 2(5):459-465.
    [57]Schroder CP, Wisman GB, de Jong S, van der Graaf WT, Ruiters MH, Mulder NH, de Leij LF, van der Zee AG, de Vries EG. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br J Cancer,2001; 84(10):1348-1353.
    [58]Lee JJ, Nam CE, Cho SH, Park KS, Chung IJ, Kim HJ. Telomere length shortening in non-Hodgkin's lymphoma patients undergoing chemotherapy. Ann Hematol,2003; 82(8): 492-495.
    [59]Epel ES. Psychological and metabolic stress:a recipe for accelerated cellular aging? Hormones, 2009; 8(1):7-22.
    [60]Kim S, Parks CG, DeRoo LA, Chen H, Taylor JA, Cawthon RM, Sandler DP. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomarkers Prev,2009; 18(3):816-820.
    [61]Radpour R, Barekati Z, Haghighi MM, Kohler C, Asadollahi R, Torbati PM, Holzgreve W, Zhong XY. Correlation of telomere length shortening with promoter methylation profile of p16/Rb and p53/p21 pathways in breast cancer. Mod Pathol,2010; 23(5):763-772.
    [62]Takakura M, Kanaya T, Zhuo W, Fujimoto K, Nishio Y, Orimo A, Inoue M. Estrogen activates telomerase. Cancer Res,1999; 59(23):5917-5921.
    [63]Gertler R, Rosenberg R, Stricker D, Friederichs J, Hoos A, Werner M, Ulm K, Holzmann B, Nekarda H, Siewert JR. Telomere length and human telomerase reverse transcriptase expression as markers for progression and prognosis of colorectal carcinoma. J Clin Oncol,2004; 22(10):1807-1814.
    [64]Gertler R, Doll D, Maak M, Feith M, Rosenberg R. Telomere length and telomerase subunits as diagnostic and prognostic biomarkers in Barrett carcinoma. Cancer,2008; 112(10):2173-2180.
    [65]Patel MM, Parekh LJ, Jha FP, Sainger RN, Patel JB, Patel DD, Shah PM, Patel PS. Clinical usefulness of telomerase activation and telomere length in head and neck cancer. Head Neck, 2002; 24(12):1060-1067.
    [66]Hirashima T, Komiya T, Nitta T, Takada Y, Kobayashi M, Masuda N, Matui K, Takada M, Kikui M, Yasumitu T, Ohno A, Nakagawa K, Fukuoka M, Kawase I. Prognostic significance of telomeric repeat length alterations in pathological stage Ⅰ-ⅢA non-small cell lung cancer. Anticancer Res,2000; 20(3B):2181-2187.
    [67]Nakashio R, Kitamoto M, Nakanishi T, Takaishi H, Takahashi S, and Kajiyama G. Telomere length and telomerase activity in hepatocellular carcinoma. Nippon Rinsho,1998; 56(5): 1239-1243.
    [68]Nakajima T, Katagishi T, Moriguchi M, Sekoguchi S, Nishikawa T, Takashima H, Watanabe T, Kimura H, Minami M, Itoh Y, Kagawa K, Okanoue T. Tumor size-independence of telomere length indicates an aggressive feature of HCC. Biochem Biophys Res Commun,2004; 325(4): 1131-1135.
    [69]Rizki A, Lundblad V. Defects in mismatch repair promote telomerase-independent proliferation. Nature,2001; 411(6838):713-716.
    [70]Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P, Roos G. Breast Cancer Survival Is Associated with Telomere Length in Peripheral Blood Cells. Cancer Res,2008; 68(10):3618-3623.
    [71]Shen J, Gammon MD, Terry MB, Bradshaw PT, Wang Q, Teitelbaum SL, Neugut AI, Santella RM. Genetic polymorphisms in telomere pathway genes,telomere length, and breast cancer survival. Breast Cancer Res Treat,2012; 134(1):393-400.
    [72]Bisoffi M, Heaphy CM, Griffith JK. Telomeres:prognostic markers for solid tumors. Int J Cancer,2006; 119(10):2255-2260.
    [73]Heaphy CM, Baumgartner KB, Bisoffi M, Baumgartner RN, Griffith JK. Telomere DNA content predicts breast cancer-free survival interval. Clin Cancer Res,2007; 13(23):7037-7043.
    [74]Heaphy CM, Subhawong AP, Gross AL, Konishi Y, Kouprina N, Argani P, Visvanathan K, Meeker AK. Shorter telomeres in luminal B, HER-2 and triple-negative breast cancer subtypes. Mod Pathol,2011; 24(2):194-200.
    [75]Svenson U, Nordfjall K, Stegmayr B, Manjer J, Nilsson P, Tavelin B, Henriksson R, Lenner P, Roos G. Breast cancer survival is associated with telomere length in peripheral blood cells. Cancer Res,2008; 68(10):3618-3623.
    [76]De Vivo I, Prescott J, Wong JY, Kraft P, Hankinson SE, Hunter DJ. A Prospective Study of Relative Telomere Length and Postmenopausal Breast Cancer Risk. Cancer Epidemiol Biomarkers Prev,2009; 18(4):1152-1156.
    [77]Myung K, Chen C, Kolodner RD. Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature,2001; 411 (6841):1073-1076.
    [78]Nowak MA, Komarova NL, Sengupta A, Jallepalli PV, Shih IeM, Vogelstein B, Lengauer C. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci U S A,2002; 99(25):16226-16231.
    [79]Blackburn EH. Structure and function of telomeres. Nature.1991; 350(6319):569-73.
    [80]Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol,1992; 225(4):951-960.
    [81]Von Zglinicki T, Saretzki G, Docke W, Lotze C. Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts:a model for senescence? Exp Cell Res,1995; 220(1):186-193.
    [82]Hackett JA, Feldser DM, Greider CW. Telomere dysfunction increases mutation rate and genomic instability. Cell,2001; 106(3):275-286.
    [83]Gisselsson D, Jonson T, Petersen A, Strombeck B, Dal Cin P, Hoglund M,Mitelman F, Mertens F, Mandahl N. Telomere dysfunction triggers extensive DNA fragmentation and evolution of complex chromosome abnormalities in human malignant tumors. Proc Natl Acad Sci U S A, 2001;98(22):12683-12688.
    [84]Engelhardt M, Drullinsky P, Guillem J, Moore MA. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res, 1997;3(11):1931-1941.
    [85]Engelhardt M, Drullinsky P, Guillem J, Moore MA. Telomerase and telomere length in the development and progression of premalignant lesions to colorectal cancer. Clin Cancer Res, 1997; 3(11):1931-1941.
    [86]Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ, De Marzo AM.Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res, 2002; 62(22):6405-6409.
    [87]Meeker AK, Hicks JL, lacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, Ronnett BM, De Marzo AM. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res,2004; 10(10):3317-3326.
    [88]Meeker AK, Hicks JL, Gabrielson E, Strauss WM, De Marzo AM, Argani P. Telomere shortening occurs in subsets of normal breast epithelium as well as in situ and invasive carcinoma. Am J Pathol,2004; 164(3):925-935.
    [89]Lantuejoul S, Soria JC, Morat L, Lorimier P, Moro-Sibilot D, Sabatier L,Brambilla C, Brambilla E. Telomere shortening and telomerase reverse transcriptase expression in preinvasive bronchial lesions. Clin Cancer Res,2005; 11(5):2074-2082.
    [90]Hansel DE, Meeker AK, Hicks J, De Marzo AM, Lillemoe KD, Schulick R, Hruban RH, Maitra A, Argani P. Telomere length variation in biliary tract metaplasia, dysplasia, and carcinoma. Mod Pathol,2006; 19(6):772-779.
    [91]Meeker AK, Argani P. Telomere shortening occurs early during breast tumorigenesis:a cause of chromosome destabilization underlying malignant transformation? J Mammary Gland Biol Neoplasia,2004; 9(3):285-296.
    [92]Meeker AK, De Marzo AM. Recent advances in telomere biology:implications for human cancer. Curr Opin Oncol,2004; 16(1):32-38.
    [93]Blasco MA, Lee HW, Hande MP, Samper E, Lansdorp PM, DePinho RA, Greider CW.Telomere shortening and tumor formation by mouse cells lacking telomerase RNA.Cell,1997; 91(1): 25-34.
    [94]Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG, Kuo WL,Ljung BM, Chew K, Myambo K, Miranda M, Krig S, Garbe J, Stampfer M, Yaswen P,Gray JW, Lockett SJ. In situ analyses of genome instability in breast cancer. Nat Genet,2004; 36(9):984-988.
    [95]Hofvind S, Vacek PM, Skelly J, Weaver DL, Geller BM. Comparing screening mammography for early breast cancer detection in Vermont and Norway. J Natl Cancer Inst,.2008; 100(15): 1082-1091.
    [96]Punglia RS, Morrow M, Winer EP, Harris JR. Local therapy and survival in breast cancer. N Engl J Med,2007; 356(23):2399-2405.
    [97]Rogalla P, Rohen C, Bonk U, Bullerdiek J. Telomeric repeat fragment lengths are not correlated to histological grading in 85 breast cancers. Cancer Lett,1996; 106(2):155-161.
    [98]Rha SY, Park KH, Kim TS, Yoo NC, Yang WI, Roh JK, Min JS, Lee KS, Kim BS, Choi JH, Lim HY, Chung HC. Changes of telomerase and telomere lengths in paired normal and cancer tissues of breast. Int J Oncol,1999; 15(4):839-845.
    [99]Griffith JK, Bryant JE, Fordyce CA, Gilliland FD, Joste NE, Moyzis RK. Reduced telomere DNA content is correlated with genomic instability and metastasis in invasive human breast carcinoma. Breast Cancer Res Treat,1999;54(1):59-64.
    [100]Odagiri E, Kanada N, Jibiki K, Demura R, Aikawa E, Demura H. Reduction of telomeric length and c-erbB-2 gene amplification in human breast cancer,fibroadenoma, and gynecomastia. Relationship to histologic grade and clinical parameters. Cancer,1994; 73(12):2978-2984.
    [101]Meeker AK, Gage WR, Hicks JL, Simon I, Coffman JR, Platz EA, March GE, DeMarzo AM. Telomere length assessment in human archival tissues:combined telomere fluorescence in situ hybridization and immunostaining. Am J Pathol,2002; 160(4):1259-1268.
    [102]Simpson PT, Reis-Filho JS, Gale T, Lakhani SR. Molecular evolution of breast cancer. J Pathol, 2005; 205(2):248-254.
    [103]Kenemans P, Verstraeten RA, Verheijen RH. Oncogenic pathways in hereditary and sporadic breast cancer. Maturitas,2004;49(1):34-43.
    [104]O'Connell P. Genetic and cytogenetic analyses of breast cancer yield different perspectives of a complex disease. Breast Cancer Res Treat.2003; 78(3):347-357.
    [105]Mathieu N, Pirzio L, Freulet-Marriere MA, Desmaze C, Sabatier L. Telomeres and chromosomal instability. Cell Mol Life Sci,2004; 61(6):641-656.
    [106]Charames GS, Bapat B. Genomic instability and cancer. Curr Mol Med.2003; 3(7):589-96.
    [107]Nojima H. G1 and S-phase checkpoints, chromosome instability, and cancer. Methods Mol Biol, 2004; 280:3-49.
    [108]Akbay EA, Contreras CM, Perera SA, Sullivan JP, Broaddus RR, Schorge JO,Ashfaq R, Saboorian H, Wong KK, Castrillon DH. Differential roles of telomere attrition in type Ⅰ and Ⅱ endometrial carcinogenesis. Am J Pathol,2008; 173(2):536-544.
    [109]Zheng YL, Hu N, Sun Q, Wang C, Taylor PR. Telomere attrition in cancer cells and telomere length in tumor stroma cells predict chromosome instability in esophageal squamous cell carcinoma:a genome-wide analysis. Cancer Res,2009; 69(4):1604-1614.
    [110]O'Sullivan JN, Bronner MP, Brentnall TA, Finley JC, Shen WT, Emerson S, Emond MJ, Gollahon KA, Moskovitz AH, Crispin DA, Potter JD, Rabinovitch PS. Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet.2002; 32(2):280-4.
    [111]van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature,1997; 385(6618):740-743.
    [112]Baumann P, Cech TR. Potl, the putative telomere end-binding protein in fission yeast and humans. Science.2001 May 11;92(5519):1171-5. Erratum in:Science 2001; 293(5528):214.
    [113]Mao Y, Keller ET, Garfield DH, Shen K, Wang J. Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev,2013; 32(1-2):303-315.
    [114]Zhou X, Meeker AK, Makambi KH, Kosti O, Kallakury BV, Sidawy MK, Loffredo CA,Zheng YL. Telomere length variation in normal epithelial cells adjacent to tumor:potential biomarker for breast cancer local recurrence. Carcinogenesis,2012; 33(1):113-118.
    [115]Hawsawi NM, Ghebeh H, Hendrayani SF, Tulbah A, Al-Eid M, Al-Tweigeri T, Ajarim D, Alaiya A, Dermime S, Aboussekhra A. Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res,2008; 68(8):2717-2725.
    [1]Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin.2011;61:69-90.
    [2]Hall JM, Lee MK, Newman B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990;250:1684-1689.
    [3]Szabo CI, King MC. Inherited breast and ovarian cancer. Hum Mol Genet 1995;4:1811-1817.
    [4]Foulkes WD. Inherited susceptibility to common cancers. N Engl J Med 2008;359:2143-2153.
    [5]De Gre've J, Sermijn E, De Brakeleer S, Ren Z, Teugels E. Hereditary breast cancer:from bench to bedside. Curr Opin Oncol 2008;20:605-613.
    [6]8. Easton DF. How many more breast cancer susceptibility genes are there? Breast Cancer Res 1999;1:14-17.
    [7]9. Thompson D, Easton D. The genetic epidemiology of breast cancer genes. J Mamm Gland Biol Neoplasia 2004;9:221-236.
    [8]10. Garcia-Closas M, Chanock S. Genetic susceptibility loci for breast cancer by estrogen receptor status. Clin Cancer Res 2008; 14:8000-8009.
    [9]Pharoah PD, Antoniou A, Easton D, Ponder BA. Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 2008;358:2796-2803.
    [10]Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA. Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 2002;31:33-36.
    [11]International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004;431:931-945.
    [12]Cox A, Dunning A, Garcia-Closas M, et al. A common coding variant in CASP8 is associated with breast cancer risk. Nat Genet 2007;39:352-358.
    [13]Garcia-Closas M, Malats N, Silverman D, et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer:results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005;366:649-659.
    [14]Easton DF, Pooley KA, Dunning AM, et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 2007;447:1087-1093.
    [15]Hunter DJ, Kraft P, Jacobs KB, et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870-874.
    [16]Garcia-Closas M, Hall P, Nevanlinna H, et al. Heterogeneity of breast cancer associations with five susceptibility loci by clinical and pathological characteristics. PLoS Genet 2008;4:e1000054.
    [17]Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-776.
    [18]Baer HJ, Brawarsky P, Murray MF, Haas JS. Familial risk of cancer and knowledge and use of genetic testing. J Gen Intern Med 2010;25:717-724.
    [19]Vig HS, Armstrong J, Egleston BL, et al. Cancer genetic risk assessment and referral patterns in primary care. Genet Test Mol Biomarkers 2009; 13:735-741.
    [20]Bradbury AR, Dignam JJ, Ibe CN, et al. How often do BRCA mutation carriers tell their young children of the family's risk for cancer? A study of parental disclosure of BRCA mutations to minors and young adults. J Clin Oncol 2007;25:3705-3711.
    [21]Mackenzie A, Patrick-Miller L, Bradbury AR. Controversies in communication of genetic risk for hereditary breast cancer. Breast J.2009;15(Suppl. 1):S25-32.
    [22]Bradbury AR, Patrick-Miller L, Pawlowski K, et al. Should genetic testing for BRCA 1/2 be permitted for minors? Opinions of BRCA mutation carriers and their adult offspring. Am J Med Genet C Semin Med Genet.2008;148C:70-77.
    [23]Bradbury AR, Ibe CN, Dignam JJ, et al. Uptake and timing of bilateral prophylactic salpingo-oophorectomy among BRCA1 and BRCA2 mutation carriers. Genet Med 2008;10:161-166.
    [24]Robson ME, Storm CD, Weitzel J, Wollins DS, Offit K. American Society of Clinical Oncology Policy Statement Update:Genetic and Genomic Testing for Cancer Susceptibility. J Clin Oncol 2010;28:893-901.
    [25]American Society of Clinical Oncology. American Society of Clinical Oncology Policy Statement Update:Genetic testing for cancer susceptibility. J Clin Oncol 2003;21:2397-2406.
    [26]Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 2007;57:75-89.
    [27]Gail MH, Brinton LA, Byar DP, et al. Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst. 1989;81:1879-1886.
    [28]Claus EB, Risch N, Thompson WD. The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 1993;28:115-120.
    [29]Berry DA, Iversen ES Jr, Gudbjartsson DF, et al. BRCAPRO validation, sensitivity of genetic testing of BRCA1/BRCA2, and prevalence of other breast cancer susceptibility genes. J Clin Oncol 2002;20:2701-2712.
    [30]Ford D, Easton DF, Bishop DT, Narod SA, Goldgar DE. Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 1994;343:692-695.
    [31]Struewing JP, Hartge P, Wacholder S, et al. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 1997;336:1401-1408.
    [32]Andrieu N, Goldgar DE, Easton DF, et al. Pregnancies, Breast-Feeding and Breast Cancer Risk in the International BRCA1/2 Carrier Cohort Study (IBCCS). J Natl Cancer Inst 2006;98:535-544.
    [33]Hughes DJ. Use of association studies to define genetic modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Fam Cancer 2008;7:233-244.
    [34]Jernstrom H, Lubinsky J, Lynch HT, et al. Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2004;96:1094-1098.
    [35]Milne RL, Osorio A, Ramn y Cajal T, et al. Parity and the risk of breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 2010;119:221-232.
    [36]Narod SA, Dube'MP, Klijn J, et al. Oral contraceptives and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 2002;94:1773-1779.
    [37]Birch JM, Alston RD, McNally RJ, et al. Relative frequency and morphology of cancers in carriers of germline mutations. Oncogene 2001;20:4621-4628.
    [38]Ries LAG, Melbert D, Krapcho M, et al. SEER cancer statistics review,1975-2005.2008.
    [39]Giardello FM, Brensinger JD, Tersmette AC. Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 2000;119:1447-1453.
    [40]Hearle N, Schumacher V, Menko FH, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 2006;12:3209-3215.
    [41]Beeghly-Fadiel A, Lu W, Gao Y, et al. E-cadherin polymorphisms and breast cancer susceptibility: a report from the Shanghai Breast Cancer Study. Breast Cancer Res Treat 2010; 121:445-452.
    [42]Renwick A, Thompson D, Seal S, et al. ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 2006;38:873-875.
    [43]Meijers-Heijboer H, van den Ouweland A, Klijn J, et al. Low-penetrance susceptibility to breast cancer due to CHEK2*1100- delC in noncarriers of BRCA1 or BRCA2 mutations. The CHEK2-Breast Cancer Consortium. Nat Genet 2002;31:55-59.
    [44]Freisinger F, Domcheck SM. Clinical implications of lowpenetrance breast cancer susceptibility alleles. Curr Oncol Rep 2009;] 1:8-14.
    [45]Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 2006;38:1239-1241.
    [46]Cao AY, Yu KD, Yin WJ, et al. Five common single nucleotide polymorphisms in the PALB2 gene and susceptibility to breast cancer in eastern Chinese population. Breast Cancer Res Treat 2010;123:133-138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700