膀胱癌顺铂耐药与其基因甲基化相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过了解顺铂耐药膀胱癌细胞中DNA甲基化谱的改变,探索与发生顺铂耐药密切相关的基因的甲基化及其蛋白表达的变化,为阐明膀胱癌化疗耐药机制提供新的实验依据。
     方法:
     (1)顺铂耐药膀胱癌细胞株的建立:利用顺铂浓度梯度递增法(0.2-2.0mg/L),在T24膀胱癌细胞中建立顺铂耐受的细胞株亚型(T24/DDP),并对细胞的各项生物学指标进行检测,包括顺铂敏感性、细胞形态学、细胞生长曲线及细胞周期等。
     (2)顺铂耐药膀胱癌细胞DNA甲基化谱分析与耐药相关甲基化基因的筛选:DNA甲基化芯片对T24及T24/DDP细胞基因组的DNA甲基化谱进行分析,并通过统计学方法,筛选高甲基化,及低甲基化修饰基因。利用real time-PCR方法对筛选出的具有表达差异的甲基化修饰基因进行分析,并结合文献资料,最终采用MSP法,对筛选出的甲基化修饰基因进行进一步的验证分析。
     (3)通过5-氮杂-2-脱氧核苷去甲基化了解顺铂耐药膀胱癌细胞生物学的作用;并对细胞生物学指标进行检测。
     (4)采用5-氮杂-2-脱氧核苷去甲基化了解逆转顺铂耐药膀胱癌细胞的分子机制:利用real time-PCR及western blot方法,对T24/DDP及经5-氮杂-2-脱氧核苷去甲基化处理T24/DDP细胞中关键基因及其蛋白的表达进行分析。
     结果:
     (1)成功建立顺铂耐药的膀胱癌细胞(T24/DDP): DDP敏感性实验表明,在20ug/ml浓度的DDP处理下,T24细胞死亡率接近100%,而同样浓度下顺铂耐受的细胞株亚型T24/DDP细胞的死亡率则是30%。细胞生长曲线表明,T24与T24/DDP细胞的倍增时间分别为72.5和90.2小时。细胞形态学观察表明,T24与T24/DDP细胞形态学无明显差异。细胞周期分析表明,T24/DDP细胞中G0/G1期细胞比例显著增加,G2/M期细胞下降。
     (2)顺铂耐药膀胱癌细胞DNA甲基化差异基因筛选:利用DNA甲基化谱芯片对T24及T24/DDP两个细胞系的基因组DNA甲基化谱进行分析,发现1120个甲基化差异位点;并筛选出40个高甲基化,18个低甲基化修饰基因。然后通过realtime-PCR方法对该58个差异甲基化修饰基因的表达进行了分析,发现其中30个基因的表达有统计学差异。结合文献资料,又筛选出和本研究相关基因20个,采用MSP法,对这些基因的甲基化修饰在细胞水平上又进行了验证分析,最终筛选出与甲基化谱芯片结果一致的15种基因,包括14种高甲基化和1种低甲基化修饰基因。
     (3)5-氮杂-2-脱氧核苷去甲基化对顺铂耐药膀胱癌细胞的生物学作用:经去甲基化处理后,之前发现的14种高甲基化修饰差异基因中的7种基因的高甲基化修饰被改变:ABCC6, CCNA1, HPP1, ITGA4, RASSF1A, RUNX3,TMS1。同时去甲基化处理后,T24/DDP细胞对于顺铂的敏感性显著提高、细胞凋亡比例增加、S期细胞比例显著增加。
     (4)5-氮杂-2-脱氧核苷去甲基化逆转顺铂耐药膀胱癌细胞的分子机制研究:利用real time-PCR和western blot方法的分析结果表明,上述7种基因(ABCC6,CCNA1, HPP1, ITGA4, RASSF1A, RUNX3,TMS1),经5-氮杂-2-脱氧核苷去甲基化处理后,其mRNA及蛋白的表达水平显著增加。
     结论:
     (1)顺铂浓度梯度递增法所建立的T24/DDP细胞株对顺铂具有很好的耐受性,可以作为体外模型用于顺铂耐药机制的研究。
     (2)膀胱癌细胞发生顺铂耐药时,细胞基因组存在广泛的DNA甲基化修饰改变。
     (3)5μM5-氮杂-2-脱氧核苷处理T24/DDP细胞,能使部分高甲基化修饰基因发生去甲基化,而提高T24/DDP细胞对于顺铂的敏感性。
     (4)ABCC6, CCNA1, HPP1, ITGA4, RASSF1A, RUNX3,TMS1等7种基因的甲基化修饰可能在介导顺铂耐受作用机制中发挥重要作用。
Objective: To investigate the DNA methylation profile of cisplatin-resistance inbladder cancer cell, and explore the alteration of genes and proteins which are involved incisplatin-resistance.
     Methods:
     (1) The build-up of cisplatin-resistant bladder cancer cells (T24/DDP): Thecisplatin-resistant bladder cancer cells were built up in T24bladder cancer cells (T24/DDP)with continued increasing of concentrations (0.2-2.0mg/L). After the built-up of T24/DDPcell line, a series of biological parameters were measured including cisplatin sensitivity,cellular morphology, growth curve and cell cycle.
     (2) DNA methylation profile and selection of drug-resistant genes in T24/DDP cellline: The DNA methylation profile was conducted with DNA methylation chips in T24andT24/DDP cells, and genes with hypermethylation or hypomethylation were screened bystatistical methods. The mRNA expression of selected genes with altered methylation wasanalyzed with real time-PCR. Then, the methylation of these genes was further validatedwith methylation-specific PCR (MSP).
     (3) The biological impacts of5-aza-dC on T24/DDP cells: The demethylation wasconducted in T24/DDP cells by5-aza-dC treatment. Then, a series of cellular biologicalparameters were measured.
     (4) The molecular mechanisms of demethylation with5-aza-dC in T24/DDP cells:The expression of genes and proteins were analyzed with real time-PCR and western blotin T24/DDP cells treated by5-aza-dC.
     Results:
     (1) The cisplatin-resistant bladder cancer cells (T24/DDP) were successfully built upin T24cell line. T24cells were almost100%died of cisplatin treatment at theconcentration of20ug/ml, whereas it was only30%in T24/DDP cells. The doubling timeof T24and T24/DDP cells was72.5and90.2hours respectively. There was no obviousdifference in morphology between T24and T24/DDP cells. However, a decrease in numberof mitochondria was observed in T24/DDP cells. Moreover, T24/DDP cells showedsignificant increase in percentage of G0/G1and decrease in G2/M, compared to T24cells.
     (2) There are1120sites with altered methylation in genome of T24/DDP cellscompared to T24cells. Then,40genes with hypermethylation and18genes withhypomethylation were identified with statistical methods. The mRNA expression of30genes among the identified58genes was significantly different between T24and T24/DDPcells with real time-PCR. On the basis of references, we validated the20genes with MSPand found that15genes showed consistent results with methylation chips, including14genes with hypermethylation and1with hypomethylation.
     (3) We found that7out of14validated genes with hypermethylation weredemethylated by5-aza-dC, including ABCC6, CCNA1, HPP1, ITGA4, RASSF1A,RUNX3, and TMS1, while the methylation status of the rest8genes was not changed.Moreover, we found that5-aza-dC treatment resulted in increased sensitivity to cisplatin,and increase in percentage of cell apoptosis and S phage in T24/DDP cells.
     (4) The mRNA and protein expression of the7genes were significantly enhancedafter treatment of5-aza-dC, including ABCC6, CCNA1, HPP1, ITGA4, RASSF1A,RUNX3,and TMS1.
     Conclusions:
     (1) T24/DDP cells show well resistance to cisplatin, suggesting that the method ofcontinued increasing in concentration of cisplatin is reliable for inducing cisplatin-resistantcells.
     (2) There are substantial changes in DNA methylation status in genome DNA ofT24/DDP cells.
     (3) Treatment of5-aza-dC (5μM) can demethylate genes with hypermethylationpartially in T24/DDP cells.
     (4) It is postulated that7genes may play important roles in mediatingcisplatin-resistance in T24cells, including ABCC6, CCNA1, HPP1, ITGA4,RASSF1A, RUNX3,and TMS1.
引文
1. Sersa, G.,B. Stabuc, M. Cemazar et al. Electrochemotherapy with cisplatin: clinicalexperience in malignant melanoma patients.Clin Cancer Res.2000.6(3):863-867.
    2. Stordal, B., M. Hamon, V. McEneaney et al. Resistance to paclitaxel in acisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein. PloS one.2012.7(7): e40717.
    3. Kim, I.J., Y.T. Bae, S.J. Kim et al. Determination and prediction of P-glycoproteinand multidrug-resistance-related protein expression in breast cancer withdouble-phase technetium-99m sestamibi scintimammography. Visual andquantitative analyses. Oncology.2006.70(6):403-410.
    4. Huang, M., J. Jin, H. Sun et al. Reversal of P-glycoprotein-mediated multidrugresistance of cancer cells by five schizandrins isolated from the Chinese herbFructus Schizandrae. Cancer Chemother Pharmacol.2008.62(6):1015-1026.
    5. Xu, H.W., L. Xu, J.H. Hao et al. Expression of P-glycoprotein and multidrugresistance-associated protein is associated with multidrug resistance in gastriccancer. J Int Med Res.2010.38(1):34-42.
    6. Serpeloni, J.M., M.R. Almeida, A.Z. Mercadante et al. Effects of lutein andchlorophyll b on GSH depletion and DNA damage induced by cisplatin in vivo.Hum Exp Toxicol.2013.32(8):828-836.
    7. Elberry, A.A., S.M. Refaie, M. Kamel,et al. Oxytocin ameliorates cisplatin-inducednephrotoxicity in Wistar rats. Ann Saudi Med.2013.33(1):57-62.
    8. Hamberger, J., M. Liebeke, M. Kaiser et al. Characterization of chemosensitivityand resistance of human cancer cell lines to platinum(II) versus platinum(IV)anticancer agents. Anticancer Drugs.2009.20(7):559-572.
    9. Ayene, I.S., J.E. Biaglow, A.V. Kachur et al. Mutation in G6PD gene leads to lossof cellular control of protein glutathionylation: mechanism and implication. J CellBiochem.2008.103(1):123-135.
    10. Kigawa, J., Y. Minagawa, Y. Kanamori et al. Glutathione concentration may be auseful predictor of response to second-line chemotherapy in patients with ovariancancer. Cancer.1998.82(4):697-702.
    11. Borst, P., R. Evers, M. Kool et al. A family of drug transporters: the multidrugresistance-associated proteins. J Natl Cancer Inst.2000.92(16):1295-1302.
    12. Yang, C.R., Y.C. Ou, J.H. Kuo et al. Intracellular glutathione content of urothelialcancer in correlation to chemotherapy response. Cancer Lett.1997.119(2):157-162.
    13. Kotoh, S.,S. Naito, A. Yokomizo et al. Enhanced expression ofgamma-glutamylcysteine synthetase and glutathione S-transferase genes incisplatin-resistant bladder cancer cells with multidrug resistance phenotype. J Urol.1997.157(3):1054-1058.
    14. Byun, S.S., S.W. Kim, H. Choi et al. Augmentation of cisplatin sensitivity incisplatin-resistant human bladder cancer cells by modulating glutathioneconcentrations and glutathione-related enzyme activities. BJU Int.2005.95(7):1086-1090.
    15. Masters, J.R., R. Thomas, A.G. Hall et al. Sensitivity of testis tumour cells tochemotherapeutic drugs: role of detoxifying pathways. Eur J Cancer.1996.32A(7):1248-1253.
    16. Paz-y-Mino, C., M.J. Munoz, A. Lopez-Cortes et al. Frequency of polymorphismspro198leu in GPX-1gene and ile58thr in MnSOD gene in the altitude Ecuadorianpopulation with bladder cancer. Oncol Res.2010.18(8):395-400.
    17. Savic-Radojevic, A., J. Mimic-Oka, M. Pljesa-Ercegovac et al. GlutathioneS-transferase-P1expression correlates with increased antioxidant capacity intransitional cell carcinoma of the urinary bladder. Eur Urol.2007.52(2):470-477.
    18. Bernstein, C., H. Bernstein, C.M. Payne et al. DNA repair/pro-apoptotic dual-roleproteins in five major DNA repair pathways: fail-safe protection againstcarcinogenesis. Mutat Res.2002.511(2):145-178.
    19. Zhang, Y. and D.W. Heermann. DNA double-strand breaks: linking geneexpression to chromosome morphology and mobility. Chromosoma.2013.
    20. Huhn, D., H.A. Bolck, and A.A. Sartori. Targeting DNA double-strand breaksignalling and repair: recent advances in cancer therapy. Swiss Med Wkly.2013.143: w13837.
    21. Arao, S., H. Suwa, M. Mandai et al. Expression of multidrug resistance gene andlocalization of P-glycoprotein in human primary ovarian cancer. Cancer research.
    1994.54(5):1355-1359.
    22. Angelini, A., C. Di Febbo, G. Ciofani et al. Inhibition of P-glycoprotein-mediatedmultidrug resistance by unfractionated heparin: a new potential chemosensitizer forcancer therapy. Cancer Biol Ther.2005.4(3):313-317.
    23. Diestra, J.E., E. Condom, X.G. Del Muro et al. Expression of multidrug resistanceproteins P-glycoprotein, multidrug resistance protein1, breast cancer resistanceprotein and lung resistance related protein in locally advanced bladder cancertreated with neoadjuvant chemotherapy: biological and clinical implications. J Urol.2003.170(4Pt1):1383-1387.
    24. Zhou, H.L., Y.J. Zheng, X.Z. Cheng et al. Intercellular Transfer of P-Glycoproteinfrom the Drug Resistant Human Bladder Cancer Cell Line BIU-87Does NotRequire Cell-to-Cell Contact. J Urol.2013.190(3):1069-1075.
    25. Hirst, M. and M.A. Marra. Epigenetics and human disease. Int J Biochem Cell Biol.2009.41(1):136-146.
    26. Issa, J.P. and S.B. Baylin. Epigenetics and human disease. Nat Med.1996.2(3):281-282.
    27. Gopisetty, G., K. Ramachandran, and R. Singal. DNA methylation and apoptosis.Mol Immunol.2006.43(11):1729-1740.
    28. Teodoridis, J.M., G. Strathdee, and R. Brown. Epigenetic silencing mediated byCpG island methylation: potential as a therapeutic target and as a biomarker. DrugResist Updat.2004.7(4-5):267-278.
    29. Leone, G., F. D'Alo, G. Zardo et al. Epigenetic treatment of myelodysplasticsyndromes and acute myeloid leukemias. Current medicinal chemistry.2008.15(13):1274-1287.
    30. Chekhun, V.F., G.I. Kulik, O.V. Yurchenko et al. Role of DNA hypomethylation inthe development of the resistance to doxorubicin in human MCF-7breastadenocarcinoma cells. Cancer Lett.2006.231(1):87-93.
    31. Brown, R. and G. Strathdee. Epigenomics and epigenetic therapy of cancer. TrendsMol Med.2002.8(4Suppl): S43-48.
    32. Chou, J., L.N. Voong, C.L. Mortales et al. Epigenetic modulation to enableantigen-specific T-cell therapy of colorectal cancer. J Immunother.2012.35(2):131-141.
    33. Stone, A., M.J. Cowley, F. Valdes-Mora et al. BCL-2Hypermethylation Is aPotential Biomarker of Sensitivity to Antimitotic Chemotherapy inEndocrine-Resistant Breast Cancer. Mol Cancer Ther.2013.12(9):1874-1885.
    34. Kim, T.O., J. Park, M.J. Kang et al. DNA hypermethylation of a selective genepanel as a risk marker for colon cancer in patients with ulcerative colitis. Int J MolMed.2013.31(5):1255-1261.
    35. Yang, P., J. Ma, B. Zhang et al. CpG site-specific hypermethylation ofp16INK4alpha in peripheral blood lymphocytes of PAH-exposed workers. CancerEpidemiol Biomarkers Prev.2012.21(1):182-190.
    1. Kotoh, S., S. Naito, A. Yokomizo et al. Increased expression of DNA topoisomerase Igene and collateral sensitivity to camptothecin in human cisplatin-resistant bladdercancer cells. Cancer research.1994.54(12):3248-3252.
    2.陈杰,钱桂生,黄桂君等.人肺腺癌多药耐药细胞系的建立及其生物学特征.第三军医大学学报.2001.23(2):135-137.
    3.陈建利,杨瑞芳,刘福生等.卵巢上皮性癌顺铂耐药细胞株的建立及其多药耐药蛋白的表达.中华妇产科杂志.2000.35(10):617-620.
    4.潘洪明,费洪新,杜静平等.人胃癌顺铂耐药细胞系的建立过程.世界华人消化杂志.2007.15(18):2009-2013.
    5. Chen, L., W.C. Chang, Y.C. Hung et al. Androgen Receptor Increases CD133Expression and Progenitor-Like Population That Associate With Cisplatin Resistancein Endometrial Cancer Cell Line. Reprod Sci.2013.
    6. Yan, L.H., X.T. Wang, J. Yang et al. Reversal of multidrug resistance in gastric cancercells by CDX2downregulation. World J Gastroenterol.2013.19(26):4155-4165.
    7.李文成,陈在贤.膀胱癌化疗耐药机制的研究进展.重庆医学.2002.31(4):339-341.
    8.张梅春,胡成平.肺癌顺铂耐药的分子机制.国际呼吸杂志.2006.26(2):152-155.
    9. Lee, S., C.Y. Yoon, S.S. Byun et al. The role of c-FLIP in cisplatin resistance ofhuman bladder cancer cells. J Urol.2013.189(6):2327-2334.
    10. Cho, H.J., J.K. Kim, K.D. Kim et al. Upregulation of Bcl-2is associated withcisplatin-resistance via inhibition of Bax translocation in human bladder cancer cells.Cancer Lett.2006.237(1):56-66.
    11. Zhang, Y., Z. Wang, J. Yu et al. Cancer stem-like cells contribute to cisplatinresistance and progression in bladder cancer. Cancer Lett.2012.322(1):70-77.
    12. Cesana, G.C., F. Romano, G. Piacentini et al. Low-dose interleukin-2administeredpre-operatively to patients with gastric cancer activates peripheral and peritumorallymphocytes but does not affect prognosis. Ann Surg Oncol.2007.14(4):1295-1304.
    13. Kwak, M.K., H.J. Lee, K. Hur et al. Expression of Kruppel-like factor5in humangastric carcinomas. J Cancer Res Clin Oncol.2008.134(2):163-167.
    14. Xia, S., S.Y. Yu, X.L. Yuan et al.[Effects of hypoxia on expression of P-glycoproteinand multidrug resistance protein in human lung adenocarcinoma A549cell line].Zhonghua Yi Xue Za Zhi.2004.84(8):663-666.
    15. Hao, Z., X. Li, T. Qiao et al. CIAPIN1confers multidrug resistance by upregulatingthe expression of MDR-1and MRP-1in gastric cancer cells. Cancer Biol Ther.2006.5(3):261-266.
    16. Chung, Y.M., Y.D. Yoo, J.K. Park et al. Increased expression of peroxiredoxin IIconfers resistance to cisplatin. Anticancer Res.2001.21(2A):1129-1133.
    1. Cao, J., Y. Song, N. Bi et al. DNA methylation-mediated repression of miR-886-3ppredicts poor outcome of human small cell lung cancer. Cancer research.2013.73(11):3326-3335.
    2. Carmona, F.J., D. Azuara, A. Berenguer-Llergo et al. DNA methylation biomarkersfor noninvasive diagnosis of colorectal cancer. Cancer Prev Res (Phila).2013.6(7):656-665.
    3. Fukushige, S. and A. Horii. DNA methylation in cancer: a gene silencingmechanism and the clinical potential of its biomarkers. Tohoku J Exp Med.2013.229(3):173-185.
    4. Baker, E.K. and A. El-Osta. The rise of DNA methylation and the importance ofchromatin on multidrug resistance in cancer. Exp Cell Res.2003.290(2):177-194.
    5. Gao, P., X. Yang, Y.W. Xue et al. Promoter methylation of glutathioneS-transferase pi1and multidrug resistance gene1in bronchioloalveolar carcinomaand its correlation with DNA methyltransferase1expression. Cancer.2009.115(14):3222-3232.
    6.张晓伟. DNA甲基化在鼻咽癌紫杉醇耐药形成机制中的初步研究.中南大学博士学位论文.2012.
    7. Cortez, C.C. and P.A. Jones. Chromatin, cancer and drug therapies. Mutat Res.2008.647(1-2):44-51.
    1. Yu, W., C. Jin, X. Lou et al. Global analysis of DNA methylation by Methyl-Capturesequencing reveals epigenetic control of cisplatin resistance in ovarian cancer cell.PloS one.2011.6(12): e29450.
    2. Li, M., C. Balch, J.S. Montgomery et al. Integrated analysis of DNA methylation andgene expression reveals specific signaling pathways associated with platinumresistance in ovarian cancer. BMC Med Genomics.2009.2:34.
    3. Hagemann, S., O. Heil, F. Lyko et al. Azacytidine and decitabine induce gene-specificand non-random DNA demethylation in human cancer cell lines. PloS one.2011.6(3):e17388.
    4. Abe, T., M. Toyota, H. Suzuki et al. Upregulation of BNIP3by5-aza-2'-deoxycytidinesensitizes pancreatic cancer cells to hypoxia-mediated cell death. J Gastroenterol.2005.40(5):504-510.
    5. Arnold, C.N., A. Goel, and C.R. Boland. Role of hMLH1promoter hypermethylationin drug resistance to5-fluorouracil in colorectal cancer cell lines. International journalof cancer. Journal international du cancer.2003.106(1):66-73.
    6. Meng, C.F., D.Q. Dai, and K.J. Guo.[Effects of5-Aza-2'-deoxycytidine andtrichostatin A on DNA methylation and expression of hMLH1in ovarian cancer cellline COC1/DDP]. Ai Zheng.2008.27(12):1251-1255.
    7. Shin, H., J.H. Kim, Y.S. Lee et al. Change in gene expression profiles of secretedfrizzled-related proteins (SFRPs) by sodium butyrate in gastric cancers: induction ofpromoter demethylation and histone modification causing inhibition of Wnt signaling.Int J Oncol.2012.40(5):1533-1542.
    8. Park, S.Y., E.J. Yoo, N.Y. Cho et al. Comparison of CpG island hypermethylation andrepetitive DNA hypomethylation in premalignant stages of gastric cancer, stratifiedfor Helicobacter pylori infection. J Pathol.2009.219(4):410-416.
    9. Nishiyama, R., L. Qi, M. Lacey et al. Both hypomethylation and hypermethylation ina0.2-kb region of a DNA repeat in cancer. Mol Cancer Res.2005.3(11):617-626.
    10. Frigola, J., X. Sole, M.F. Paz et al. Differential DNA hypermethylation andhypomethylation signatures in colorectal cancer. Hum Mol Genet.2005.14(2):319-326.
    11. Szyf, M. DNA demethylation and cancer metastasis: therapeutic implications. ExpertOpin Drug Discov.2008.3(5):519-531.
    12. Singh, K.P., J. Treas, T. Tyagi et al. DNA demethylation by5-aza-2-deoxycytidinetreatment abrogates17beta-estradiol-induced cell growth and restores expression ofDNA repair genes in human breast cancer cells. Cancer Lett.2012.316(1):62-69.
    13. Balch, C., P. Yan, T. Craft et al. Antimitogenic and chemosensitizing effects of themethylation inhibitor zebularine in ovarian cancer. Mol Cancer Ther.2005.4(10):1505-1514.
    14. Weber, A., U.R. Hengge, W. Bardenheuer et al. SOCS-3is frequently methylated inhead and neck squamous cell carcinoma and its precursor lesions and causes growthinhibition. Oncogene.2005.24(44):6699-6708.
    15. Kim, H., J. Park, Y. Jung et al. DNA methyltransferase3-like affects promotermethylation of thymine DNA glycosylase independently of DNMT1and DNMT3B incancer cells. Int J Oncol.2010.36(6):1563-1572.
    16. Chen, C., D. Pan, A.M. Deng et al. DNA methyltransferases1and3B are required forhepatitis C virus infection in cell culture. Virology.2013.441(1):57-65.
    17. Lavoie, G. and Y. St-Pierre. Phosphorylation of human DNMT1: implication ofcyclin-dependent kinases. Biochemical and biophysical research communications.
    2011.409(2):187-192.
    1. Ning, Y., H. Huang, Y. Dong et al.5-Aza-2'-deoxycytidine inhibitedPDGF-induced rat airway smooth muscle cell phenotypic switching. Arch Toxicol.2013.87(5):871-881.
    2. Pendina, A.A., O.A. Efimova, I.D. Fedorova et al. DNA methylation patterns ofmetaphase chromosomes in human preimplantation embryos. Cytogenet GenomeRes.2011.132(1-2):1-7.
    3. Mehndiratta, M., J.K. Palanichamy, A. Pal et al. CpG hypermethylation of theC-myc promoter by dsRNA results in growth suppression. Mol Pharm.2011.8(6):2302-2309.
    4. Juliano, R.L. and V. Ling. A surface glycoprotein modulating drug permeability inChinese hamster ovary cell mutants. Biochimica et biophysica acta.1976.455(1):152-162.
    5. Chen, Z.S. and A.K. Tiwari. Multidrug resistance proteins (MRPs/ABCCs) incancer chemotherapy and genetic diseases. FEBS J.2011.278(18):3226-3245.
    6. Henglein, B., X. Chenivesse, J. Wang et al. Structure and cell cycle-regulatedtranscription of the human cyclin A gene. Proceedings of the National Academy ofSciences of the United States of America.1994.91(12):5490-5494.
    7. Rivera, A., A. Mavila, K.J. Bayless et al. Cyclin A1is a p53-induced gene thatmediates apoptosis, G2/M arrest, and mitotic catastrophe in renal, ovarian, and lungcarcinoma cells. Cell Mol Life Sci.2006.63(12):1425-1439.
    8. Ji, P., S. Agrawal, S. Diederichs et al. Cyclin A1, the alternative A-type cyclin,contributes to G1/S cell cycle progression in somatic cells. Oncogene.2005.24(16):2739-2744.
    9. Yang, R., C. Muller, V. Huynh et al. Functions of cyclin A1in the cell cycle and itsinteractions with transcription factor E2F-1and the Rb family of proteins. Mol CellBiol.1999.19(3):2400-2407.
    10. Muller, C., R. Yang, L. Beck-von-Peccoz et al. Cloning of the cyclin A1genomicstructure and characterization of the promoter region. GC boxes are essential forcell cycle-regulated transcription of the cyclin A1gene. The Journal of biologicalchemistry.1999.274(16):11220-11228.
    11. Yang, R., R. Morosetti, and H.P. Koeffler. Characterization of a second humancyclin A that is highly expressed in testis and in several leukemic cell lines. Cancerresearch.1997.57(5):913-920.
    12.于卉影,史承广,朱继红等.细胞周期素A的表达与非小细胞肺癌增殖及预后的关系.癌症.2001.20(1):38-40.
    13. Wegiel, B., A. Bjartell, J. Tuomela et al. Multiple cellular mechanisms related tocyclin A1in prostate cancer invasion and metastasis. J Natl Cancer Inst.2008.100(14):1022-1036.
    14. Yanatatsaneejit, P., T. Chalermchai, V. Kerekhanjanarong et al. Promoterhypermethylation of CCNA1, RARRES1, and HRASLS3in nasopharyngealcarcinoma. Oral Oncol.2008.44(4):400-406.
    15. Tokumaru, Y., K. Yamashita, M. Osada et al. Inverse correlation between cyclinA1hypermethylation and p53mutation in head and neck cancer identified byreversal of epigenetic silencing. Cancer research.2004.64(17):5982-5987.
    16. Sanchez-Cespedes, M., M. Esteller, L. Wu et al. Gene promoter hypermethylationin tumors and serum of head and neck cancer patients. Cancer research.2000.60(4):892-895.
    17. Kitkumthorn, N., P. Yanatatsanajit, S. Kiatpongsan et al. Cyclin A1promoterhypermethylation in human papillomavirus-associated cervical cancer. BMC cancer.2006.6:55.
    18. Muller-Tidow, C., P. Ji, S. Diederichs et al. The cyclin A1-CDK2complexregulates DNA double-strand break repair. Mol Cell Biol.2004.24(20):8917-8928.
    19.冯旭,余坚,王植柔等.尿沉淀细胞789的甲基化谱式分析和膀胱癌的诊断.中华肿瘤防治杂志.2007.14(11):809-813.
    20. Dammann, R., C. Li, J.H. Yoon et al. Epigenetic inactivation of a RAS associationdomain family protein from the lung tumour suppressor locus3p21.3. Nat Genet.2000.25(3):315-319.
    21. Dreijerink, K., E. Braga, I. Kuzmin et al. The candidate tumor suppressor gene,RASSF1A, from human chromosome3p21.3is involved in kidney tumorigenesis.Proceedings of the National Academy of Sciences of the United States of America.2001.98(13):7504-7509.
    22. Kim, D.H., J.S. Kim, J.H. Park et al. Relationship of Ras association domain family1methylation and K-ras mutation in primary non-small cell lung cancer. Cancerresearch.2003.63(19):6206-6211.
    23. Vos, M.D., A. Martinez, C. Elam et al. A role for the RASSF1A tumor suppressorin the regulation of tubulin polymerization and genomic stability. Cancer research.2004.64(12):4244-4250.
    24. Burbee, D.G., E. Forgacs, S. Zochbauer-Muller et al. Epigenetic inactivation ofRASSF1A in lung and breast cancers and malignant phenotype suppression. J NatlCancer Inst.2001.93(9):691-699.
    25. Chan, M.W., L.W. Chan, N.L. Tang et al. Frequent hypermethylation of promoterregion of RASSF1A in tumor tissues and voided urine of urinary bladder cancerpatients. International journal of cancer. Journal international du cancer.2003.104(5):611-616.
    26. Koul, S., J.M. McKiernan, G. Narayan et al. Role of promoter hypermethylation inCisplatin treatment response of male germ cell tumors. Mol Cancer.2004.3:16.
    27. Ito, Y. Oncogenic potential of the RUNX gene family:'overview'. Oncogene.2004.23(24):4198-4208.
    28. Nam, S., Y.H. Jin, Q.L. Li et al. Expression pattern, regulation, and biological roleof runt domain transcription factor, run, in Caenorhabditis elegans. Mol Cell Biol.2002.22(2):547-554.
    29. Wolff, E.M., G. Liang, C.C. Cortez et al. RUNX3methylation reveals that bladdertumors are older in patients with a history of smoking. Cancer research.2008.68(15):6208-6214.
    30. Kim, E.J., Y.J. Kim, P. Jeong et al. Methylation of the RUNX3promoter as apotential prognostic marker for bladder tumor. J Urol.2008.180(3):1141-1145.
    31.魏任雄,廖于峰,熊彬等.膀胱癌尿沉渣RUNX3基因启动子区域CpG岛甲基化状况及意义.医学研究杂志.2012.41(5):73-76.
    32.郭元红,陈伟庆,房殿亮. Runx3基因对HepG2细胞顺铂耐药性的影响.第三军医大学学报.2012.34(9).
    33. Hamilton, J.P., F. Sato, B.D. Greenwald et al. Promoter methylation and responseto chemotherapy and radiation in esophageal cancer. Clin Gastroenterol Hepatol.2006.4(6):701-708.
    34. Kim, J.H., E.J. Jung, H.S. Lee et al. Comparative analysis of DNA methylationbetween primary and metastatic gastric carcinoma. Oncol Rep.2009.21(5):1251-1259.
    35.张晓莹.肝细胞癌中TMS1基因甲基化的研究.山东大学硕士学位论文.2012.
    36. Conway, K.E., B.B. McConnell, C.E. Bowring et al. TMS1, a novel proapoptoticcaspase recruitment domain protein, is a target of methylation-induced genesilencing in human breast cancers. Cancer Res.2000.60(22):6236-6242.
    1. Jemal, A., T. Murray, E. Ward et al. Cancer statistics,2005. CA Cancer J Clin.2005.55(1):10-30.
    2. Bischoff, C.J. and P.E. Clark. Bladder cancer. Curr Opin Oncol.2009.21(3):272-277.
    3. Cohen, S.M., A. Goel, J. Phillips et al. The role of perioperative chemotherapy inthe treatment of urothelial cancer. Oncologist.2006.11(6):630-640.
    4. Kaufman, D.S. Challenges in the treatment of bladder cancer. Ann Oncol.2006.17Suppl5: v106-112.
    5. Jamieson, E.R. and S.J. Lippard. Structure, Recognition, and Processing ofCisplatin-DNA Adducts. Chem Rev.1999.99(9):2467-2498.
    6. Kartalou, M. and J.M. Essigmann. Recognition of cisplatin adducts by cellularproteins. Mutat Res.2001.478(1-2):1-21.
    7. Koberle, B., M.T. Tomicic, S. Usanova et al. Cisplatin resistance: preclinicalfindings and clinical implications. Biochimica et biophysica acta.2010.1806(2):172-182.
    8. Kim, E.S., J.J. Lee, G. He et al. Tissue platinum concentration and tumor responsein non-small-cell lung cancer. J Clin Oncol.2012.30(27):3345-3352.
    9. Koga, H., S. Kotoh, M. Nakashima et al. Accumulation of intracellular platinum iscorrelated with intrinsic cisplatin resistance in human bladder cancer cell lines. Int JOncol.2000.16(5):1003-1007.
    10. Flaig, T.W., L.J. Su, C. McCoach et al. Dual epidermal growth factor receptor andvascular endothelial growth factor receptor inhibition with vandetanib sensitizesbladder cancer cells to cisplatin in a dose-and sequence-dependent manner. BJUInt.2009.103(12):1729-1737.
    11. Kuo, M.T., H.H. Chen, I.S. Song et al. The roles of copper transporters in cisplatinresistance. Cancer Metastasis Rev.2007.26(1):71-83.
    12. Safaei, R. Role of copper transporters in the uptake and efflux of platinumcontaining drugs. Cancer Lett.2006.234(1):34-39.
    13. Holzer, A.K., G.H. Manorek, and S.B. Howell. Contribution of the major copperinflux transporter CTR1to the cellular accumulation of cisplatin, carboplatin, andoxaliplatin. Mol Pharmacol.2006.70(4):1390-1394.
    14. Ishida, S., J. Lee, D.J. Thiele et al. Uptake of the anticancer drug cisplatin mediatedby the copper transporter Ctr1in yeast and mammals. Proceedings of the NationalAcademy of Sciences of the United States of America.2002.99(22):14298-14302.
    15. Song, I.S., N. Savaraj, Z.H. Siddik et al. Role of human copper transporter Ctr1inthe transport of platinum-based antitumor agents in cisplatin-sensitive andcisplatin-resistant cells. Mol Cancer Ther.2004.3(12):1543-1549.
    16. Taniguchi, K., M. Wada, K. Kohno et al. A human canalicular multispecificorganic anion transporter (cMOAT) gene is overexpressed in cisplatin-resistanthuman cancer cell lines with decreased drug accumulation. Cancer research.1996.56(18):4124-4129.
    17. Yeh, J.J., N.Y. Hsu, W.H. Hsu et al. Comparison of chemotherapy response withP-glycoprotein, multidrug resistance-related protein-1, and lung resistance-relatedprotein expression in untreated small cell lung cancer. Lung.2005.183(3):177-183.
    18. Tada, Y., M. Wada, T. Migita et al. Increased expression of multidrugresistance-associated proteins in bladder cancer during clinical course and drugresistance to doxorubicin. International journal of cancer. Journal international ducancer.2002.98(4):630-635.
    19. Mannervik, B. The enzymes of glutathione metabolism: an overview. Biochem SocTrans.1987.15(4):717-718.
    20. Jansen, B.A., J. Brouwer, and J. Reedijk. Glutathione induces cellular resistanceagainst cationic dinuclear platinum anticancer drugs. Journal of inorganicbiochemistry.2002.89(3-4):197-202.
    21. Mellish, K.J., L.R. Kelland, and K.R. Harrap. In vitro platinum drugchemosensitivity of human cervical squamous cell carcinoma cell lines withintrinsic and acquired resistance to cisplatin. Br J Cancer.1993.68(2):240-250.
    22. Bedford, P., M.C. Walker, H.L. Sharma et al. Factors influencing the sensitivity oftwo human bladder carcinoma cell lines to cis-diamminedichloroplatinum(II).Chem Biol Interact.1987.61(1):1-15.
    23. Kotoh, S., S. Naito, A. Yokomizo et al. Enhanced expression ofgamma-glutamylcysteine synthetase and glutathione S-transferase genes incisplatin-resistant bladder cancer cells with multidrug resistance phenotype. J Urol.1997.157(3):1054-1058.
    24. Hour, T.C., J. Chen, C.Y. Huang et al. Characterization of chemoresistancemechanisms in a series of cisplatin-resistant transitional carcinoma cell lines.Anticancer Res.2000.20(5A):3221-3225.
    25. Kagi, J.H. and A. Schaffer. Biochemistry of metallothionein. Biochemistry.1988.27(23):8509-8515.
    26. Kasahara, K., Y. Fujiwara, K. Nishio et al. Metallothionein content correlates withthe sensitivity of human small cell lung cancer cell lines to cisplatin. Cancerresearch.1991.51(12):3237-3242.
    27. Kondo, Y., S.M. Kuo, S.C. Watkins et al. Metallothionein localization and cisplatinresistance in human hormone-independent prostatic tumor cell lines. Cancerresearch.1995.55(3):474-477.
    28. Surowiak, P., V. Materna, A. Maciejczyk et al. Nuclear metallothionein expressioncorrelates with cisplatin resistance of ovarian cancer cells and poor clinicaloutcome. Virchows Arch.2007.450(3):279-285.
    29. Siegsmund, M.J., C. Marx, O. Seemann et al. Cisplatin-resistant bladder carcinomacells: enhanced expression of metallothioneins. Urol Res.1999.27(3):157-163.
    30. Singh, S.V., B.H. Xu, J.P. Jani et al. Mechanism of cross-resistance to cisplatin in amitomycin C-resistant human bladder cancer cell line. International journal ofcancer. Journal international du cancer.1995.61(3):431-436.
    31. Satoh, M., M.G. Cherian, N. Imura et al. Modulation of resistance to anticancerdrugs by inhibition of metallothionein synthesis. Cancer research.1994.54(20):5255-5257.
    32. Saga, Y., H. Hashimoto, S. Yachiku et al. Reversal of acquired cisplatin resistanceby modulation of metallothionein in transplanted murine tumors. Int J Urol.2004.11(6):407-415.
    33. Wu, Y., M.S. Siadaty, M.E. Berens et al. Overlapping gene expression profiles ofcell migration and tumor invasion in human bladder cancer identify metallothionein1E and nicotinamide N-methyltransferase as novel regulators of cell migration.Oncogene.2008.27(52):6679-6689.
    34. Johnson, S.W., R.P. Perez, A.K. Godwin et al. Role of platinum-DNA adductformation and removal in cisplatin resistance in human ovarian cancer cell lines.Biochemical pharmacology.1994.47(4):689-697.
    35. Johnson, S.W., P.A. Swiggard, L.M. Handel et al. Relationship betweenplatinum-DNA adduct formation and removal and cisplatin cytotoxicity incisplatin-sensitive and-resistant human ovarian cancer cells. Cancer research.1994.54(22):5911-5916.
    36. Oldenburg, J., A.C. Begg, M.J. van Vugt et al. Characterization of resistancemechanisms to cis-diamminedichloroplatinum(II) in three sublines of the CC531colon adenocarcinoma cell line in vitro. Cancer research.1994.54(2):487-493.
    37. Koberle, B., J. Payne, K.A. Grimaldi et al. DNA repair in cisplatin-sensitive andresistant human cell lines measured in specific genes by quantitative polymerasechain reaction. Biochemical pharmacology.1996.52(11):1729-1734.
    38. Koberle, B., K.A. Grimaldi, A. Sunters et al. DNA repair capacity and cisplatinsensitivity of human testis tumour cells. International journal of cancer. Journalinternational du cancer.1997.70(5):551-555.
    39. Gillet, L.C. and O.D. Scharer. Molecular mechanisms of mammalian globalgenome nucleotide excision repair. Chem Rev.2006.106(2):253-276.
    40. Shuck, S.C., E.A. Short, and J.J. Turchi. Eukaryotic nucleotide excision repair:from understanding mechanisms to influencing biology. Cell Res.2008.18(1):64-72.
    41. Wood, R.D., S.J. Araujo, R.R. Ariza et al. DNA damage recognition and nucleotideexcision repair in mammalian cells. Cold Spring Harb Symp Quant Biol.2000.65:173-182.
    42. Aboussekhra, A., M. Biggerstaff, M.K. Shivji et al. Mammalian DNA nucleotideexcision repair reconstituted with purified protein components. Cell.1995.80(6):859-868.
    43. Shivji, M.K., J.G. Moggs, I. Kuraoka et al. Dual-incision assays for nucleotideexcision repair using DNA with a lesion at a specific site. Methods Mol Biol.1999.113:373-392.
    44. Ferry, K.V., T.C. Hamilton, and S.W. Johnson. Increased nucleotide excision repairin cisplatin-resistant ovarian cancer cells: role of ERCC1-XPF. Biochemicalpharmacology.2000.60(9):1305-1313.
    45. Felicio, D.F., S. Vidal Lda, R.S. Irineu et al. Overexpression of Escherichia colinucleotide excision repair genes after cisplatin-induced damage. DNA Repair(Amst).2013.12(1):63-72.
    46. Jones, S.L., I.D. Hickson, A.L. Harris et al. Repair of cisplatin-DNA adducts byprotein extracts from human ovarian carcinoma. International journal of cancer.Journal international du cancer.1994.59(3):388-393.
    47. Westerveld, A., J.H. Hoeijmakers, M. van Duin et al. Molecular cloning of ahuman DNA repair gene. Nature.1984.310(5976):425-429.
    48. Metzger, R., C.G. Leichman, K.D. Danenberg et al. ERCC1mRNA levelscomplement thymidylate synthase mRNA levels in predicting response andsurvival for gastric cancer patients receiving combination cisplatin and fluorouracilchemotherapy. J Clin Oncol.1998.16(1):309-316.
    49. Chen, C., F. Wang, Z. Wang et al. Polymorphisms in ERCC1C8092A predictprogression-free survival in metastatic/recurrent nasopharyngeal carcinoma treatedwith cisplatin-based chemotherapy. Cancer Chemother Pharmacol.2013.72(2):315-322.
    50. Rumiato, E., F. Cavallin, E. Boldrin et al. ERCC1C8092A (rs3212986)polymorphism as a predictive marker in esophageal cancer patients treated withcisplatin/5-FU-based neoadjuvant therapy. Pharmacogenet Genomics.2013.
    51. Usanova, S., A. Piee-Staffa, U. Sied et al. Cisplatin sensitivity of testis tumour cellsis due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression.Mol Cancer.2010.9:248.
    52. Dabholkar, M., J. Vionnet, F. Bostick-Bruton et al. Messenger RNA levels ofXPAC and ERCC1in ovarian cancer tissue correlate with response toplatinum-based chemotherapy. J Clin Invest.1994.94(2):703-708.
    53. Gossage, L. and S. Madhusudan. Current status of excision repair crosscomplementing-group1(ERCC1) in cancer. Cancer Treat Rev.2007.33(6):565-577.
    54. Handra-Luca, A., J. Hernandez, G. Mountzios et al. Excision repair crosscomplementation group1immunohistochemical expression predicts objectiveresponse and cancer-specific survival in patients treated by Cisplatin-basedinduction chemotherapy for locally advanced head and neck squamous cellcarcinoma. Clin Cancer Res.2007.13(13):3855-3859.
    55. Jun, H.J., M.J. Ahn, H.S. Kim et al. ERCC1expression as a predictive marker ofsquamous cell carcinoma of the head and neck treated with cisplatin-basedconcurrent chemoradiation. Br J Cancer.2008.99(1):167-172.
    56. Kim, M.K., K.J. Cho, G.Y. Kwon et al. Patients with ERCC1-negative locallyadvanced esophageal cancers may benefit from preoperative chemoradiotherapy.Clin Cancer Res.2008.14(13):4225-4231.
    57. Moxley, K.M., D.M. Benbrook, L. Queimado et al. The role of single nucleotidepolymorphisms of the ERCC1and MMS19genes in predicting platinum-sensitivity,progression-free and overall survival in advanced epithelial ovarian cancer.Gynecol Oncol.2013.130(2):377-382.
    58. Bellmunt, J., L. Paz-Ares, M. Cuello et al. Gene expression of ERCC1as a novelprognostic marker in advanced bladder cancer patients receiving cisplatin-basedchemotherapy. Ann Oncol.2007.18(3):522-528.
    59. Kim, K.H., I.G. Do, H.S. Kim et al. Excision repair cross-complementation group1(ERCC1) expression in advanced urothelial carcinoma patients receivingcisplatin-based chemotherapy. APMIS.2010.118(12):941-948.
    60. McHugh, P.J., V.J. Spanswick, and J.A. Hartley. Repair of DNA interstrandcrosslinks: molecular mechanisms and clinical relevance. Lancet Oncol.2001.2(8):483-490.
    61. Cole, R.S. Repair of DNA containing interstrand crosslinks in Escherichia coli:sequential excision and recombination. Proceedings of the National Academy ofSciences of the United States of America.1973.70(4):1064-1068.
    62. Jachymczyk, W.J., R.C. von Borstel, M.R. Mowat et al. Repair of interstrandcross-links in DNA of Saccharomyces cerevisiae requires two systems for DNArepair: the RAD3system and the RAD51system. Mol Gen Genet.1981.182(2):196-205.
    63. De Silva, I.U., P.J. McHugh, P.H. Clingen et al. Defining the roles of nucleotideexcision repair and recombination in the repair of DNA interstrand cross-links inmammalian cells. Mol Cell Biol.2000.20(21):7980-7990.
    64. Sarkar, S., A.A. Davies, H.D. Ulrich et al. DNA interstrand crosslink repair duringG1involves nucleotide excision repair and DNA polymerase zeta. EMBO J.2006.25(6):1285-1294.
    65. Shen, X., S. Jun, L.E. O'Neal et al. REV3and REV1play major roles inrecombination-independent repair of DNA interstrand cross-links mediated bymonoubiquitinated proliferating cell nuclear antigen (PCNA). The Journal ofbiological chemistry.2006.281(20):13869-13872.
    66. Zhen, W., C.J. Link, Jr., P.M. O'Connor et al. Increased gene-specific repair ofcisplatin interstrand cross-links in cisplatin-resistant human ovarian cancer celllines. Mol Cell Biol.1992.12(9):3689-3698.
    67. Wynne, P., C. Newton, J.A. Ledermann et al. Enhanced repair of DNA interstrandcrosslinking in ovarian cancer cells from patients following treatment withplatinum-based chemotherapy. Br J Cancer.2007.97(7):927-933.
    68. Kuraoka, I., W.R. Kobertz, R.R. Ariza et al. Repair of an interstrand DNAcross-link initiated by ERCC1-XPF repair/recombination nuclease. The Journal ofbiological chemistry.2000.275(34):26632-26636.
    69. Kunkel, T.A. and D.A. Erie. DNA mismatch repair. Annu Rev Biochem.2005.74:681-710.
    70. Shibata, D. Loss of DNA mismatch repair: life in the fast lane? Gastroenterology.1996.111(2):519-521.
    71. Fink, D., S. Nebel, S. Aebi et al. The role of DNA mismatch repair in platinumdrug resistance. Cancer research.1996.56(21):4881-4886.
    72. Duckett, D.R., J.T. Drummond, A.I. Murchie et al. Human MutSalpha recognizesdamaged DNA base pairs containing O6-methylguanine, O4-methylthymine, or thecisplatin-d(GpG) adduct. Proceedings of the National Academy of Sciences of theUnited States of America.1996.93(13):6443-6447.
    73. Mello, J.A., S. Acharya, R. Fishel et al. The mismatch-repair protein hMSH2bindsselectively to DNA adducts of the anticancer drug cisplatin. Chem Biol.1996.3(7):579-589.
    74. Dunkern, T.R., G. Fritz, and B. Kaina. Cisplatin-induced apoptosis in43-3B and27-1cells defective in nucleotide excision repair. Mutat Res.2001.486(4):249-258.
    75. Alt, A., K. Lammens, C. Chiocchini et al. Bypass of DNA lesions generated duringanticancer treatment with cisplatin by DNA polymerase eta. Science.2007.318(5852):967-970.
    76. Shachar, S., O. Ziv, S. Avkin et al. Two-polymerase mechanisms dictate error-freeand error-prone translesion DNA synthesis in mammals. EMBO J.2009.28(4):383-393.
    77. Topping, R.P., J.C. Wilkinson, and K.D. Scarpinato. Mismatch repair proteindeficiency compromises cisplatin-induced apoptotic signaling. The Journal ofbiological chemistry.2009.284(21):14029-14039.
    78. Bignami, M., I. Casorelli, and P. Karran. Mismatch repair and response toDNA-damaging antitumour therapies. Eur J Cancer.2003.39(15):2142-2149.
    79. Papouli, E., P. Cejka, and J. Jiricny. Dependence of the cytotoxicity ofDNA-damaging agents on the mismatch repair status of human cells. Cancerresearch.2004.64(10):3391-3394.
    80. Branch, P., M. Masson, G. Aquilina et al. Spontaneous development of drugresistance: mismatch repair and p53defects in resistance to cisplatin in humantumor cells. Oncogene.2000.19(28):3138-3145.
    81. Claij, N. and H. te Riele. Msh2deficiency does not contribute to cisplatinresistance in mouse embryonic stem cells. Oncogene.2004.23(1):260-266.
    82. Massey, A., J. Offman, P. Macpherson et al. DNA mismatch repair and acquiredcisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair(Amst).2003.2(1):73-89.
    83. Gifford, G., J. Paul, P.A. Vasey et al. The acquisition of hMLH1methylation inplasma DNA after chemotherapy predicts poor survival for ovarian cancer patients.Clin Cancer Res.2004.10(13):4420-4426.
    84. Helleman, J., I.L. van Staveren, W.N. Dinjens et al. Mismatch repair and treatmentresistance in ovarian cancer. BMC cancer.2006.6:201.
    85. Wei, S.H., C.M. Chen, G. Strathdee et al. Methylation microarray analysis oflate-stage ovarian carcinomas distinguishes progression-free survival in patientsand identifies candidate epigenetic markers. Clin Cancer Res.2002.8(7):2246-2252.
    86. Jin, T.X., M. Furihata, I. Yamasaki et al. Human mismatch repair gene (hMSH2)product expression in relation to recurrence of transitional cell carcinoma of theurinary bladder. Cancer.1999.85(2):478-484.
    87. Catto, J.W., G. Xinarianos, J.L. Burton et al. Differential expression of hMLH1andhMSH2is related to bladder cancer grade, stage and prognosis but notmicrosatellite instability. International journal of cancer. Journal international ducancer.2003.105(4):484-490.
    88. Mylona, E., A. Zarogiannos, A. Nomikos et al. Prognostic value of microsatelliteinstability determined by immunohistochemical staining of hMSH2and hMSH6inurothelial carcinoma of the bladder. APMIS.2008.116(1):59-65.
    89. Dietmaier, W., S. Wallinger, T. Bocker et al. Diagnostic microsatellite instability:definition and correlation with mismatch repair protein expression. Cancer research.1997.57(21):4749-4756.
    90. Ichikawa, Y., S.J. Lemon, S. Wang et al. Microsatellite instability and expressionof MLH1and MSH2in normal and malignant endometrial and ovarian epitheliumin hereditary nonpolyposis colorectal cancer family members. Cancer GenetCytogenet.1999.112(1):2-8.
    91. Ottini, L., D. Palli, M. Falchetti et al. Microsatellite instability in gastric cancer isassociated with tumor location and family history in a high-risk population fromTuscany. Cancer research.1997.57(20):4523-4529.
    92. Parsons, R., G.M. Li, M.J. Longley et al. Hypermutability and mismatch repairdeficiency in RER+tumor cells. Cell.1993.75(6):1227-1236.
    93. Strand, M., T.A. Prolla, R.M. Liskay et al. Destabilization of tracts of simplerepetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature.1993.365(6443):274-276.
    94. Bonnal, C., V. Ravery, M. Toublanc et al. Absence of microsatellite instability intransitional cell carcinoma of the bladder. Urology.2000.55(2):287-291.
    95. Gonzalez-Zulueta, M., J.M. Ruppert, K. Tokino et al. Microsatellite instability inbladder cancer. Cancer research.1993.53(23):5620-5623.
    96. Hartmann, A., L. Zanardo, T. Bocker-Edmonston et al. Frequent microsatelliteinstability in sporadic tumors of the upper urinary tract. Cancer research.2002.62(23):6796-6802.
    97. Chu, G. Cellular responses to cisplatin. The roles of DNA-binding proteins andDNA repair. The Journal of biological chemistry.1994.269(2):787-790.
    98. Brozovic, A., G. Fritz, M. Christmann et al. Long-term activation of SAPK/JNK,p38kinase and fas-L expression by cisplatin is attenuated in human carcinoma cellsthat acquired drug resistance. International journal of cancer. Journal internationaldu cancer.2004.112(6):974-985.
    99. Pabla, N., S. Huang, Q.S. Mi et al. ATR-Chk2signaling in p53activation and DNAdamage response during cisplatin-induced apoptosis. The Journal of biologicalchemistry.2008.283(10):6572-6583.
    100. Brozovic, A. and M. Osmak. Activation of mitogen-activated protein kinases bycisplatin and their role in cisplatin-resistance. Cancer Lett.2007.251(1):1-16.
    101. Burger, H., K. Nooter, A.W. Boersma et al. Lack of correlation betweencisplatin-induced apoptosis, p53status and expression of Bcl-2family proteins intesticular germ cell tumour cell lines. International journal of cancer. Journalinternational du cancer.1997.73(4):592-599.
    102. De Feudis, P., D. Debernardis, P. Beccaglia et al. DDP-induced cytotoxicity is notinfluenced by p53in nine human ovarian cancer cell lines with different p53status.Br J Cancer.1997.76(4):474-479.
    103. O'Connor, P.M., J. Jackman, I. Bae et al. Characterization of the p53tumorsuppressor pathway in cell lines of the National Cancer Institute anticancer drugscreen and correlations with the growth-inhibitory potency of123anticancer agents.Cancer research.1997.57(19):4285-4300.
    104. Kawasaki, T., Y. Tomita, V. Bilim et al. Abrogation of apoptosis induced byDNA-damaging agents in human bladder-cancer cell lines with p21/WAF1/CIP1and/or p53gene alterations. International journal of cancer. Journal international ducancer.1996.68(4):501-505.
    105. Konstantakou, E.G., G.E. Voutsinas, P.K. Karkoulis et al. Human bladder cancercells undergo cisplatin-induced apoptosis that is associated with p53-dependent andp53-independent responses. Int J Oncol.2009.35(2):401-416.
    106. Miyake, H., I. Hara, K. Yamanaka et al. Synergistic enhancement of resistance tocisplatin in human bladder cancer cells by overexpression of mutant-type p53andBcl-2. J Urol.1999.162(6):2176-2181.
    107. Chang, F.L. and M.D. Lai. Various forms of mutant p53confer sensitivity tocisplatin and doxorubicin in bladder cancer cells. J Urol.2001.166(1):304-310.
    108. Chang, F.L. and M.D. Lai. The relationship between p53status and anticancerdrugs-induced apoptosis in nine human bladder cancer cell lines. Anticancer Res.2000.20(1A):351-355.
    109. Gadducci, A., S. Cosio, S. Muraca et al. Molecular mechanisms of apoptosis andchemosensitivity to platinum and paclitaxel in ovarian cancer: biological data andclinical implications. Eur J Gynaecol Oncol.2002.23(5):390-396.
    110. Esrig, D., D. Elmajian, S. Groshen et al. Accumulation of nuclear p53and tumorprogression in bladder cancer. The New England journal of medicine.1994.331(19):1259-1264.
    111. Nishiyama, H., J. Watanabe, and O. Ogawa. p53and chemosensitivity in bladdercancer. Int J Clin Oncol.2008.13(4):282-286.
    112. Cote, R.J., D. Esrig, S. Groshen et al. p53and treatment of bladder cancer. Nature.1997.385(6612):123-125.
    113. Qureshi, K.N., T.R. Griffiths, M.C. Robinson et al. TP53accumulation predictsimproved survival in patients resistant to systemic cisplatin-based chemotherapyfor muscle-invasive bladder cancer. Clin Cancer Res.1999.5(11):3500-3507.
    114. Yang, X., F. Zheng, H. Xing et al. Resistance to chemotherapy-induced apoptosisvia decreased caspase-3activity and overexpression of antiapoptotic proteins inovarian cancer. J Cancer Res Clin Oncol.2004.130(7):423-428.
    115. Chresta, C.M., J.R. Masters, and J.A. Hickman. Hypersensitivity of humantesticular tumors to etoposide-induced apoptosis is associated with functional p53and a high Bax:Bcl-2ratio. Cancer research.1996.56(8):1834-1841.
    116. Cho, H.J., J.K. Kim, K.D. Kim et al. Upregulation of Bcl-2is associated withcisplatin-resistance via inhibition of Bax translocation in human bladder cancercells. Cancer Lett.2006.237(1):56-66.
    117. Miyake, H., N. Hanada, H. Nakamura et al. Overexpression of Bcl-2in bladdercancer cells inhibits apoptosis induced by cisplatin and adenoviral-mediated p53gene transfer. Oncogene.1998.16(7):933-943.
    118. Williams, J., P.C. Lucas, K.A. Griffith et al. Expression of Bcl-xL in ovariancarcinoma is associated with chemoresistance and recurrent disease. Gynecol Oncol.2005.96(2):287-295.
    119. Parton, M., S. Krajewski, I. Smith et al. Coordinate expression ofapoptosis-associated proteins in human breast cancer before and duringchemotherapy. Clin Cancer Res.2002.8(7):2100-2108.
    120. Cooke, P.W., N.D. James, R. Ganesan et al. Bcl-2expression identifies patientswith advanced bladder cancer treated by radiotherapy who benefit fromneoadjuvant chemotherapy. BJU Int.2000.85(7):829-835.
    121. Kong, G., K.Y. Shin, Y.H. Oh et al. Bcl-2and p53expressions in invasive bladdercancers. Acta Oncol.1998.37(7-8):715-720.
    122. Belyanskaya, L.L., S. Hopkins-Donaldson, S. Kurtz et al. Cisplatin activates Akt insmall cell lung cancer cells and attenuates apoptosis by survivin upregulation.International journal of cancer. Journal international du cancer.2005.117(5):755-763.
    123. Als, A.B., L. Dyrskjot, H. von der Maase et al. Emmprin and survivin predictresponse and survival following cisplatin-containing chemotherapy in patients withadvanced bladder cancer. Clin Cancer Res.2007.13(15Pt1):4407-4414.
    124. Shariat, S.F., P.I. Karakiewicz, G. Godoy et al. Survivin as a prognostic marker forurothelial carcinoma of the bladder: a multicenter external validation study. ClinCancer Res.2009.15(22):7012-7019.
    125. Mansouri, A., Q. Zhang, L.D. Ridgway et al. Cisplatin resistance in an ovariancarcinoma is associated with a defect in programmed cell death control throughXIAP regulation. Oncol Res.2003.13(6-10):399-404.
    126. Bilim, V., T. Kasahara, N. Hara et al. Role of XIAP in the malignant phenotype oftransitional cell cancer (TCC) and therapeutic activity of XIAP antisenseoligonucleotides against multidrug-resistant TCC in vitro. International journal ofcancer. Journal international du cancer.2003.103(1):29-37.
    127. Pinho, M.B., F. Costas, J. Sellos et al. XAF1mRNA expression improvesprogression-free and overall survival for patients with advanced bladder cancertreated with neoadjuvant chemotherapy. Urol Oncol.2009.27(4):382-390.
    128. Liston, P., W.G. Fong, N.L. Kelly et al. Identification of XAF1as an antagonist ofXIAP anti-Caspase activity. Nat Cell Biol.2001.3(2):128-133.
    129. Silber, J.R., M.S. Bobola, S. Ghatan et al. O6-methylguanine-DNAmethyltransferase activity in adult gliomas: relation to patient and tumorcharacteristics. Cancer research.1998.58(5):1068-1073.
    130. Silber, J.R., A. Blank, M.S. Bobola et al. O6-methylguanine-DNAmethyltransferase-deficient phenotype in human gliomas: frequency and time totumor progression after alkylating agent-based chemotherapy. Clin Cancer Res.1999.5(4):807-814.
    131. Esteller, M., S.R. Hamilton, P.C. Burger et al. Inactivation of the DNA repair geneO6-methylguanine-DNA methyltransferase by promoter hypermethylation is acommon event in primary human neoplasia. Cancer research.1999.59(4):793-797.
    132. Hegi, M.E., A.C. Diserens, S. Godard et al. Clinical trial substantiates thepredictive value of O-6-methylguanine-DNA methyltransferase promotermethylation in glioblastoma patients treated with temozolomide. Clin Cancer Res.2004.10(6):1871-1874.
    133. Olopade, O.I. and M. Wei. FANCF methylation contributes to chemoselectivity inovarian cancer. Cancer Cell.2003.3(5):417-420.
    134. Taniguchi, T., M. Tischkowitz, N. Ameziane et al. Disruption of the Fanconianemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med.2003.9(5):568-574.
    135. Tischkowitz, M., N. Ameziane, Q. Waisfisz et al. Bi-allelic silencing of theFanconi anaemia gene FANCF in acute myeloid leukaemia. Br J Haematol.2003.123(3):469-471.
    136. Marsit, C.J., M. Liu, H.H. Nelson et al. Inactivation of the Fanconi anemia/BRCApathway in lung and oral cancers: implications for treatment and survival.Oncogene.2004.23(4):1000-1004.
    137. Fu, W.N., F. Bertoni, S.M. Kelsey et al. Role of DNA methylation in thesuppression of Apaf-1protein in human leukaemia. Oncogene.2003.22(3):451-455.
    138. Soengas, M.S., P. Capodieci, D. Polsky et al. Inactivation of the apoptosis effectorApaf-1in malignant melanoma. Nature.2001.409(6817):207-211.
    139. Slee, E.A., M.T. Harte, R.M. Kluck et al. Ordering the cytochrome c-initiatedcaspase cascade: hierarchical activation of caspases-2,-3,-6,-7,-8, and-10in acaspase-9-dependent manner. J Cell Biol.1999.144(2):281-292.
    140. Saleh, A., S.M. Srinivasula, S. Acharya et al. Cytochrome c and dATP-mediatedoligomerization of Apaf-1is a prerequisite for procaspase-9activation. The Journalof biological chemistry.1999.274(25):17941-17945.
    141. Fulda, S., M.U. Kufer, E. Meyer et al. Sensitization for death receptor-ordrug-induced apoptosis by re-expression of caspase-8through demethylation orgene transfer. Oncogene.2001.20(41):5865-5877.
    142. Kusaba, H., M. Nakayama, T. Harada et al. Association of5' CpG demethylationand altered chromatin structure in the promoter region with transcriptionalactivation of the multidrug resistance1gene in human cancer cells. Eur J Biochem.1999.262(3):924-932.
    143. Kantharidis, P., A. El-Osta, M. deSilva et al. Altered methylation of the humanMDR1promoter is associated with acquired multidrug resistance. Clin Cancer Res.1997.3(11):2025-2032.
    144. Tahara, T., T. Shibata, H. Yamashita et al. Promoter methylation status ofmultidrug resistance1(MDR1) gene in noncancerous gastric mucosa correlateswith Helicobacter Pylori infection and gastric cancer occurrence. Cancer Invest.2010.28(7):711-716.
    145. Nakayama, M., M. Wada, T. Harada et al. Hypomethylation status of CpG sites atthe promoter region and overexpression of the human MDR1gene in acute myeloidleukemias. Blood.1998.92(11):4296-4307.
    146. Shinohara, N., M. Liebert, G. Wedemeyer et al. Evaluation of multiple drugresistance in human bladder cancer cell lines. J Urol.1993.150(2Pt1):505-509.
    147. Okami, J., D.M. Simeone, and C.D. Logsdon. Silencing of the hypoxia-induciblecell death protein BNIP3in pancreatic cancer. Cancer research.2004.64(15):5338-5346.
    148. Goffin, J. and E. Eisenhauer. DNA methyltransferase inhibitors-state of the art.Ann Oncol.2002.13(11):1699-1716.
    149. Arnold, C.N., A. Goel, and C.R. Boland. Role of hMLH1promoterhypermethylation in drug resistance to5-fluorouracil in colorectal cancer cell lines.International journal of cancer. Journal international du cancer.2003.106(1):66-73.
    150. Plumb, J.A., G. Strathdee, J. Sludden et al. Reversal of drug resistance in humantumor xenografts by2'-deoxy-5-azacytidine-induced demethylation of the hMLH1gene promoter. Cancer research.2000.60(21):6039-6044.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700