基于表面等离激元共振技术的生物剂量计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核技术在军民领域的广泛应用必然会伴随着核辐射事故的发生。核辐射事故发生时人体受照剂量信息的获取是核安全事故有效处理的基础。生物剂量计是利用可测量和分析的生物指标的改变来刻度受照剂量的一类生物标记物与分析方法,它具有物理剂量计无法比拟的忠实性及可重复获得和预测预后的特性。本课题将灵敏度高、免标记和便于事故现场检测的表面等离激元共振(Surface plasma resonance,SPR)生物传感技术与辐射敏感的次黄嘌呤鸟嘌呤磷酸核糖转移酶(Hypoxanthine guanine phosphoriobsyl transferase,HPRT)、DNA和神经酰胺相结合,分别发展基于SPR方法的HPRT、DNA断片及神经酰胺三种生物剂量计体系。
     在基于SPR方法的HPRT生物剂量估计体系的研究中,首先采用6-硫代鸟嘌呤为探针,抗HPRT抗体为信号扩增分子的SPR方法灵敏的检测HPRT分子含量,其最低检测限可达2.1ng/ml;然后采用此检测策略检测不同剂量γ射线辐照小鼠的淋巴细胞HPRT,所获得的SPR信号与γ射线辐照剂量之间存在线性关系(其线性关系的数学表达式为y=-11.05x+113.43,相关系数为-0.96),建立基于SPR方法的HPRT生物剂量重建体系,该剂量体系的剂量估算范围为0.05~10Gy;最后采用HPRT剂量效应关系重建辐照小鼠的生物剂量,所获得的重建剂量与双盲剂量接近,重建剂量的精度高。
     在基于SPR方法的DNA断片生物剂量估计体系的研究中,首先采用碱性磷酸酶为探针的SPR方法检测辐照诱导的小牛胸腺DNA断裂,建立SPR检测DNA断片的方法;然后采用此检测策略检测不同剂量γ射线辐照淋巴细胞的DNA断片,DNA断片的SPR信号与γ射线辐照剂量之间存在指数关系(y=162.94×(1-exp-0.99x),相关系数为0.93),建立基于SPR方法的DNA断片生物剂量重建体系,该剂量体系的剂量估算范围为0.02~7Gy;最后采用DAN断裂剂量效应关系估算小鼠的辐照剂量,所获得的重建剂量与双盲剂量接近,剂量估算的精度比较高。
     在基于SPR方法的神经酰胺生物剂量估计体系的研究中,首先优化抗神经酰胺单克隆抗体15B4为探针,抗神经酰胺单克隆抗体NHCER-2为信号扩增分子的SPR检测小鼠尿液神经酰胺的方法,建立SPR检测小鼠尿液神经酰胺的方法;然后采用此检测策略检测不同剂量γ射线辐照小鼠尿液的神经酰胺,所获SPR信号与γ射线辐照剂量之间存在线性平方关系(y=-1.26x2+15.60x+17.45,相关系数为0.92),建立基于SPR方法的神经酰胺生物剂量重建体系,该剂量体系的剂量估算范围为1~7Gy;最后采用神经酰胺剂量效应关系估算小鼠的辐照剂量,所获得的重建剂量的精度较低。
     本研究发展的基于SPR方法的HPRT和DNA断片生物剂量体系灵敏、简便、快速,其估算范围和估算的精度均优于同类生物剂量计;而在这三种基于SPR方法的新型生物剂量计中,HPRT生物剂量体系的估算范围最宽,估算精度最高,其性能优于其它两种生物剂量体系。
The wide application of nuclear technology in the field of military and civilianinevitably accompanies by the nuclear radiation accidents. The information of absorbeddose is the foundation of triage of human beings in the accidental area as well as thekey of correct diagnosis and treatment for the suspected viticms. Therefore, theacquisition of this information is the basis for effective processing of the nuclearradiation accidents. A biological dosimeter is a detectable variation of a biologicalparameter after ionizing radiation, which is used for quantification of the absorbeddose in an exposed individual.It’ s characteristics is loyal,reusable andprognosis.Biological dose assessment can help develop a treatment strategy for theradiation victim a short time after a radiation catastrophe.The research is to develophypoxanthine guanine phosphoriobsyl transferase (HPRT), DNA breaks and ceramidebiological dosimetries, respectively. These three kinds of biological dosimeters areall based on the surface plasma resonance biosensor technology which is high sensitivity,label-free and easy to detect in the scene of the accident.
     In the research of establishment of HPRT biodosimetry, the SPR biosensor with6-thioguaine as a probe and the anti-HPRT antibody as a signal enhancement was firstlyused to detect HPRT. The lowest detection limit achieves at2.1ng/ml. This detectionstrategy was then used to detect HPRT in lymphocytes extracted from mice irradiatedwith gamma doses range from0.01to10Gy. There is a linear relationship between thecorresponding SPR singanl and gamma dose.The dose estimation range based on this linearrelationship is0.05~10Gy. Finally, the linear relationship was used to reconstructthe absorbed dose of mice. The reconstructed doses are similar to the “double-blinded”dose.
     In the research of establishment of DNA breaks biodosimetry, the SPR biosensor withalkaline phosphase as the probe was firstly used to determinate DNA breaks of calf thymusinduced by gamma dose. This detection strategy was then used to determinate DNA breaksof lymphocytes irradiated with different gamma doses (0.01~7Gy). There is anexponential relationship between the corresponding SPR singanl and gamma dose.The doseestimation range based on this expinential relationship is0.02~7Gy. Finally, theexponential relationship was used to reconstruct the absorbed dose of mice. The reconstructed doses are similar to the “double-blinded” dose.
     In the research of establishment of ceramide biodosimetry, the detection ofceramide in urine of mice using the SPR biosensor with the anti-ceramide monoclonalantibody15B4as the probe and anti-ceramide monoclonal antibody NHCER-2as the signalenhancement was firstly optimized.The optimized method was then used to detect ceramideof urine collected from irradiated mice (0.5~7Gy).There is a linear quandraticrelationship between the corresponding SPR signal and gamma dose. The dose estimationrange based on this linear quandratic relationship is1~7Gy. Finally, the linearquandratic relationship was used to reconstruct the absorbed dose of mice. Thereconstructed doses are lower than the “double-blinded” dose.
     In this study, HPRT and DNA breaks biodosimetries based on the SPR technology aresensitive, simply and rapid.Both of dose estimation range and estimation accuracy aresuperior to their traditional dosimeters.Comparison of performance of these three newlydeveloped biodosimeters, the dose estimation range and estimation accuracy of HPRTdosimeter is the best.
引文
[1]贾德林.关于切尔诺贝利事故清理人员和撤离人员的剂量剂量重建.国外医学.放射医学核医学分册,1999,23(6):281~281.
    [2]Kleinerman R A, Romanyukha A A, Schauer D A, et al. Retrospective assessment ofradiation exposure using biological dosimetry: chromosome painting, electronparamagnetic resonance and the glycophorin a mutation assay. Radiation Research,2006,166(1Pt2):287~302.
    [3]Neronova E, Slozina N, Nikiforov A. Chromosome alterations in cleanup workerssampled years after the Chernobyl accident. Radiation Research,2003,160(1):46~51.
    [4]张晓红.生物剂量计.魏志勇主编,辐射剂量学.哈尔滨:哈尔滨工程大学出版社,2010:206~224.
    [5]李秀芹,赵进沛,于瑞敏,等.放射生物剂量估计指标研究进展.实用预防医学,2006,6(13):804~806.
    [6]闵锐.电离辐射生物剂量研究现状.国外医学.放射医学核医学分册,2004,2(83):121~127.
    [7]姚波,蒋本荣,艾辉胜.辐射生物剂量计的临床应用于研究现状.军事医学科学院院刊,2007,31(3):294~297.
    [8]Bender M A, Gooch P C.Typers and rates of x-ray-induced chromosome aberrations inhuman blood irradiated in vitro. Proceedings of the National Academy of Scienceof the United States of America,1962,15(48):522~532.
    [9]International Atomic Energy Agency.Cytogenetic dosimetry: Applications inpreparedness for and response to radiation emergencies. Vienna: IAEA;2011.2p.
    [10]白玉书,黄绮龙,马剑锋,等.重离子照射离体人血建立染色体畸变的剂量-效应曲线.中国辐射卫生,2003,12(2):67~69.
    [11]Prasanna P G S, Muderhwa J M, Miller A C, et al. Diagnostic biodosimetry responsefor radiation disasters: Current research and service activities at AFRRI. In:Proceedings of NATO Medical Surveillance and Response, Research and TechnologyOpportunities and Options; Budapest, Hungary. Neuilly-sur-Seine Cedex: Researchand Technology Organization (NATO);2004.p.24-(1~16).
    [12]金璀珍,陈迪.生物剂量学的研究现状和发展动向.辐射防护,1995,15(1):1~8.
    [13]王知权,刘旭平,李进,等.医用诊断X线工作者的稳定性染色体畸变和剂量估算.癌变.畸变.突变,1995,7(5):267~268.
    [14]徐永忠,郑斯英,赵经涌,等.双色荧光原位杂交检测60Co射线诱发染色体畸变的剂量效应关系.中华放射医学与防护杂志,2000,20(4):254~256.
    [15]Lucas J N, Awa A, Straume T, et al. Rapid translocation frequency analysis inhumans decades after exposure to ionizing radiation. International Journal ofRadiation Biology,1992,62(1):53~63.
    [16] Nakano M, Kodama Y, Ohtaki K, et al. Detection of stable chromosome aberrationsby FISH in a-bomb survivors: comparison with previous solid giemsa staining dataon the same230individuals. International Journal of RadiationBiology,2001,77(9):971~977.
    [17]Lloyd D C, Moquet J E, Oram S, et al. Accidental intake of tritiated water: acytogenetic follow-up case on translocation stability and dose reconstruction.International Journal of Radiation Biology,1998,73(5):543~547.
    [18]陆雪,赵骅,梁莉,等.用FISH技术对忻州事故宫内受照者进行回顾性剂量重建.中华放射医学与防护杂志,2010,5:513~515.
    [19]Durante M, Furusawa Y, Gotoh E. Technical report a simple method for simultaneousinterphase-metaphase chromosome analysis in biodosimetry. International Journalof Radiation Biology,1998,74(4):457~462.
    [20]Kanda R, Hayata I, Lloyd D C. Easy biodosimetry for high-dose radiation exposuresusing drug-induced prematurely condensed chromosomes.International Journal ofRadiation Biology,1999,75(4):441~446.
    [21]冯嘉林.早熟凝聚染色体.王继先主编,放射生物剂量学.北京:原子能出版社,1997:84.
    [22]冯嘉林,卲松生,林雅萍,等.染色体提前凝聚技术测量辐射诱发的间期染色体的损伤.核技术,1991,14(5):291~294.
    [23]陆雪,赵骅,陈德清,等. Calyculin A诱导早熟染色体凝聚的电离辐射剂量效应曲线.辐射研究与辐射工艺学报,2010,28(6):363~367.
    [24]Countryman P I, Heddle J A.The production of micronuclei from chromosomeaberrations on irradiated cultures of human lymphocytes. Mutation Research,1976,41(2-3):321~332.
    [25]Fenech M, Morly A A.Measurement of micronuclei in lymphocytes.Mutation Research,1985,147(1-2):29~36.
    [26]关树荣,白玉书,黄绮龙,等.用胞质分裂阻断法建立淋巴细胞微核率的剂量效应曲线.遗传,1992,14(2):29~31.
    [27]金璀珍,刘秀林.辐射诱发CB人淋巴细胞微核的测定.癌变.畸变.突变,1991,3(2):202.
    [28]Mill A J, Wells J, Hall S C, et al. Micronucleus induction in human lymphocytes:comparative effects of X rays, alpha particles, beta particles and neutrons andimplications for biological dosimetry. Radiation Research,1996,145(5):575~585.
    [29]高明月,王德华.微核试验及其在辐射损伤评估中的应用.天津医科大学学报,2004,10(1):149~151.
    [30]蒋本荣,高沛永,高海鹰,等.6MV X射线照射人离体血常规与CB法微核剂量效应曲线.中华放射医学与防护杂志,1991,11(3):168~172.
    [31]郝义彬,陈晓培.细胞遗传学技术在辐射生物剂量估算中的应用.辐射防护通讯,2005,25(4):25~30.
    [32]白玉书.淋巴细胞微核.王继先主编.放射生物剂量学.北京:原子能出版社,1997:78.
    [33]牛津梁.DNA损伤修复能力对GPA基因突变频率的影响及其检测方法.国外医学放射医学核医学分册,2001,25(6):279~282.
    [34]Langlois R G, Bigbee W L, Kyoizumi S, et al. Evidence for increased somatic cellmutations at the glycophorin A locus in atomicbomb survivors. Science,1987,236(4800):445~448.
    [35]Akiyaman M, Umeki S, Kusunoki Y, et al. Somatic cell mutations as a possiblepredictor of cancer risk. Health Physics,1995,68(5):643~649.
    [36]Jensen R H,Langlois R G,Bigbee W L,et al. Elevated frequency of glycophorin Amutations in erythrocytes from Chernobyl accident victims. Radiation Research,1995,141(2):129~135.
    [37]桂红星,程文英,史剑慧,等.放射事故受照者血型糖蛋白A突变分析.中华放射医学与防护杂志,1999,19(4):272~274.
    [38]Schiweitz J,Lorenz R,Schenbeck M,et al. Improved determination of varianterythrocyte at the glycophorin A (GPA) locus and variant frequency in patientstreated with radioiodine for thyroid cancer. International Journal of RadiationBiology,1996,70(2):131~143.
    [39]贾福星,雷呈祥,朱炳钗,等.γ射线诱发GPA基因位点突变的剂量效应关系研究.中国辐射卫生,2001,10(1):38~39.
    [40]Hollander M C, Alamo I, Jackman J, et al. Analysis of the mammalian GADD45geneand its response to DNA damage.Journal of Biological Chemistry,1993,268(32):24385~24393.
    [41]Smith M L, Chen I T, Zhan Q, et al. Interaction of the p53-regulated protein GADD45with proliferating cell unclear antigen. Science,1994,266(5189):1376~1380.
    [42]Isaacs J S, Chiao C, Merrick B A, et al.p53-Dependent p21induction followingγ-irradiation without concomitant p53induction in a human peripheralneuroepithelioma cell line. Cancer Research,1997,57(14):2986-2992.
    [43]Zhan Q, Fan S, Smith M L, et al. Abrogation of p53function affects gadd generesponses to DNA base-damaging agents and starvation. DNA cell Biology,1996,15(10):805~815.
    [44]Bae I, Smith M L, Sheikh M S, et al.An abnormality in the p53pathway followinggamma-irradiation in many wild-type p53human melanoma lines. Cancer Research,1996,56(4):840~847.
    [45]Papathanasiou M A, Kerr N C, Robbins J H, et al. Induction by ionizing radiationof the gadd45gene in cultured human cells: lack of mediation by protein kinaseC.Molecular Cell Biology,1991,11(2):1009~1016.
    [46]Amundson S A, Do K T, Fornace A J Jr. Induction of stress genes by low doses ofgamma rays. Radiation Research,1999,152(3):225~231.
    [47]Gajdusek C, Onoda K, London S, et al.Early molecular changes in irradiated aorticendothelium. Journal of Cell Physiology,2001,188(1):8~23.
    [48]傅春玲,童建,江伟威,等.X射线诱导人外周血淋巴细胞GADD45和p21基因表达上调.辐射研究与辐射工艺学报,2004,22(4):229~232.
    [49]徐丽昕,艾辉胜,蒋本荣,等.电离辐射对人外周血淋巴细胞GADD45基因表达的影响.辐射研究与辐射工艺学报,2006,24(2):111~114.
    [50]Iborra F J, Kimura H, Cook P R, et al.The functional organization of mitochondrialgenomes in human cells. BMC Biology,2004,2:9.
    [51]Prithivirajsingh S, Story M D, Bergh S A, et al. Accumulation of the commonmitochondrial DNA deletion induced by ionizing radiation. FEBS Letters,2004,571(1-3):227~232.
    [52]Murphy J E J, Nugent S, Seymour C, et al. Mitochondrial DNA point mutations anda novel deletion induced by direct low-LET radiation and by medium from irradiatedcells. Mutation Research,2005,585(1-2):127~136.
    [53]Wang L, Kuwahara Y, Li L, et al. Analysis of common deletion and a novel deletionof mitochondrial DNA induced by ionizing radiation. International Journal ofRadiation Biology,2007,83(7):433~442.
    [54]Krishnan K J, Harbottle A, Brich-Machin M A.The use of a3985bp mitochondrial DNAdetection as a marker for sunlight exposure in human skin. Journal ofInvestigative Dermatology,2004,123(6):1020~1024.
    [55]Kubota N, Hayashi J L, Inada T, et al. Induction of a particular deletion inmitochondrial DNA by X rays depends on the inherent radiosensitivity of the cells.Radiation Research,1997,148(4):395~398.
    [56]封江彬,陆雪,陈德清,等.巢式PCR分析电离辐射诱导人外周血线粒体DNA4977bp缺失.中华放射医学与防护杂志,2004,24(6):533~536.
    [57]王柯敏.光化学传感器理论与方法.长沙,湖南教育出版社,1995:72.
    [58]Raether H. Surface plasmons on smooth and rough surfaces and on gratings.New York:Spinger-Verlag,1988:1.
    [59]Wood R W.On a remarkable case of uneven distribution of light in a diffractiongrating spectrum. Proceedings of the Physical Society of London,1902,18(1):269~275.
    [60]Kretschmann E, Raether H. Radiative Decay of nonradiative surface plasmons excitedby light.Zeitschrift Naturforsch,1968,23A:2135~2136.
    [61]Otto A. Excitation of nonradiative surface plasma waves in silver by the methodof frustrated total reflection. Zeitschrift fur Physics.1968,216(4):398~410.
    [62]Boozer C, Yu Q M, Cheng S F,et al.Surface functionalization for self-referencingsurface plasmon resonance biosensors by multi-step self-assembly. Sensors andactuators B,2003,90(1-3):22~30.
    [63]胡建陈,王晓萍,文涨桥.表面等离子共振金/钯复合膜氢敏传感器.光学技术,2004,30(6):643~645.
    [64]Harris R D, Wilkinson J S. Waveguide surface plasmon resonance sensors. Sensorsand Actuators B,1995,29(1-3):261~267.
    [65]Homola J,Ctyroky J,Skalsky M,et al. A surface plasmon resonance based integratedoptical sensor.Sensors and Actuators B,1997,39(1-3):286~290.
    [66]Slavik R, Homola J, Ctyroky J, et al. Novel spectral fiber sensor based on surfaceplasmon resonance.Sensors and Actuators B,2001,74(1-3):106~111.
    [67]Notcovich A G, Zhuk V, Lipson S G. Surface plasmon resonance phase imaging.AppliedPhysical Letter,2000,76(13):1665~1667.
    [68]Jorgenson R C. Surface plasmon resonance based bulk optic and fiber optic sensors.Washington,University of Washington,1993:1~432.
    [70]Pei R J, Yang X R, Wang E K. Enhanced surface plasmon resonance immunoassay forhuman complement factor4. Analytica Chimica Acta,2002,453(2):173~179.
    [71]Yang J, Sun Y T, Wu W C, et al. Binding of HIV gp41with its receptors immobilizedat liquid/solid interface studied by surface plasmon resonance. MolecularCrystals and Liquid Crystals,1999,337(1):465~468.
    [72]Yoburn J C, Deb S, Manfield I W, et al. A biaryl peptide crosslink in a MetJ peptidemodel confers cooperative, nonspecific binding to DNA that ablates both repressorbinding and In vitro transcription. Bioorganic and Medicinal Chemistry,2003,11(6):811~816.
    [73]Hao D, Ohme-Takagi M, Yamasaki K.A modified sensor chip for surface plasmonresonance enables a rapid determination of sequence specificity of DNA-bindingproteins. FEBS Letters,2003,536(1-3):151~156.
    [74]Qiao H L, Chen Y Y, Wen Z Z, et al. Kinetic assay and visualization of interactionof single-stranded DNA-binding protein with its substrate. Acta Biophysica Sinica,2007,23(2):145~150.
    [75]Babic I, Andrew S E, Jiril E R. MutS interaction with mismatch and alkylated basecontaining DNA molecule detected by optical biosensor.Mutation Research,1996,372(1):87~96.
    [76]Galio L, Briquet S, Cot S, et al. Analysis of interaction between huGATA-3transcription factor and three GATA regulatory elements of HIV long terminalrepeat by surface plasmon resonance. Analytical Biochemistry,1997,253(1):70~77.
    [77]Feriotto G, Corradini R, Sforza S, et al. Peptide nucleic acids and biosensortechnology for real-time detection of the cystic fibrosis W1282X mutation bysurface plasmon resonance. Laboratory Investigation,2001,80(10):1415~1427.
    [78]Soelaiman S, Wei B Q,Bergson P, et al. Structure-based inhibitor discovery againstadenylyl cyclase toxins from pathogenic bacteria that cause anthrax and whoopingcough. Journal of Biological Chemistry,2003,278(28):25990~25997.
    [79]Liu H, Geng M, Xin X, et al. Multiple and multivalent interactions of novel anti-AIDSdrug candidates, sulfated polymannuronate(SP-MG)-derived oligosaccharides, withgp120and their anti-HIV activities. Glycobiology,2005,15(5):501~510.
    [80]Danelian E, Karlen A, Karlsson R, et al. SPR biosensor studies of the directinteraction between27drugs and a liposome surface: correlations with fractionabsorbed in humans. Journal of Medicinal Chemistry,2000,43(11):2083~2086.
    [81]Frostell-Karlsson A, Remaeus A, Roos H, et al. Biosensor analysis of the interactionbetween immobilized human serum albumin and drug compounds for prediction of humanserum albumin binding levels. Journal of Medicinal Chemistry,2000,43(10):1986~1992.
    [82]Soulages J L, Salamon Z, Wells M, et al. Low concentrations of diacylglycerolpromote the binding of apolipophorin III to a phospholipid bilayer: a surfaceplasmon resonance spectroscopy study. Proceedings of the National Academy ofScience of the United States of America,1995,92(12):5650~5654.
    [83]Bartley T D, Hunt R W, Welcher A A, et al. B61is a ligand for the ECK receptorprotein-tyrosine kinase. Nature,1994,368(6471):558~560.
    [84]Cahill C P,Johnston K S,Yee S S. A surface plasmon resonance sensor probe basedon retro-reflection.Sensors and Actuators B,1997,45(2):161~166.
    [85]Waseda S,Shimosaka T,Uchiyama K,et al. Surface plasmon resonance detector forcapillary chip electrophoresis. Chemistry Letter,1999,28(11):1195~1196.
    [86]Owega S, Lai P C E, Bawagan A D O.Surface plasmon resonance-laserdesorption/ionization-time-of-flight mass spectrometry. Analyticalchemistry,1998,70(11):2360~2365.
    [87]Nelson B P, Frutos A G, Brockman J M, et al.Near-infrared surface plasmon resonancemeasurements of ultrathin films.1.angle shift and SPR imaging experiments.Analytical Chemistry,1999,71(18):3928~3934.
    [88]Obando L A, Booksh K S.Tuning dynamic range and sensitivity of white-light,multimode, fiber-optic surface plasmon resonance sensors. Analytical Chemistry,1999,71(22):5116~5122.
    [89]Hanning A, Roeraade J, Delrow J J, et al. Enhanced sensitivity of wavelengthmodulated surface plasmon resonance devices using dispersion from a dye solution.Sensors and Actuators B,1999,54(1-2):25~36.
    [90]Nelson S G, Johnston K S, Yee S S.High sensitivity surface plasmon resonance sensorbased on phase detection. Sensors and Actuators B,1996,35(1-3):187~191.
    [91]He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surface plasmonresonance for ultrasensitive detection of DNA hybridization. Journal of theAmerican Chemical Society,2000,122(38):9071~9077.
    [92]Wink T, Van Zuilen S J, Bult A, et al. Liposome-medicated enhancement of thesensitivity in immunoassays of proteins and peptides in surface plasmon resonancespectrometry. Analytical chemistry,1998,70(5):827~832.
    [93]Huang L,Reekmans G,Saerens D,et al. Prostate-specific antigen immunosensing basedon mixed self-assembled monolayers, camel antibodies and colloidal gold enhancedsandwich assays. Biosensors and Bioelectronics,2005,21(3):483~490.
    [94]Barrett D A, Hartshome M S, Hussain M A, et al. Resistance to nonspecific proteinadsorption by poly(vinyl alcohol)thin films adsorbed to a poly(styrene) supportmatrix studied using surface plasmon resonance. Analyticalchemistry,2001,73(21):5232~5239.
    [95]Characterization of DNA probes immobilized on gold surfaces.Journal of the AmericanChemical Society,1997,119(38):8916~8920.
    [96]Homola J. Present and future of surface plasmon resonance biosensors.Analyticaland Bioanaltical Chemistry,2003,377(3):528~539.
    [97]Kumbhat S, Sharma K, Gehlot R, et al.Surface plasmon resonance based immunosensorfor serological diagnosis of dengue virus infection.Journal of Pharmaceuticaland Biomedical Analysis,2010,52(2):255~259.
    [98]Yao X, Li X, Toledo F, et al. Sub-attomole oligonucleotide and p53cDNAdeterminations via a high-resolution surface plasmon resonance combined witholigonucleotide-capped gold nanoparticle signal amplification. AnalyticalBiochemistry,2006,354(2):220~228.
    [99]Zhang H Q, Boussaad S, Tao N J. High-performance differential surface plasmonresonance sensor using quadrant cell photodetector.Review of ScientificInstruments,2003,74(1):150~153.
    [100]张海黔,陶杰,顾宁.高效差分表面等离激元共振传感器.东南大学学报(自然科学版),2005,35(2):202~205。
    [101]Forzani E S, Foley K, Westerhoff P, et al. Detection of arsenic in ground waterusing a surface plasmon resonance sensor. Sensors and ActuatorsB,2007,123(1):82~88.
    [102]赵涛,赵经涌.hprt突变分析方法及应用的进展.工业卫生与职业病,2001,27(4):238~242.
    [103]Amundson S A,Bittner M, Meltzer P, et al. Biological indicators for theidentification of ionizing radiation exposure in humans. Expert Review ofMolecular Diagnosis,2001,1(2):89~97.
    [104]Jones I M, Tucker J D, Langlosis R G, et al. Evaluation of three somatic geneticbiomarkers as indicators of low dose radiation effects in clean-up workers ofthe Chernobyl nuclear reactor accident.Radiation Protection Dosimetry,2001,97(1):61~67.
    [105]Ostrosky-Wegman P, Montero M R, de Nava C C, et al.The use of bromodeoxyuridinelabeling in the human lymphocyte HGPRT somatic mutation assay.Mutation Research,1987,191(3-4):211~214
    [106]放射性核素内照射诱发体细胞HPRT基因突变.环境与职业医学,2002,19(3):190.
    [107]Grant B W, Trombley L M, Hunter T C, et al. HPRT mutations in vivo in human CD34+hematopoietic stem cells. Mutation Research,1999,431(2):183~198.
    [108]Stenvens M M, Allen S, Davies M C, et al. The development, characterization, anddemonstration of a versatile immobilization strategy for biomolecular forcemeasurements. Langmuir,2002,18(17):6659~6665.
    [109]Upchurch K S, Leyva A, Arnold W J, et al. Hypoxanthine phosphoribosyl transferasedeficiency: association of reduced catalytic activity with reduced levels ofimmunologically detectable enzyme protein. Proceeding of the National Academyof Science of the United States of America.1975,72(10):4142~4146.
    [110]Committee on an assessment of CDC radiation Studies.Radiation dose reconstructionfor epidemiologic uses.Washington DC, National Academy Press,1995:55.
    [111]Cherubinit R, Canova S, Favaretto S, et al. Minisatellite and Hprt mutations inV79cells irradiated with helium ions and gamma rays.International Journal ofRadiation Biology,2002,78(9):791~797.
    [112]Hakoda M, Akiyama M, Kyoizumi S, et al. Increased somatic cell mutant frequencyin atomic bomb survivors. Mutation Research,1988,201(1):39~48.
    [113]Shimahara H,Kato T,Hirai Y, et al. Spectrum of in vivo hprt mutations in Tlymphocytes from atomic bomb survivors.1.Sequence alterations incDNA.Carcinogenesis,1995,16(3):583~591.
    [114]段志凯,陈英,张淑贤,等.体细胞HPRT基因突变检测用于辐射剂量估算的可行性研究.辐射防护,2001,21(2):119~122.
    [115]唐大川,杨占山,杨淑琴.中子辐射诱发人外周血染色体畸变、微核HPRT基因突变的比较研究.苏州大学学报(医学版),2009,29(4):660~663.
    [116]史纪兰,商希梅,李志荣,等.低剂量X线诱发人体细胞HPRT基因位点突变的剂量效应关系研究.中国辐射卫生,1993,2(4):181~182.
    [117]Ostling O, Johanson K J. Microelectrophoretic study of radiation-induced DNAdamages in individual mammalian cells. Biochemical and Biophysical ResearchCommunications,1984,123(1):291~298.
    [118]Singh N P, McCoy M T, Tice R R, et al. A simple technique for quantitation of lowlevels of DNA damage in individual cells. Experimental Cell Research,1988,175(1):184~191.
    [119]Cook P R, Brazell I A, Jost E. Characterization of nuclear structures containingsuperhelical DNA. Journal of Cell Science,1976,22(2):303~324.
    [120]Singh N P, Stephens R E.X-ray induced DNA double-strand breaks in human sperm.Mutagenesis,1998,13(1):75~79.
    [121]高建军,丰盛梅,顾淑珠,等.利用单细胞凝胶技术估算淋巴细胞受照剂量.复旦学报(医学版),2004,31(1):69~70.
    [122]刘青杰,陆雪,封江彬,等.碱性单细胞凝胶电泳技术用于淋巴细胞辐射生物剂量估算初探.中华放射医学与防护杂志,2006,26(5):446~448.
    [123]Grant A H, Jolyon H H, Paul D C, et al. Germ cell and dose-dependent DNA damagemeasured by the comet assay in murine spermatozoa after testicular X-irradiation.Biology Reproduction,2002,67(3):854~861.
    [124]Kinner A, Wu W, Staudt C,et al. γ-H2AX in recognition and signaling of DNAdouble-strand breaks in the context of chromatin. Nucleic Acids Research,2008,36(17):5678~5694.
    [125]Chadwick B P, Willard H F. Histone H2A variants and the inactive X chromosome:identification of a second macroH2A variant. Human MolecularGenetics,2001,10(10):1101~1113.
    [126]余艳柯,陆源,余应年,等. γ-H2AX:DNA双链断裂的标志.中国药理学与毒理学杂志,2005,19(3):237~240.
    [127]Wang H, Wang M, Wang H, et al. Complex H2AX phosphorylation patterns by multiplekinases including ATM and DNA-PK in human cells exposed to ionizing radiationand treated with kinase inhibitors. Journal of Cellphysiology,2005,202(2):492~502.
    [128]Rothkamm K, Lobrich M. Evidence for a lack of DNA double-strand break repair inhuman cells exposed to very low X-ray doses. Proceeding of the National Academyof Science of the United States of America,2003,100(9):5057~5062.
    [129]倪冠英,何淑梅,董娟聪,等.电离辐射对Jurkat细胞γ-H2AX蛋白表达的影响.吉林大学学报(医学版),2010,36(5):895~899.
    [130]Henner W D, Grunerg S M, Haseltine W A. Sites and structure of gammaradiation-induced DNA strand breaks.Journal of Biological Chemistry.1982,257(19):11750~11754.
    [131]Bopp A, Hagen U. End group determination in γ-irradiated DNA. Biochimica etBiophysica Acta-Nucleic Acids and Protein Synthesis,1970,209(2):320~326.
    [132]Henner W D, Rodriguez L O, Hecht S M, et al. Gamma ray induced deoxyribonucleicacid strand breaks.3' glycolate termini.Journal of Biological Chemistry,1983,258(2):711~713.
    [133]Bopp A, Carpy S, Burkart B, et al. Action of exonuclease III on γ-irradiated DNA.Biochimica et Biophysica Acta-Nucleic Acids and Protein Synthesis,1973,294(1):47~56.
    [134]Roots R, Kraft G, Gosschalk E. The formation of radiation-induced DNA breaks: Theration of double-strand breaks to single-strand breaks. International Journalof Radiation Oncology Biology Physics,1985,11(2):259~265.
    [135]Zhang Y, Zhou J, Lim C U. The role of NBS1in DNA double strand break repair,telomere stability, and cell cycle checkpoint control.CellResearch,2006,16(1):45~54.
    [136]Michel B, Ehrlich S D, Uzest M. DNA double-strand breaks caused by replicationarrest.EMBO Journal,1997,16(2):430~438.
    [137]He J L, Chen W L, Jin L F, et al. Comparative evaluation of the in vitro micronucleustest and the comet assay for the detection of genotoxic effects of X-rayradiation.Mutation Research,2000,469(2):223~231.
    [138]Vijayalaxmi, Tice R R, Strauss G H. Assessment of radiation-induced DNA damagein human blood lymphocytes using the single-cell gel electrophoresistechnique.Mutation Research,1992,271(3):243~252.
    [139]Neumaier T, Swenson J, Pham C, et al. Evidence for formation of DNA repair centersand dose-response nonlinearity in human cells. Proceedings of the NationalAcademy of Sciences of the United States of America,2010,109(2):443~448.
    [140]Frankenberg-Schwager M, Frankenberg D, Biocher D,et al.The linear relationshipbetween DNA double-strand breaks and radiation dose (30MeV electrons) isconverted into a quadratic function by cellular repair. International Journalof Radiation Biology and Related Studies in Physics Chemistry Medicine.1980,37(2):207~212.
    [141]Fiehn O.Metabolomics–the link between genotypes and phenotypes.Plant MolecularBiology,2002,48(1-2):155~171.
    [142]Hannun Y A.Functions of ceramide in coordinating cellular responses tostresses.Science,1996,274(5294):1855~1859.
    [143]Aureli M, Bassi R, Prinetti A, et al. Ionizing radiations increase the activityof the cell surface glycohydrolases and the plasma membrane ceramide content.Glycoconjugate Journal,2012,29(8-9):585~597.
    [144]Deng X Z, Yin X L, Allan R, et al.Ceramide biogenesis is required forradiation-induced apoptosis in the germ line of C-elegans.Science,2008,322(5898):110~115.
    [145]Rotolo J, Stancevic B, Zhang J, et al. Anti-ceramide antibody prevents theradiation gastrointestinal syndrome in mice. Journal of Clinical Investigation,2012,122(5):1786~1790.
    [146]Coy S L, Cheema A K, Tyburski J B, et al.Radiation metabolomics and its potentialin biodosimetry. International Journal of Radiation Biology,2011,87(8):802~823.
    [147]Iwamori M,Costello C,Moser H W. Analysis and quantitation of free ceramidecontaining nonhydroxy and2-hydroxy fatty acids, and phytosphingosine by highperformance liquid chromatography.Journal of Lipid Research,1979,20(1):86~96.
    [148]崔韶晖,姜波,关翔宇,等.魔芋中神经酰胺类物质的分离提取与分析.生物技术,2007,17(5):45~47.
    [149]周全,陈国强.解脂假丝酵母中神经酰胺合成的外部影响因素.无锡轻工大学学报:食品与生物技术,2005,24(1):24~28.
    [150]王妍,林青,谢金酶,等.薄层色谱结合凝胶成像系统测定小鼠表皮神经酰胺含量.中药新药与临床药理,2008,19(4):281~282.
    [151]Perry D K, Hannun Y A.The use of diglyceride kinase for quantifying ceramide.Trends in Biochemical Sciences,1999,24(6):226~227.
    [152]Samuelsson B,Samuelsson L.Separation and identification of ceramides derived fromhuman plasma sphingomyelins.Journal of Lipid Research,1969,10(1):47~55.
    [153]刘仁萍,颜焱娜,詹逸舒,等.神经酰胺类物质的分离纯化及应用.湖北民族学院学报(自然科学版),2009,27(1),76~80.
    [154]Vielhaber G, Brade L, Lindner B, et al.Mouse anti-ceramide antiserum:a specifictool for the detection of endogenous ceramide. Glyxobiology,2001,11(6):451-457.
    [155]Sugita M, Iwamori M, Evans J, et al. High performance liquid chromatography ofceramides: application to ananlysisi in human tissues and demonstration ofceramide excess in Farer’s disease. Journal of lipid research,1974,15:233-236.
    [156]Thomas R L,Matsko C M,Lotze M T,et al.Mass spectrometric identification ofincreased C16ceramide levels during apoptosis.The Journal of BiologicalChemistry,1999,274(43):30580~30588.
    [157]刘树铮,医学放射生物学.北京,原子能出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700