蜂窝状金属丝网载体涂层制备及催化还原NO_x研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NO_x排放造成的大气污染日趋严重,采用整体催化剂的净化方法是目前治理尾气排放最为有效的措施之一。金属蜂窝载体与陶瓷蜂窝载体相比较具有更好的耐冲击性能、延展性能和机械性能且导热性好、启动快,可提供比陶瓷蜂窝体大得多的开孔率及几何表面积,在现代尾气治理领域受到越来越广泛的关注。但是,蜂窝状金属载体目前加工工艺复杂,生产成本高,而且金属载体的比表面积很小,使用时需要在表面负载一层高比表面积的陶瓷涂层。金属载体与陶瓷涂层材料的热膨胀系数相差较大,使得载体与涂层之间的结合强度较差,涂层易皲裂、剥落。金属载体与活性涂层的结合强度在一定程度上制约了金属蜂窝催化剂的推广应用,如何改善并提高涂层在基体合金表面的结合强度已成为研究者关注的问题。
     本文围绕Fe-Cr-Al丝网加工成蜂窝状金属丝网载体,采用电沉积法在蜂窝状金属丝网载体表面制备氧化铝涂层,利用SEM、XRD、EDX和BET等表征技术并结合超声波检测、热冲击性能实验等手段,考察了铁铬铝高温处理、电沉积电压、电沉积时间、沉积液中铝含量和铝粒径等多个因素对涂层性能的影响。具体工作如下:
     研究过程中设计开发出两台蜂窝状金属丝网载体加工设备。通过复合电沉积法制备涂层,具体考察了影响涂层的因素,例如电沉积液、沉积电压、沉积时间,沉积液中添加剂的含量、添加剂的粒径、焙烧时间和焙烧温度等。实验结果显示,以添加剂和氧化铝的乙醇溶液为电沉积液,可以在蜂窝状金属丝网基体表面制备适宜厚度的氧化铝涂层。采用H_2SO_4对金属丝网载体进行预处理可以清洗其表面的污染物,通过加入添加剂,在900℃焙烧2h等方法提高涂层与金属基体的结合力,增强了涂层的抗热振性能和抗机械振动性能,氧化铝涂层的表面形态以及性质没有因焙烧温度的升高而被损坏。SEM电镜显示涂层表面均匀没有皲裂,XRD表明氧化铝涂层仍是主要以γ-Al_2O_3晶形存在。
     制备了Pd/Al_2O_3、Pd/CeZr/Al_2O_3、Pd/CeZr/TiO_2/Al_2O_3三种蜂窝状金属丝网载体催化剂,并采用丙烯选择催化还原NO_x的实验来评价对NO_x的催化活性。结果表明Pd含量为0.186%时,Pd/CeZr/TiO_2/Al_2O_3蜂窝状金属丝网催化剂在低温条件下具有较高的催化活性,而且催化活性窗口较宽。制备了V_2O_5-WO_3/TiO_2三元催化剂并用氨气选择催化还原NO_x的实验来评价对NO_x的催化活性。结果表明V(3)-W(7)/TiO_2催化剂具有更好的热稳定性和较高的脱硝效率。
After-treatment control technique, especially catalytic convert is an effective method to solve the increasing serious atmospheric pollution from the NO_x emission. Metallic monoliths offer plenty of advantages over ceramic monoliths, such as stronger mechanical, strength, higher ductilitical, higher thermal conductibility, lower pressure drop, and now have become most attractive supports in emissions controls. However, the metallic monoliths could not be applied in practice because of the complex of processing and the low specific surface area. It is necessary to deposit the ceramic oxide washcoat with high surface area over metallic monoliths. Since thermal expansion coefficient of the metallic support is different from the ceramic oxide washcoat, the adhesion of washcoat is poor which leads to the washcoat chap and flake away. The poor coating binding strength between the metallic substrate and the washcoat has attracted more attention by the most researchers.
     After the wrie-mesh honeycomb was manufactured by making alternatively corrugated and plain wire meshes and the coating technique of theγ-Al_2O_3 based ceramic washcoat on surface of FeCrAl metallic substrate by electrophoretic deposition was investigated in this paper.Partly including thepretreatment condition of the metallic substrate and preparation of slurry.The washcoat quality was measured by SEM, XRD, EDX and BET, ultrasonic vibration and thermal shock test. The main works are as following:
     The wrie-mesh honeycomb was manufactured by two equipment, The manufacture process of wire-mesh honeycomb was simply, which could reduce the price of wire-mesh honeycomb .Washcoat deposited on metallic wire mesh was prepared usingγ-Al_2O powders by electrophoretic deposition. The preparation parameters of washcoat were investigated, such as the deposited solution, the deposited voltage, the deposited time. Wire meshes were dipped in H_2SO_4 solution for wiping off the dirts and enhancing the cohesion between the wire mesh and washcoat. The ability of thermal resistant and vibration resistant was improved by adding additives and higher calcinations temperature, the washcoat calcine at 900℃for 2h and the phase structure of washcoat doesn't change due to increase temperature. SEM showed that alumina washcoat was even and no chap. XRD revealedγ-Al_2O_3 was main monocrystalline presented in the coating.
     The selective catalytic reduction of NO_x by C_3H_6 was investigated over Pd/Al_2O_3, Pd/ CeZr/Al_2O_3, Pd/CeZr/TiO_2/Al_2O_3 wire-mesh honeycomb. The results showed that 0.186%-Pd/CeZr/TiO_2/Al_2O_3 wire-mesh honeycomb catalyst exhibited high catalytic activity at low temperature over a broad temperature range. The selective catalytic reduction of NO_x by NH_3 was investigated over V_2O_5-WO_3/TiO_2 wire-mesh honeycomb. The results showed that V(3)-W(7)/TiO_2 catalyst provided with more thermal stability and better performance of removing NO_x.
引文
[1]郝吉明,傅立新,贺可斌.城市机动车排放污染控制:国际经验分析与中国的研究成果. 北京:中国环境科学出版社.2001,79-181.
    
    [2]黄振中.中国大气污染防治技术综述.世界科技研究与发展.26(2):30-35.
    
    [3]彭宝成,叶舜华.汽车尾气对动物的生物学效应研究.上海环境科学.1995,14(2):14-19.
    
    [4] Yang K S, Choi J S, Lee S H et al. Development of Al/Al_2O_3-coated wire-mesh honeycombs for catalytic combustion of volatile organic compounds in air. Industrial & Engineering Chemistry Research. 2004,43(4): 907-912.
    
    [5]朱洪法.催化剂载体制备及应用技术.北京:石油工业出版社.2002,6-30.
    
    [6] Heck R.M., Gulati S., Farrauto R.J.,The application of monoliths for gas phase catalytic reactions, Chemical Engineering Journal. 2001, 82: 149-156.
    
    [7]周燕,徐晓红,陈虹.堇青石质蜂窝陶瓷载体.陶瓷研究.2002,17:9-12.
    
    [8]张益群,余立挺,马建新.构件化催化剂的研究现状与应用.工业催化.2003,11(1):1-7.
    
    [9]张宏艳,牟元平,常志伟.汽车尾气净化三效催化剂研究进展.化工科技.2006,14(5): 70-72.
    
    [10]刘菊荣,宋绍富.汽车尾气净化技术及催化剂的发展.石油化工高等学校校报.2004, 17(1):31-36.
    
    [11]王建昕,傅立新,黎维彬.汽车排气污染治理及催化转化器.北京:化学工业出版社. 2000.
    
    [12]李延红,袁东,阚海东,卢伟,阮素云.大气颗粒物污染与人群死亡率变化流行病学研究 进展.环境与职业医学.2003,20(1):47-49.
    
    [13] Kenzi Tamaur, G. Alexander, Mills. Catyasts for Control of Exhuast Emissions. CatalysisTodya. 1994, 22(2): 349-360.
    
    [14] Masakazu, Iwamoto, Hidenori, Yahiro. Novel catalytic decomposition and reduction of NO[J].Catalysis Today. 1994, 22(1): 5-18.
    
    [15] M.Shelef. Stability of the Square-Planar Cu~(2+) Sites in ZSM-5: Effect of Preparation, HeatTreatment, and Modification[J]. JournalofCatalysi. 1999, 186(2): 334-344.
    
    [16] S.Kagawa, H.Yahiro. ESR study of the motional dynamics of NO_2 adsorbed onNa-mordenite[J]. Chem. Lett. 1996, 256(1-2): 27-32.
    
    [17]邵潜,龙军,贺振富.规整结构催化剂及反应器.北京:化学工业出版社.2005.
    
    [18] Yanping Zhang. Hydrothermal Stability of Cerium Modified Cu-ZSM-5 Catalyst for NitricOxide Decomposition[J]. J. Catal. 1996, 164(1): 131-145.
    
    [19] Jiang Z D, Chung K S, Kim G R, Chung J S. Mass transfer characteristics of wire-meshhoneycomb reactors. Chemical Engineering Science. 2003, 58(7): 1103-1 111.
    
    [20] Ahlstrom-Silversand A F, Odenbrand C U I. Thermally sprayed wire-mesh catalysts for thepurification of flue gases from small-scale combustion of bio-fuel Catalyst preparation andactivity studies. Applied Catalysis A: General. 1997, 153(1-2): 177-201.
    
    [21]杨伟兴.改进金属载体催化剂的开发.小型内燃机.21(3):45-51.
    
    [22] Men Y, Gnaser H, Zapf R et al. Steam reforming of methanod over Cu/CeO_2/γ-Al_2O_3 catalystsin a microchannel reactor. Applied Catalysis A: General. 2004, 277(2): 83-90.
    
    [23] Yang K S, Jiang Z D, Chung J S. Electrophoretically Al-coated wire mesh and its applicationfor catalytic oxidation of 1,2-dichlorobenzene. Surface and Coating Technology. 2003, 168(2-3) : 103-110.
    
    [24] Ahlstrom-Silversand A F, Odenbrand C U I, Modeling catalytic combustion of carbonmonoxide and hydrocarbons over catalytically active wire meshes. Chemical EngineeringJournal. 1999, 73(3): 205-216.
    
    [25] Yang K S, Choi J S, Lee S H et al. Development of Al/Al_2O_3-coated wire-mesh honeycombsfor catalytic combustion of volatile organic compounds in air. Industrial & EngineeringChemistry Research. 2004, 43(4): 907-912.
    
    [26]王亚军,曾庆轩,冯长根.汽车尾气净化催化剂载体.工业催化.1999,6:3-7.
    
    [27]翁端,吴晓东.稀土催化材料在能源环境中的研究现状及发展前景.第十届全国稀土催化 学术会议.2003,8.
    
    [28] Ishikawa Y, Katoh Y, Ohshima H. Colloidal stability of aqueous polymeric dispersions:effectof pH and salt concentration. Colloids and surfaces B: Biointerfaces. 2005, 42: 53-58.
    
    [29] Andrzej Cybulski, Jacob A. Moulijn,Structured catalysts and reactors[M]. New York:MarcelDekker. 1998.
    
    [30] Jiang Z D, Chung K S, Kim G R, Chung J S. Mass transfer characteristics of wire-meshhoneycomb reactors. Chemical Engineering Science. 2003, 58(7): 1103-1 111.
    
    [31] Yang K S, Jiang Z D, Chung J S. Electrophoretically Al-coated wire mesh and its applicationfor catalytic oxidation of 1,2-dichlorobenzene. Surface and Coating Technology. 2003,168(2-3): 103-110.
    
    [32] Ferrandon M, Berg M, Bj(?)rnbom E. Thermal stability of metal-supported catalysts forreduction of cold-start emissions in a wood-fired domestic boiler. Catalysis Today. 1999, 53(4):647-659.
    
    [33] Adomaitis J R, Fornasiero P. Nanostructrued materials for advanced automotive de-pollutioncatalysts. Journal of solid State Chemistry. 2003, 171(1-2): 19-29.
    
    [34] S.Matsumoto. Recent advances in automobile exhaust catalysts. Catalysis Today. 2004, 90:183-190.
    
    [35]闫惠忠,孔繁清,赵增祺等.催化剂载体FeCrAlY材料磷化工艺研究.中国稀土学报. 2002,20:46-49.
    
    [36] Praserthdam P, Chaisuk C, Panit A et al. Some aspects about the nature of surface species on Pt-based and MF1-based catalysts for the selective catalytic reduction of NO by propene under lean-burn condition. Applied Catalysis B: Environmental. 2002, 38(3): 227-241.
    
    [37] Wiessmeier G, Hnicker D. Heterogeneously catalyzed gas-phase hydrogenation of cis, trans, trans-1, 5, 9-cyclododecatriene on palladium catalysts having regular pore systems. Industrial & Engineering Chemistry Research. 1996, 35(12): 4412-4416.
    
    [38]金云舟,钱君律,伍艳辉.溶胶-凝胶法制备催化剂的研究进展.工业催化.2006,14(11): 60-63.
    
    [39]朱永法,李巍,何俣等.不锈钢金属丝网上TiO_2纳米薄膜光催化剂的研究.高等学校化学 学报.2003,24(3):465-468.
    
    [40]李军.车用催化涂层技术.世界汽车.2000,8:7-10.
    
    [41] Beers A E W, Nijhuis T A, Aadlers N et al. BEA coating of structured supports-performance inacylation. Applied Catalysis A: General. 2003, 243(2): 237-250.
    
    [42] Ferrandon M, Berg M, Bjornbom E. Thermal stability of metal-supported catalysts forreduction of cold-start emissions in a wood-fired domestic boiler. Catalysis Today. 1999, 53 (4) : 647-659.
    
    [43]王家明,袁芳芳,诸霞等.金属载体催化剂的涂层研究.中国稀土学报.2004,22(4).
    
    [44] Men Y, Gnaser H, Zapf R et al. Steam reforming of methanod over Cu/CeO_2/γ-Al_2O_3 catalystsin a microchannel reactor. Applied Catalysis A: General. 2004, 277(2): 83-90.
    
    [45] Perez Victor, Miachon Sylvain, Dalmon JeanAlain, et al. Peparation and characterisation of aPt/ceramic catalytic membrane. Separation and Purification Technology. 2001, 25(1-3): 33-38.
    
    [46] Wu X D, Weng D, Zhao S et al. Influence of an aluminized intermediate layer on the adhesionof a γ-Al_2O_3 washcoat on FeCrAl. Surface and Coating Technology. 2005, 190(2-3): 434-439.
    
    [47] Vorob'eva M P, Greish A A, Ivanov A V et al. Preparation of catalyst carriers on the basis ofalumina supported on metallic gauzes, Applied Catalysis A: General. 2000, 199(2): 257-261.
    
    [48] Moreno R, Ferrari B. Effect of the slurry properties on the homogeneity of alumina depositsobtained by aqueous electrophoretic deposition. Materials Research Bulletin. 2000, 35:887-897.
    
    [49] Agrafiotis C, Tsetsekou A, Stournaras C J et al. Evaluation of sol-gel methods for the synthesisof doped-ceria environmental catalysis systems. Part I : preparation of coatings. Journal of theEuropean Ceramic Society. 2002, 22(1): 15-25.
    
    [50]陈东初,郑家粲.金属表面Sol-gel法制备耐腐蚀陶瓷涂层的研究进展.材料导报.2002, 16(11):28-31.
    
    [51]裴宇韬,欧阳家虎,雷廷权.激光熔覆金属/陶瓷复合涂层中陶瓷相的行为.材料导报. 1995.4:60-66.
    
    [52] L.Francioso, D.S.Presicce, A.M.Taurino et al. Automotive application of sol-gel TiO_2 thin film-based sensor for lambda measurement,Sensors and Actuators B: Chemical. 2003, 95(1-3): 66-72.
    
    [53]朱立群.功能膜层的电沉积理论与技术.北京:北京航空航天大学出版社.2005.
    
    [54] Wang C, Ma J, Cheng W, Zhang R. Thick hydroxyapatite coatings by electrophoreticdeposition. Materials Letters. 2002, 57(1): 99-105.
    
    [55] Ferrari B, Morreno R. Electrophoretic deposition of aqueous alumina slips. Journal of theEuropean Ceramic Society. 1997, 17(4): 549-556.
    
    [56] Shelef M, McCabe R W. Twenty-five years after introduction of automotive catalysts: whatnext? Catalysis Today. 2000, 62(1): 35-50.
    
    [57] Heck R M, Farrauto R J. Automobile exhaust catalysts. Applied Catalysis A: General 2001,221(1-2): 443-457.
    
    [58] James D, Fourre E, Ishii M et al. Catalytic decomposition/regeneration of Pt/Ba(NO_3)_2catalysts: NO_x storage and reduction. Applied Catalysis B: Environmental. 2003, 45(2):147-159.
    
    [59] Liu Z Q, Anderson J A. Influence of reductant on the thermal stability of stored NO_x inPt/Ba/Al_2O_3 NO_x storage and reduction traps. Journal of Catalysis. 2004, 224(1): 18-27.
    
    [60] Gomez-garcia M A, Pitchon W, Kiennemann A. Removal of NO_x from lean exhaust gas bystorage/reduction on supported on Ce_xZr_(4-x)O_8. Environmental Science & Technology. 2005,39(2): 638-644.
    
    [61]王睿,吴丹,赵大传等.实现NO_x吸附分解的杂多化合物催化新体系研究.现代化工. 2006,26(2):120-124.
    
    [62] Ishikawa Y, Katoh Y and Ohshima H, Colloidal stability of aqueous polymeric dispersions:effect of pH and salt concentration, Colloids and surfaces B: Biointerfaces. 2005, 42: 53-58.
    
    [63] C.Agrafiotis and A.Tsetsekou. The effect of powder characteristics on washcoat quality. Par I:Alumina washcoats, Journal of the European ceramic society. 2000, 20: 815-824.
    
    [64] Xin M, Hwang I C, Kim D H et al. The effect of the preparation conditions of Pt/ZSM-5 uponits activity and selectivity for the reduction of nitric oxide. Applied Catalysis B: Environmental.1999,21 (3): 183-190.
    
    [65] Luis J.Alemany,Luca Lietti,Natale Ferlazzo,Pio Forzatti. Reactivity and PhysicochemicalCharacterization of V_2O_5-WO_3/TiO_2 De-NOx Catalysts. Journal of Catalysis. 155, 117-130,1995.
    
    [66] Hiroyuki Kamata, Katsumi Takahashi, C.U.Ingemar Odenbrand. The Role of K_2O in theSelective Reduction of NO with NH3 over a V_2O_5(WO_3)/TiO_2 Commercial Selective CatalyticReduction Catalyst. Journal of Molecular Catalysis A: Chemical 139 (1999) 189-198.
    
    [67]赵华,丁经纬,毛继亮.选择性催化还原法烟气脱氮技术现状.中国电力.2004,37(12): 74-76.
    
    [68]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究.能源研究与利用.2004(2).
    
    [69] S. Djerad, M. Coreoll. Eeffet of oxygen concentration on the NO_x reduction with ammoniaover V_2O_5-WO_3/TiO_2 catalyst. Catalysis Today. 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700