PPARs在心室重构中的作用及机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     近年研究表明,心力衰竭发生、发展的基本机制是心室重构(ventricular remodel)。心室重构是由一系列复杂的分子和细胞机制引起的心肌细胞结构、功能及表型的改变,然而对其复杂的适应性和非适应性分子调控机制还知之甚少。进一步探讨心力衰竭过程中心室重构的分子机制,将对临床预防和治疗心力衰竭具有重要意义。过氧化物酶体增殖激素型受体(peroxisome proliferator activated receptors,PPARs)是一类由配体激活的核转录因子,属核受体超家族成员之一。PPARs具有多种生物学效应,可促进脂肪细胞分化和脂肪生成,增强机体对胰岛素的敏感性,调节体内糖平衡,抑制炎症因子生成及炎症形成,影响肿瘤生长,近年来,还发现其对心血管产生保护效应。PPARα、γ的配体Fibrates类和TZDS(thiazolidinediones)类药物已在临床应用多年,分别用于治疗高脂血症和II型糖尿病。文献及本室的研究表明,心肌肥厚时PPARα活性被抑制,导致心肌脂质及能量代谢紊乱。但PPARs途径激活对左室心肌重构的影响及机制仍不清楚。
     本课题旨在阐明心室重构时心肌细胞肥大、凋亡和心肌间质重塑进程中PPARs的活性变化及其规律和意义,探讨PPARs活性改变与心肌细胞肥大、凋亡、心肌间质重塑、RAAS激活以及心力衰竭的关系,探索心力衰竭的发生、发展机制和新的干预策略。
     研究方法:
     1、细胞培养:1)、取1天龄wistar乳鼠心脏,分离消化后在普通培养基上培养,加入AngII(终浓度10-7mol/L)孵育,介导心肌细胞肥大、凋亡;2)、取1天龄wistar乳鼠心脏,分离消化后在普通培养基上培养,分别加入AngII+非诺贝特(5、10、20μmol/L)、AngII+吡格列酮(5、10、20μmol/L)及AngII +非诺贝特+吡格列酮共同孵育,观察心肌细胞肥大、凋亡、间质重塑情况。
     2、动物实验:1)、实验动物:成年雄性wistar大鼠;2)、建立CAA模型:将大鼠麻醉后开腹,束扎腹主动脉后饲养4、8周;3)、分组:取术后存活的大鼠按4、8周二个时间段喂养,每个时间段又各随机分为4组:(1)手术组(CAA_(4w)组,n=10;CAA_(8w)组,n=9);(2)非诺贝特组(F_(4w)组,n=10;F_(8w)组,n=9):30mg/(kg·d );(3)吡格列酮组(P_(4w)组,n=10;P_(8w)组,n=9):3 mg/(kg·d );(4)非诺贝特和吡格列酮合用组(F+P_(4w)组,n=10;F+P_(8w)组,n=9):30 mg/(kg·d )和3 mg/(kg·d )。另取10只大鼠,只穿线不节扎为假手术组(SH组)作对照。治疗组均予药粉末溶于水中灌胃。SH、CAA组以等量蒸馏水灌胃,每天一次,各组喂饲标准鼠食,自由饮水; 3、观察指标:1)、TUNNEL染色、流式细胞仪Annexin FITC/PI染色观察心肌细胞和心肌凋亡;2)、Western Blot检测心肌细胞和心肌PPARαγ、Bcl-2、Bax、Fas、Fas-L的含量;3)、RT-PCR检测心肌细胞和心肌PPARαγ、α/β-MHC的mRNA丰度;4)、流式细胞仪及MTT测定成纤维细胞增殖,RT-PCR、天狼星红染色观测心肌间质I/III型胶原含量;5)、经颈动脉插管测定动物模型的血流动力学指标(心率(HR)、左心室收缩压(LVSP)、舒张末压(LVEDP)、±dp/dt、主动脉收缩压及舒张压等);6)、测量动物模型的左心室重量、左心室重量/体重、左心室容积、左心室长、短轴及室壁厚度等心肌病理学指标;7)、电镜观察心肌细胞、心肌超微结构;8)、RT-PCR检测心肌细胞AT1R mRNA丰度;9)、放免法测定心肌、血浆RAAS系统的含量及活性。
     结果:
     1、AngII激活心肌细胞胚胎基因β-MHC mRNA再表达,使心肌细胞的面积增加,表明已发生心肌细胞肥大,心肌细胞肥厚模型制作成功;
     2、与对照组相比,非诺贝特、吡格列酮预处理24h显著逆转了AngII诱导的心肌细胞肥大,抑制AngII引起细胞活力改变,增加α-MHC mRNA表达,降低胚胎基因β-MHC mRNA的表达,α/β-MHC mRNA比值明显增加;
     3、非诺贝特、吡格列酮显著逆转了AngII诱导的心肌细胞肥大,抑制AngII诱导的心肌细胞凋亡,降低Fas/ FasL蛋白的表达,增加Bcl-2蛋白表达,降低Bax蛋白的表达,Bcl-2/Bax蛋白水平比值明显增加;
     4、非诺贝特、吡格列酮显著降低了AngII诱导的心肌成纤维细胞增殖及基础胶原合成;
     5、与假手术组相比,各手术处理组左室湿重/体重(LVW/BW)、平均动脉压(MAP)、左室收缩压(LVSP)、左室舒张末期压(LVEDP)、最大上升及下降速率(+dp/ dt)及血浆和心肌血管紧张素II、醛固酮活性及心肌AT1 mRNA的表达均显著增加( P < 0.05~0.01) ,而心率(HR)、左室内压最大下降速率(- dp/ dt)均显著降低( P均< 0.05),各组右室湿重/体重(RVW/BW)无显著差异,表明手术后已出现左室重塑;与手术对照组相比,非诺贝特、吡格列酮及其合用三个治疗组在8周时明显降低了LVW/BW、MAP、LVSP、LVEDP、HR(P均< 0.05),-dp/ dt增高。血浆和心肌血管紧张素II、醛固酮活性却无明显变化。除非诺贝特组外,吡格列酮和两药合用组降低了心肌AT1 mRNA的表达( P < 0.05)。除AT1 mRNA外,上述各指标在三个治疗组间差异均无显著性( P均> 0.05);
     5、手术组电镜观察心肌细胞出现凋亡超微结构特征;与假手术组相比,8周时非诺贝特、吡格列酮显著减轻了压力超负荷诱导的心肌肥厚,改善了心率(HR)、平均动脉压(MAP)、左室收缩压(LVSP)、左室舒张末期压(LVEDP)等血流动力学指标,抑制了心肌肥厚过程中的心肌细胞凋亡,上调Bcl-2/Bax蛋白水平比值,降低Fas/ FasL蛋白的表达;
     6、相对于假手术组,各手术处理组心肌I/III型胶原mRNA和VG染色光密度比值增加,非诺贝特、吡格列酮及其合用三个治疗组8周时可明显降低上述变化。相对两药处理组,上述指标与两药合用组无显著差异(P <0.05)。
     结论:
     1、PPARα、γ信号通路激活后参与抑制了心肌细胞肥大和活力的改变;对成纤维细胞增殖有显著抑制作用;
     2、非诺贝特、吡格列酮长时间预处理(24h)激活PPARα和γ除能逆转心肌细胞肥大外,还可抑制心肌细胞凋亡,并能改变凋亡相关基因Bcl-2/Bax、Fas/Fas-L的表达;
     3、经长时间处理(8周),PPARα、γ信号通路激活能改善压力超负荷大鼠血流动力学和左心室重构指标;
     4、PPARα和γ信号通路激活除能减轻压力超负荷大鼠的心肌肥厚外,还可抑制心肌细胞凋亡,对凋亡相关基因Bcl-2/Bax、Fas/ FasL的表达有调控作用;
     5、PPARα、γ信号通路激活后能明显改善压力超负荷左室心肌间质胶原重塑;
     6、PPARα、γ配体对血浆和心肌血管紧张素II、醛固酮活性无明显影响,但PPARγ途径激活能抑制AT1mRNA的表达;
     7、PPARα、γ配体合用对心室重构无叠加效应。
Background and Objectives
     Current studies have demonstrated that in the progression of cardiac insufficiency caused by various cardiac disorders, such as chronic ischemic heart disease, myocardial infarction, valvular heart disease,and myocarditis,there are a series of changes including myocardium hypertrophy and vascular hyperplasia. These changes, called ventricular remodeling, are one of the major causes that eventually induce heart failure. In particular, left ventricular hypertrophy in the course of ventricular remodeling has been proved as an independent risk factor for heart failure . In addition, hypertrophic ventricular cardiomyocytes have been found to undergo transition from compensatory hypertrophy to apoptosis. It has been shown that during the progression of compensatory left ventricular hypertrophy to failure, loss of cardiomyocyte plays an important role and the development of cardiac disorders is usually accompanied with cardiomyocyte apoptosis . Meanwhile,myocardial fibrosis act an importment role in ventricular collagen remodeling .It has become a new target of heart failure therapy.
     Peroxisome proliferator activated receptors (PPARs) is one kind of nuclear transcription factors, the activation of which is mediated by their corresponding ligands. There are three subtypes of PPARs: PPARα,PPARβ(also known as PPARδ) and PPARγ. Their ligands are both receptor- and tissue-specific, and show various biological effects. PPARβ/δis found in almost all tissues, but its physiologic functions remain unclear. PPARαand PPARγcan promote adipocyte differentiation and fat production, enhance the sensitivity of body to insulin, modulate sugar balance, inhibit inflammatory factor production and inflammation occurrence, etc. In recent years, PPARαand PPARγhave also been found to have a capacity of protecting the cardiovascular system, which, however, is paradoxically.
     The aim of this study is to research the effects of Fenofibrate and Pioglitazone, two activators of PPARαand PPARγ, on the cardiac hypertrophy in vitro and in vivo. To explore the role of the PPARs signal pathway in hypertrophy, apoptosis and fibrosis of cardiomyocytes during ventricular remodeling.
     Methods
     1. Cell culture:1).The neonatal rat cardiomyocytes were cultured by the method of digestion step by step and adherence with different speeds,and with Angiotensin II(final concentration10-7mmol/L ) stimulation ,a model of hypertrophy and apoptosis of neonatal rat cardiac myocytes was established. PPARαligands, Fenofibrate and PPARγligands,pioglitazone pretreatment ,10μmol/L,24h prior to AngII. With the aid of Leica Qwin Image software, the surface area of cardiac myocytes was analysis. The mRNA expression of PPARα,PPARγ,α-MHC andβ-MHC was measured by reverse transcription-polymerase chain reaction(RT-PCR) and the cultured myocyte viability was estimated by MTT assay .Annexin V-FITC and PI staining and then Flow cytometry was used to monitor the apoptosis cells. Using Western blot , the proto-oncogene BCL-2/Bax and Fas/Fas-L expression was observed; 2). Cardiac fibroblasts(CFs) were isolated by trypsin digestion method. CFs in third passage in this study. Then the cultured rat cardiac fibroblasts were divided randomly into five groups :control group ,AngII stimulation group(10-7mol/L), Fenofibrate pretreatment group(10μmol/L), Pioglitazone pretreatment group(10μmol/L) and concomitant fenofibrate and pioglitazone group . Cell cycle kinetics of CFs was analyzed by flow cytometry. Collagen synthesis rate was determined by measuring MTT.
     2. Animal experiment: To study associated pathologic and pathophysiologicchanges of myocardial hypertrophy, the pressure overloading model was established by the constriction of abdominal aorta in Wistar rats. Forty-eight hours after the procedure , the surviving rats were randomly divided into three time stages to breed, that is, 4, 8 weeks.Then the rats in every time stage were also randomly divided into five groups: (1) coarctation of abdominal aorta(CAA)controls group, (2) fenofibrate(F group,30 mg·kg- 1·d - 1 ), (3) pioglitazone(P group, 3 mg·kg- 1·d - 1) , (4) concomitant fenofibrate and pioglitazone (F+P group, 30mg·kg- 1·d - 1and 3mg·kg- 1·d - 1)groups ,and (5) sham-operated(SH) group was selected to serve as non-pressure overload controls.There are ten groups in all.Fenofibrate and pioglitazone were delivered by direct gastric gavage.Heart rate (HR), left ventricular end diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), mean arterial pressure (MAP) and left ventricular pressure maximal rising and declining velocities(±dp/dtmax), and the ratio of left ventricular weight to body weight (LVW/BW) and the ratio of right ventricular weight to body weight(RVW/BW). And the rennin activity,level of angiotensin II and aldosteron in Plasma and myocardial were detected by radioimmunity. The morphologic features of myocardiac cells were observed by transmission electron microscopy. DNA fragmentations were determined semiquantitatively by in situ TDT-mediated dUTP nick end labeling ( TUNEL). After Sirius red trinitrophenol staining, myocardial collagen volume fraction (CVF) were determined by Leica analysis software. PPARα,PPARγ,α-MHC/β-MHC , AT1, types I and III collagen mRNA expressions were assessed with reverse transcription polymerase chain reaction (RT-PCR). Using Western blot, the proto-oncogene Bcl-2/Bax and Fas/FasL expression were observed.
     Results
     1.Fenofibrate and pioglitazone pretreatment 24h prior to AngII, Significantly (p<0.01-0.05) reduced AngII-induced cardiac hypertrophy,increased expression ofα/β-MHC mRNA,and inhibited the effect of Ang II on the cardiac myocyte viability .There were no significant differences in the above mentioned indices between fenofibrate and pioglitazone group(P >0. 05) .
     2.Fenofibrate and pioglitazone pretreatment significantly(P<0.05) reduced angiontensinII-induced cardiocyte apoptosis by Flow cytometry analysis.Significantly inhibited the expression of Fas/FasL and Bax, while enhanced the expression of Bcl-2 and Bcl-2/Bax ratio.
     3. AngII significantly increased the proliferation index [(S+G2/M )/(S+G2M +G0/G1 )] of CFs with low concentration (final concentration10-7mmol/L ). Fenofibrate and pioglitazone pretreatment ,10μmol/L,24h prior to AngII, inhibited the effects of the proliferation induced by AngII (P<0. 01). Fenofibrate and pioglitazone pretreatment decreased the OD numerus of MTT assay induced by AngII for 24 h (P < 0. 05).
     4.In CAA8W group characteristic features of apoptotic myocardiac cells was recognized by transmission electron microscopy. We discovered the two drugs treatment significantly(P<0.05) reduced cardiocyte apoptosis in pressure-overload induced when they treatment 8 weeks. Compared with sham-operated rats ,the Bax/Bcl-2 and Fas/ FasL expressions increased at protein levels in all CAA groups (all P < 0. 05) . Compared with the CAA group , Bax/Bcl-2 and Fas/ FasL expressions were significantly decreased in 8 weeks treatment groups ( P < 0. 05 - 0. 001 ). There were no significant differences in the above mentioned indices among the four treatment groups in 4 weeks(all P > 0. 05) .
     5. At 4, 8 weeks after the operation, LVW/BW and CVF were increased significantly in CAA group,fenofibrate group and pioglitazone group compared with those in sham operated group, but those in fenofibrate and pioglitazone 8 weeks group were significantly lower than that of CAA group.Meanwhile,fenofibrate and pioglitazone significantly decreased the types I and III collagen mRNA expressions of the left ventricular myocardium induced by CAA. There were no significant differences in the above mentioned indices among the four treatment groups in 4 weeks(all P > 0. 05) .
     6. Compared with sham-operated rats , the left ventricular end diastolic pressure (LVEDP) , left ventricular systolic pressure(LVSP),mean arterial pressure(MAP)and the maximum left ventricular pressure rising rates (+dp/ dt),and the LVW/BW , mRNA of AT1 as well as plasma and myocardial angiotensin II and aldosteron were significantly increased in all CAA groups (all P < 0. 05) ,accompanied with heart rate(HR) and the maximum left ventricular pressure declining rates (-dp/ dt) were decreased.RVW/BW is no change in all groups, indicating that left ventricular remodeling(LVRM) occurred after CAA.Compared with the CAA group ,LVW/BW ,MAP ,LVSP ,LVEDP,HR were all significantly decreased when drug treatment 8 weeks ( P < 0. 05 - 0. 001 ), while corrected -dp/dt was significantly enhanced ( P < 0. 05 - 0. 001). The three drug treatment groups had no effect on plasma and myocardial angiotensin II and aldosteron activity(p>0.05). Pioglitazone treatment 8 weeks can downregulation the mRNA expression of AT1 while fenofibrate group had no effect on it. There were no significant differences in the above mentioned indices among the three drug treatment groups except AT1 mRNA (all P > 0. 05).
     Conclusions
     1. It is suggested that PPARα,PPARγactivators inhibit hypertrophy of cardiac myocytes and PPARs-dependent pathway be involved in the inhibitory course.
     2. Chronic treatment with the PPARαand PPARγagonist may be useful in preventing cardiac hypertrophy and apoptosis in vitro(24h) and vivo(8weeks), which is related the regulation of the changes of proto-oncogene Bax/Bcl-L , Fas and FasL expression.
     3. AngII can enhance proliferation in CFs and increase basal collagen syntheses. PPARαand PPARγactivators may attenuate myocardial fibrosis induced by AngII by inhibiting the above effects.
     4. PPARαligands(fenofibrate) and PPARγligands(pioglitazone) chronic treatment(8 weeks) can ameliorate pressure overload rat’s left ventricular hypertrophy and hemodynamic parameters.
     5. PPARαand PPARγagonist can attenuate remodeling of myocardial collagen network in pressure overloaded rats.
     6. Peroxisome proliferator-activated receptors ligands had no effect on plasma and myocardial angiotensin II and aldosteron activity. But mRNA expression of AT1 was upregulated by activing PPARγsignaing pathway . PPARα、γligands can improve left ventricular remodeling (LVR).
     7. There is no additive effect when the two drugs were used in combination.
引文
1. Ding B, Price RL, Goldsmith EC, Borg TK, Yan X, Douglas PS, et al.Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation ,2000;101:2854 – 62.
    2. Frey N and Olson EN. Cardiac Hypertrophy: The Good, the Bad, and the Ugly. Annu Rev Physiol. 2003;65:45–79.
    3. Frey N, Katus HA, Olson EN, et al. Hypertrophy of the Heart: A New Therapeutic Target? Circulation. 2004;109: 1580-1589.
    4. Doolan A,Nguyen L and Semsariana C. Hypertrophic Cardiomyopathy: From “Heart Tumour” to a Complex Molecular Genetic Disorder. Heart Lung and Circulation. 2004;13:15–25.
    5. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003;111:1497– 504.
    6. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, et al.The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 2002;110:271– 9.
    7. Van Empel VP, Bertrand AT, Hofstra L,et al. Myocyte apoptosis in heart failure[J]. Cardiovasc Res. 2005;67:21-9.
    8. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by angiotensinⅡ. Methods Find Exp Clin Pharmacol, 2000;22: 709-723.
    9. Anavekar NS, Solomon SD. Angiotensin II receptor blockade and ventricular remodelling. J Renin Angiotensin Aldosterone Syst. 2005 ;6:43-8.
    10. Gearing K,CrickmoreA,Gastafsson JA,et al.Structure of the mouse Peroxisome Proliferator activated receptor gene. Biochem Biophys Res Commun,1994;199:255- 263.
    11. ZhuY,QIC,Koreberg JQ,et al.Structural organization of mouse Peroxisome Proliferator activated recePtor gene: alternative promotor use and different splicing yield isoforms. Proc Natl Acad Sci USA, 1995;92:7921-7925.
    12. Takano H, Nagai T, Asakawa M, etal. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-α expression in neonatal rat cardiac myocytes. Circ Res , 2000;87: 596–602.
    13. Berer J,David EM.The mechanisms of action of PPARs. Ann Rev Med,2002;53: 409-435.
    14. Barry GS,William JH.Recent advances in Peroxisome proliferator activated receptor science. Current Med Chem,2003;10:267-280.
    15. Karim Bordji, Jo?l-Paul Grillasca, Jean-No?l Gouze, et al. Evidence for the Presence of Peroxisome Proliferator-activated Receptor (PPAR) and and Retinoid Z Receptor in Cartilage.J. Biol. Chem, 2000;275: 12243 – 12250.
    16. Mark Gurnell, John M. Wentworth,etal .A Dominant-negative Peroxisome Proliferator-activated Receptor (PPAR ) Mutant Is a Constitutive Repressor and Inhibits PPAR -mediated Adipogenesis.J Biol Chem, 2000;275: 5754 – 5759.
    17. Wayman NS, Hattori Y, McDonald MC,et al. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J. 2002;16:1027-40.
    18. SHIOMI T, TSUTSUI H., HAYASHIDANI S,et al Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation ,2002;106: 3126–3132.
    19. Xu Y, Gen M, Lu L, Fox J, et al. PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol .2005;288:H1314-23.
    20. FRANTZ S,HU K,WIDDER,J,et al. Peroxosome-proliferator activated receptor agonism and left ventricular remodeling in mice with chronic myocardial infarction. Br J Pharmacol.2004;141:9-14.
    21. DELEA T., HAGIWARA M., EDELSBERG J, OSTER G..Exposure of glitazones anti-diabetics and risk of heart failure among persons with type 2 diabetes: a retrospective population-based cohort analysis. JACC.2002;39 (abstract 858-3).
    22. Levy D, Garrison RJ, Savage DD, et al.Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med,1990;322:1561-1566.
    23. Karim Bordji,Jo?l-Paul Grillasca,Jean-No?l Gouze,et al.Evidence for the Presence of Peroxisome Proliferator-activated Receptor (PPAR) and and Retinoid Z Receptor in Cartilage.J.Biol.Chem,2000;275: 12243 – 12250.
    24. 胡琴,李隆贵.肥厚心肌能量代谢胚胎型转换的分子机制及卡维地洛的作用。第三军医大学学报,2003;25:1438-1440.
    25. Barger PM,Brandt JM,Leone TC,et al.Deactivation of peroxisome proliferator-activated receptor-alphar during cardiac hypertrophic growth. J Clin Invest,2000;105:1721-1730.
    26. 杨晓宁,田宗文,黄焕斌,等. 新生大鼠心肌细胞的体外培养. 武汉大学研究生学报(医学版).2004;20: 11-13.
    27. Michael R. Morissette, Amy L. Howes,et al. Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes.Journal of Molecular and Cellular Cardiology ,2003;35:1217–1227.
    28. Tongersa J,Fiedlera B,Koniga D,et al. Heme oxygenase-1 inhibition of MAP kinases , calcineurin/NFAT signaling , and hypertrophy in cardiac myocytes. Cardiovascular Research. 2004;63:545–552.
    29. 杨惠玲, 潘景轩, 吴伟康 等主编. 高级病理生理学: 北京:科学出版社.1998,224
    30. Kudoh S, Komuro I, Hiroi Y. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1α receptor knockout mice. J Biol Chem. 1998; 273:34037-34043.
    31. Senbonmatsu T, Ichihara S, Inagami T, et al. Evidence for angiotensin II type 2 receptor-mediated cardiacmyocyte enlargement during in vivo pressure overload. J CLIN Invest,2000;106:25-29.
    32. Brand T, Schneider MD.The TGF beta superfamily in myocardium:ligands receptors, transduction and function.J Mol Cell Cardiol,1995;27:5-18.
    33. Kagiyama S , Eguchi S , Frank GD , Inagami T , Zhang YC , Phillips MI. Angiotensin Ⅱ-induced cardiac hypertrophy and hypertensionare attenuated byepidermal growth factor receptor antisense .Ci rculation , 2002 ;106:909 - 912.
    34. Kajstura J , Cigola E , Malhotra A , Li P , Cheng W, Meggs LG, Anversa P. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol , 1997 ;29 :859 - 870.
    35. Webba DJ , Mongeb JC , Rabelinkc TJ , Yanagisawad M. Endothelin : New discoveries and rapid progress in the clinic . Trends Pharmacol Sci , 1998;19 : 5 - 8.
    36. 司徒镇强,吴军正主编. 细胞培养. 第一版. 西安:世界图书出版西安公司. 2004; 250-252.
    37. Simpson P, Savion S. Diiferentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells .Cire Res ,1982;50:101-116
    38. 李爱萍,陈光辉,李天德 等.不同水平干预对 AngII 作用心肌细胞活力的影响.军医进修学院学报,2004;25:252-254.
    39. Harada M,Itoh H,Nakagawa O,etal.Significance of ventricular myocyte and nanmyocytes interaction during cardiocyte hypertrophy. Circulation ,1997;96: 3737-3744.
    40. Kanda H,Nohara,Hasegawa K et al .A nuclear complex containing PPAR alpha/RXRalpha is markedly downregulated in the hypertrophied rat left ventricular myocardium with normal systolic function. Heart & Vessels,2000;15:191-196.
    41. Planavila A,Laguna JC,Vazquez-Carrera M.Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation. Biochimica et Biophysica Acta,2005; 21 :1687:76- 83.
    42. Mosmann I. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods,1983;65:55-63.
    43. Freimoser FM, Jakob CA, Aebi M, et al. The MTT[3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolim bromide] assay is a fast reliable method for colorimetric determination of fungal cell densities. Appl Environ Microbil,1999,65:3727-3729.
    44. GabaMA,Goldmanlla S,Ventricular remodeling in heart failure.J Card Fail,2002;8(6 Suppl):S476-485.
    45. Schoonjans K,Staels B,Auwerx J:Role of peroxisome proliferator-activated receptor(PPAR)in mediating the effects of fibrates and fatty acids on gene expression.J Lipid Res,1996;37:907-925.
    46. Irukayama-Tomobe Y,Miyauchi T,Sakai S,et al. Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation. 2004;109:904-10.
    47. Yamamoto K, Ohki R, Lee RT, Ikeda U, Shimada K. Peroxisome proliferator-activated receptor gamma activators inhibit cardiac hypertrophy in cardiac myocytes. Circulation. 2001; 104: 1670–1675.
    48. Shimamoto Y, Hirota K, Fukamizu A. Effect of peroxisome proliferator-activated receptor alpha on human angiotensinogen promoter. Int J Mol Med,2004;13:729-33.
    49. Sugawara A, Takeuchi K, Uruno A,et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology,2001;142:3125-34.
    50. Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med,2000;6:556–63.
    51. Shen ZN,Nishida K,Doi H,et al. Suppression of chondrosarcoma cells by
    15-deoxy-Delta 12,14-prostaglandin J2 is associated with altered expression of Bax/Bcl-xL and P21. Biochemical & Biophysical Research Communications, 2005; 328:375-382.
    52. Chinetti G,Griglio S,Antonucei M,et al.Activation of proliferactor activated receptors α and γ induces apoptosis of human monocyte-derived macrophages.J Biol Chem,1998;273:25 575-25 580.
    53. Ki HH,Mi KC,Agnes B,et al.Oxidized LDL reduces monocyte CCR2 expression through pathways involving peroxisome proliferator-activated receptor gamma.J Clin Invest,2000;106:793-802.
    54. Van Empel VP, Bertrand AT, Hofstra L,et al. Myocyte apoptosis in heart failure. Cardiovasc Res. 2005;67:21-9.
    55. Kajstura J,Cigola E,Malhotra A,Li P, et al. Angiotensin II induces apoptosis of adultventricular myocytes in vitro J Mol Cell Cardiol,1997;29:859-870.
    56. Takemura G,Fujiwara H.Role of apoptosis in remodeling after myocardial infarction.Pharmacol Ther.2004;104:1-16.
    57. Suzuki J,Matsubera H,Urakama M,et al.Rat angiotensin II(type I A)receptor Mrna regulation and subtype expression in myocardial growth and hypertrophy.Circ Rec,1993;73:439-447.
    58. Teiger E,Than V D,Richard I,etal.Apoptosis in pressure overload induced heart hypertrophy in the rat. J Chin Invest,1996;97:2891.
    59. Van Engeland M,Nieland LJ,Ramaekers FC,Scutte B,Reutelingsperger CP:Annexin V-affinity assay:a review on an apoptosis detection system based on phosphatidylserine exposure.Cytometry 1998;31:1-9.
    60. Kong JY, Rabkin SW. Reduction of palmitate-induced cardiac apoptosis by fenofibrate. Mol Cell Biochem. 2004;258:1-13.
    61. Matthieu Pesant , Ste′phanie Sueur , Patrick Dutartre, Mireille Tallandier, Paul A. Grimaldi , Luc Rochette, Jean-Louis Connat , Peroxisome proliferator-activated receptor γ (PPARγ) activation protects H9c-cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovascular Research.2006;69 : 440 – 449.
    62. Roberts RA, James NH, Woodyatt NJ, Macdonald N, Tugwood JD. Evidence for the suppression of apoptosis by the peroxisome proliferator activated-receptor alpha (PPAR alpha). Carcinogenesis 1998;19:43 –48.
    63. Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998;273:25573–80.
    64. Bishop-Bailey D, Hla T. Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem 1999;274:17042–8.
    65. Oltvai ZN , Milliman CL , Korsmeyer SJ . Bcl-2 heterodimerizes in vivo with a conserved homolog , Bax , that accelerates programmed cell death. Cell, 1993;74:609-619.
    66. Gustafsson AB, Gottlieb RA. Bcl-2 family members and Apoptosis, Taken to Heart.Am J physiol cell physiol, 2006;30:1152-1156.
    67. Yamaoka M, Yamaguchi S , Suzuki T , et al . Apoptosis in rat cardiac myocytes induced by Fas ligand : priming for Fas-mediated apoptosis with doxo rubicin.J Mol Cell Cardiol ,2000;32:881 - 889.
    68. SchoonjansK, StaelsB, AuwerxJ.The Peroxisome Proliferator activated receptors(PPARS) and theire effect on lipid metabolism and adipocyte differentiation. Biochem Biophys Acta,1996;302:93-109.
    69. VANDEN J P. Peroxisome Proliferator-activated receptors:A critical link among fatty acids,gene expression and carcinogenesis.J Nutr,1999;129:5755-5805.
    70. Gulick T, Cresic S, Carter ME,et al.The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid ocidation enzyme gene expression. Proc Natl Acad Sci USA,1994;91:11012-11016.
    71. 李保玉,高颖,张建英, 等. Ang-Ⅱ对大鼠胚心成纤维细胞的影响.中国病理生理杂志,2005;21:89-91.
    72. Brilla CG,Zhou GP ,Matsubara L et al . Collagen metabolism in cultured adult rat cardiac fibroblasts : responses to angiotensin Ⅱ and aldosterone. J Mol Cell Cardiol ,1994;26 :809.
    73. Baroni A , Gorga F , Baldi A , et al . Histopathological features and modulation of type IV collagen expression induced by Pseudomona aeruginosa lipopoly saccharide ( LPS) and porins on mouse skin . Histol Histopathol , 2001;16 :685 - 692.
    74. Laplante AF , Germain L , Auger FA , et al . Mechanisms of wound reep-ithelialization : hints from a tissue-engineered reconstructed skin to long standing questions. FASEB J ,2001 ;15 :2377 - 2389.
    75. Moulin V , Auger FA , Garrel D , et al . Role of wound healing myofibroblasts on re-epithelialization of human skin . Burns ,2000 ;26 :3 -12.
    76. Kupfahl C , Pink D , Friedrich K, et al . Angiotensin II directly increases transforming growth factor beta1 and osteopontin and indirectly affects collagen mRNA expression in the human heart . Cardiovasc Res , 2000 ;46 :463 - 475.
    77. Schnee JM, Hsueh WA. Angiotensin II , adhesion , and cardiac fibrosis . Cardiovasc Res , 2000 ;46 :264 - 268.
    78. Weber KT, Sun Y, Campbell SE. Structural remodeling of the heart by fibrous tissue: Role of circulating hormones and locally produced peptides. Eur Heart J, 1995;16 ( Supp l N) : 12-18.
    79. Katwa LC, Ratajska A, Clertjens JPM. Angiotensin converting enzyme and kininase-II-like activites in cultured vavular interstitial cell of the rat heart. Cardiovasc Res,1995;29:57.
    80. Zou Y, Komuro I, Yamazaki T, et al. Cell type specific angiotensin Ⅱevoked signal transduction pathways. Circ Res, 1998;82: 337-345.
    81. Reddy HK, Campbell SE, Janicki JS, et al. Coronarymicrovascular fluid flux and permeability influence of angio2 tensin Ⅱ aldosterone and arterial hypertension. J Lab ClinMed, 1993;121: 510-521.
    82. Lijnen PJ, Petrov VV, Fagard RH. Induction of cardiac fibrosis by angiotensinⅡ. Methods Find Exp Clin Pharmacol, 2000;22: 709-723.
    83. Brilla CG. Aldosterone and myocardial fibrosis in heart failure. Herz, 2000;25: 299-306.
    84. Sano M, Fukuda K, Sato T, Kawaguchi H, Suematsu M, Matsuda S, Ogawa S. ERK and p38 MAPK, but not NF- B, are critically involved in reactive oxygen species–mediated induction of IL-6 by angiotensin II in cardiac fibroblasts. Circ Res. 2001;89: 661–669.
    85. Reckelhoff JF, Romero JC. Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol. 2003;284: R893–R912.
    86. Harrison DG, Cai H, Landmesser U, Griendling KK. Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease. J Renin-Angiot-Aldost Sys. 2003;4: 51–61.
    87. Ratajska A, Campbell SE, Sun Y et al. Angiotensin II associated cardiac myocyte necrosis. Role of adrenal catecholamines. Cardiovasc Res,1994;28:684-690.
    88. Mehta JL, Hu B, Chen J, Li D. Pioglitazone inhibits LOX-1 expression in human coronary artery endothelial cells by reducing intracellular superoxide radical generation. Arterioscler Thromb Vasc Biol. 2003; 23: 2203–2208.
    89. Makino N, Sugano M, Satoh S, et al. Peroxisome proliferator-activated receptor-gamma ligands attenuate brain natriuretic peptide production and affect remodeling in cardiac fibroblasts in reoxygenation after hypoxia. Cell Biophys,2006; 44:65-71.
    90. Storz P, Toker A. NF-kappaB signaling–an alternate pathway for oxidative stress responses. Cell Cycle. 2003;2: 9–10.
    91. Finch T, Baldwin AS Jr. Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity. 1995; 3: 263–272.
    92. Verma IM, Stevenson JK, Schwartz EM, Van Antwerp D, Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995;9: 2723–2735.
    93. Chen J, Mehta JL et al. Angiotensin II-mediated oxidative stress and procollagen -1 expression in cardiac fibroblasts:blockade by pravastation and pioglitazone. Am J Physiol Heart Circ Physiol.2006;291:H1738-1745.
    94. SOLD investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N Engl J Med,1992;327:685.
    95. Sahlgren B,Eklof AC,Aperia A.Studies of the renal component of the hypertension in rats with aortic construction .Role of angiotensin II.Acta Physiol Scand ,1986;127: 443-448.
    96. Desjardins GS,Mueller RW, CauchyMJ. A p ressure overload model of congestive heart failure in rats. Cardiovascular Research.1988;22 : 696-702.
    97. W isenbangh T, A llen P, Cooper G. Contractile function, myosin ATP ase activity and isozymes in the hypertrophied pig left ventricle after a chronic progressive pressure overload. Circ Res, 1983; 53: 332- 341.
    98. O ′kanke HO , GehaA S, Kleig RT. Stable left ventricular hypertrophy in the dog. J Tho rac Cardiovasc Surg, 1973;65 : 264- 271.
    99. Kuwajima I ,Kardon MB ,Pegram BL , et al . Regression of left ventricular hypertrophy in two kidney one clip Goldblatt hypertension. Hypertension ,1982;4 (Suppl) :11s.
    100. 陶慰孙,李惟,姜涌明: 蛋白质分子基础,北京:高等教育出版社,1995 ,337 – 344.
    101. Bemardo Nadal Ginard and Vijak Mahdavi . Molecul arbasis of cardiac performance . J . Cl i n Invest , 1989;84 :1693 – 1700.
    102. Elizabet h M. McNally , Robert Kraf t , Maria Bravo - Zehnder , et al . , Ful l - length rat alpha and beta cardiac myosin heavy chain sequences : Comparisons suggest a molecular basis for functional difference . J Mol Biol,1989 ;210 :665 – 671.
    103. Izumo S, Iompre AM, Matsuoka R, Myosin heavy chain messenger RNA and protein isofrom transitions during cardiac hypertrophy. J clin Invest, 1987; 79:970-977.
    104. Sack MN ,Rader TA ,Park S ,et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation ,1996 ,94 :2837-2842.
    105. Goikoetxea MJ,Beaumont J, Gonzalez A, et al.Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. Cardiovasc Res, 2006 ;69(4):899-907.
    106. AsakawaM, Takano H, Nagai T, et al. Peroxisome p roliferatoractivated recep torγp lays a critical role in inhibition of cardiac hypertrophy in vitro and in vivo. Circulation, 2002; 105: 1240 - 1246.
    107. Sheng Zhong Duan, Christine Y. Ivashchenko, et al. Cardiomyocyte-specific knockout and agonist of peroxisome proliferator-activated receptor-gamma both induce cardiac hypertrophy in mice. Circ Res,2005;97: 372 - 379.
    108. Sack MN ,Disch DL ,Rockman HA ,et al. A role for Sp and nuclear receptor transcription factors in a cardiac hypertrophic growth program. Proc Natl Acad Sci USA , 1997 ;94 : 6438-6443.
    109. Dish DL ,Rader TA ,Cresci S ,et al. Transcriptional control of a nuclear gene encoding a mitochondrial fatty acid oxidation enzyme in transgenic mice :A role for nuclear receptors in ardiac and brown adipose expression. Mol Cell Biol ,1996 ;16 :4043-4051.
    110. Pickavance LC, Tadayyon M, Widdowson PS, Buckingham RE, Wilding JP. Therapeutic index for rosiglitazone in dietary obese rats: separation of efficacy andhaemodilution. Br J Pharmacol. 1999;128: 1570–1576.
    111. Arakawa K, Ishihara T, Aoto M, Inamasu M, Kitamura K, Saito A. An antidiabetic thiazolidinedione induces eccentric cardiac hypertrophy by cardiac volume overload in rats. Clin Exp Pharmacol Physiol. 2004;31: 8–13.
    112. Ghazzi MN, Perez JE, Antonucci TK, Driscoll JH, Huang SM, Faja BW, Whitcomb RW. Cardiac and glycemic benefits of troglitazone treatment in NIDDM. The Troglitazone Study Group. Diabetes. 1997; 46: 433–439.
    113. St John Sutton M, Rendell M, Dandona P, Dole JF, Murphy K, Patwardhan R, Patel J, Freed M. A comparison of the effects of rosiglitazone and glyburide on cardiovascular function and glycemic control in patients with type 2 diabetes. Diabetes Care. 2002; 25: 2058–2064.
    114. Benson S , Wu J , Padmanabhan S , et al . Peroxisome-proliferato activated receptor ( PPAR ) γ expression in human vascular smooth muscle cells : inhibition of growth , migration , and c-fos expression by the peroxisome proliferator-activated receptor( PPAR) γ activator troglitazone. Am J Hypertens , 2000;13: 74-82.
    115. Hirotani S ,Otsu K,Nishida K, et al . Involvement of nuclear factor κB and apoptosis signal-regulated kinase 1 in G-protein-coupled receptor agonist induced cardiomyocyte hypertrophy. Circulaton ,2002 ;105 :509-515.
    116. Taimor G,Schluter KD ,Best P. Transcription activator protein 1 mediates alpha- but not beta-adrenergic hypertrophic growth responses in adult cardiomyocytes. AmJ Physiol ,2004 ;286 :H2369-H2375.
    117. Mascareno E ,Dhar M,Siddiqui MAQ. Signal transduction and activator of transcription ( STAT) protein2dependent activaton of angiotensinogen promoter : a cellular signal for hypertrophy in cardiac muscle . Proc Natl Acad Sci USA ,1998 ;95 :5590-5594.
    118. Liang Q ,De Windt LJ ,Witt SA , et al . The transcription factors GATA4 and GATA6 regulate cardiomyocyte hypertrophy in vitro and in vivo. J Biol Chem,2001;276 :30245-30253.
    119. Jiang C , Ting AT , Seed B. PPAR-γ agonists inhibit production of monocyte inflammatory cytokines. Nature ,1998;391 :82-86.
    120. Sakai S,Miyauchi T,Irukayama-TomobeY,et al. Peroxisome proliferator-activated receptor-gamma activators inhibit endothelin-1-related cardiac hypertrophy in rats. Clinical Science. 2002 ; 48:16S-20S.
    121. Diep QN, Benkirane K, Schiffrin EL. Long-term effects of pioglitazone on cardiac hypertrophy, inflammation and fibrosis in stroke prone spontaneously hypertensive rats. Hypertension, 2002; 40: 412.
    122. Diep QN ,E12Mabrouk M,Cohn JS ,et al. Structure ,endothelial function , cell growth , and inflammation in blood vessels of angiotension Ⅱ-infused rats : role of peroxisome proliferator activated receptor-gamma. Circulation ,2002 ;105 : 2296-2302.
    123. Komers R ,Vrana A. Thiazolidinediones —tools for the research of metabolic syndrome X. Physiol Res ,1998;47 :215-225.
    124. Yue TL, Bao W, Jucker BM, et al. Activation of peroxisome proliferator-activated receptor-alpha protects the heart from ischemia/reperfusion injury. Circulation. 2003;108:2393-9.
    125. Staels B,Koenig W, HabibA, et al.Activation of human aortic 5 mooth muscle cells 15 inhibited by PPARα but not by PPARγ activators .Nature, 1998;393 :790- 793.
    126. Itoh H , Doi K, Tanaka T, et al. Hypertension and insulin resistance : role of peroxisome proliferator2activated receptor gamma. Clin Exp Pharmacol Physiol ,1999;26 :558-560.
    127. Li Z, Bing OH, Long X, et al. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol, 1997;272:H2313-9.
    128. 李法琦,陈运贞.自发性高血压大鼠心肌细胞凋亡的变化及其意义.中华心血管病杂志,1999;27(6):459-463.
    129. Omer A , Nalan A , Tamer S , et al . Association between the severity of heart failure and the susceptibility of myocytes to apoptosis in patients with idiopathic dilated cardiomyopathy. International Journal of Cardiology , 2001;80 :29-36.
    130. Cheng W , L i BS. Stretch-induced Programmed Myocyte Cell Death. Clin. Invest,1995;11: 2247-59.
    131. 131. Bohm M. Pathophysiology of chronic heart failure today . HERZ ,2002; 27 : 75-91.
    132. Liu HR, Tao L, Gao E, et al. Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion . Cardiovasc Res,2004;62:135-44.
    133. Condorelli G, Morisco G, Stassi G, et al. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation, 1999;99:3071-3078.
    134. Philipp S, Pagel I, Hohnel K, et al. Regulation of caspase 3 and Fas in pressure overload-induced left ventricular dysfunction. Eur J Heart Fail, 2003;6:845-851.
    135. Dussaillant GR, Gonzalea H, Cespedes C, et al. Regression of left ventricular hypertropy in experimental renovascular hypertension: diasto lic dysfunction depends mo re on myocardial collagen than it does on myocardial mass. J Hyertens,1996;14: 1117.
    136. 张晶,王明屹,王泰龄. 高血压心肌间质重构研究中的应用技术.诊断病理学杂志,1997;4 :170.
    137. Yamamoto K, Masuyama T, Sakata Y, et al. Myocardial stiffness is determined by ventricular fibrosis, but not by compensatory or excessive hypertrophy in hypertensive heart. Cardiovasc Res,2002;55:76-82.
    138. Nishikawa N, Masuyama T, Yamamoto K, et al. Long-term administration of amlodipine prevents decompensation to diastolic heart failure in hypertensive rats.J Am Coll Cardiol,2001;38:1539-1545.
    139. Sakata Y, Masuyama T, Yamamoto K, et al. Renin angiotensin system-dependent hypertrophy as a contributor to heart failure in hypertensive rats: different characteristics from renin angiotensin system-independent hypertrophy.J Am Coll Cardiol,2001;37:293-299.
    140. Ruwhof C, van der Laarse. A Mechamical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways, Cardiovasc Res,2000;47:23-37。
    141. Meiners S, Hocher B, Weller A, et al. Downregulation of matrixmetalloproteinases and collagens and suppression of cardiac fibrosis by inhibition of the proteasome . Hypertension , 2004,44 :471-477.
    142. Kapadia SR, Oral H, Lee J , et al. Hemodynamic regulation of tumor necrosis facto r-alpha gene and protein expression in adult feline myocardium.Circ Res,1997; 81:187- 195.
    143. Peng J,Gurantz D,T ran V , et al. Tumor necro sis facto r Ainduced AT1 receptor up regulation enhances angiotensin II mediated cardiac fibroblast responses that favo r fibro sis. Circ Res, 2002;91: 1119- 1126.
    144. Stilli D ,Sgoifo A ,Macchi E ,et al. Myocardial remodeling and arrhythmogenesis in moderate cardiac hypertrophy in rats. Am J Physiol Heart Circ Physiol ,2001;280:H142-H150.
    145. Diep QN, Benkirane K, Amiri F,et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol, 2004;36:295-304.
    146. Jiang C , Ting A T , Seed B. PPARγagonists inhibit production of monocyte inflammatory cytokines. Nature ,1998 ;391 :82 – 861.
    147. Ancey C , Menet E , Corbi P , et al . Human cardiomyocyte hypertrophy induced in vitro by gp130 stimulation. Cardiovasc Res ,2003 ;59:78- 851.
    148. Cernuda-Morollon E , Rodriguez-Pascual F , Klatt P , et al . PPAR agonists amplify iNOS expression while inhibiting NF - kappaB :implications for mesangial cell activation by cytokines. J Am Soc Nephrol ,2002;13:2223 – 2231.
    1. Karim Bordji, Jo?l-Paul Grillasca, Jean-No?l Gouze, et al. Evidence for the Presence of Peroxisome Proliferator-activated Receptor (PPAR) and and Retinoid Z Receptor in Cartilage.J Biol Chem, 2000, 275: 12243 – 12250.
    2. Mark Gurnell, John M. Wentworth,etal .A Dominant-negative Peroxisome Proliferator-activated Receptor (PPAR ) Mutant Is a Constitutive Repressor and Inhibits PPAR -mediated Adipogenesis.J Biol Chem, 2000; 275: 5754 – 5759.
    3. Gearing K,CrickmoreA,Gastafsson JA,et al.Structure of the mouse Peroxisome Proliferator activated receptor gene. Biochem BioPhys Res Commun,1994;199: 255-263.
    4. ZhuY,QIC,Koreberg JQ,et al.Structural organization of mouse Peroxisome Proliferator activated recePtor gene: alternative promotor use and different splicing yield isoforms. Proc Natl Acad Sci USA,1995;92:7921-7925.
    5. ZhuY,AlvaresK,HuangQ,et al.Cloningofamemberof the Peroxisome Proliferator activated recePtor gene family from mouse liver. J Biol Chem,1993;268: 26817-268206.
    6. BieriF LhuguenotJC.Toxicity of Peroxisome proliferators. Biochimie,1993; 75:263-268.
    7. J-Vamecq , N-Latruffe .Medical sigficance of peroxisom.Proliferator-activated receptor. The Lancet ,1999;354:141-148.
    8. H-Lim,Ra-GuPta,Wg-Ma,et al .Cycloxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PRARδ . Genes Dev,1999;13:1561-1574.
    9. B-Stacls,K-Wolfgang,A-Llabib,et al.Activation of human aortic smooth 一 muscle cells 15 inhibited PPAR-α but not PPARγ activators . Nature,1998;393:790-793.
    10. FajasL,AnbmufD,RasPeE,et al.The organization,Promoter analysis,and expression of the human PPARgamma gene. FEBS lett,1998;438(l-2):55-60.
    11. Gearing KI,CrickmoreA,Gustafsson JA. Structure of the mouse peroxisomeproliferator activated receptorαgene. Biochem Biophys Res,1994;199:255-263.
    12. GottlicherM,WidmarkE,LIQ,et al.Fatty acids activate chimera of the clofibric acid activated receptor and the glucocorticoid receptor. Proc Natl Acad Sci USA,1992; 89:4653-4657.
    13. SchoonjansK, StaelsB, AuwerxJ.The Peroxisome Proliferator activated receptors(PPARS) and theire effect on lipid metabolism and adipocyte differentiation. Biochem Biophys Acta,1996;1 302:93-109.
    14. Upenberg A,Jeannin E,Wahi Wetal. Polarity and specific sequence requiremenis of Peroxisome Proliferator-activated re-ceptor(PPAR)/retinoid X receptor heterodimer binding to DNA. J Biol chem,1997;272:20108-20117.
    15. HILL MR,CLARKE S,ROOGE RS K,et al.Effect of peroxisome proliferator-activated receptor alpha activators on tumor necrosis factor expression in mice during endotoxemia.Infect immune,1999;67:3488-3493.
    16. VANDEN J P. Peroxisome Proliferator-activated receptors:A critical link among fatty acids,gene expression and carcinogenesis.J Nutr,1999;129:5755-5805.
    17. VAMECQJ,LATRUFFE N.Medical significance of peroxisome proliferator- activated receptors.Lancet,1999;354:141-148.
    18. TSAI MJ,O MELLEY B. Molecular mechanisms of action of steroid/thydroid receptor super family members. Annu Rev Biochem,1994;63:451 一 486.
    19. CARR A,SAMARAS K,CHISHOL M D J,et al .Pathoenesis of HIV-l-Protease inhibitor-associated Peripheral lipodystrophy,hyperlipidaemia,and insulin resistance. Lancet,1998;351:1881-1883.
    20. Brown PJ,Winegar DA,Plunket KD,etal.A ureido-thioisobutyric acid(GW-9578) is a subtype-seletive PPARalpha agonist with potent lipid-lowering activity.JBiol Chem,1995;270:2397.
    21. Fu-Mingui, Zhang-Jifeng,Lin-ming et al.Activation of Peroxisome proliferator-activated receptor gamma inhibits osteoprotegerin gene expression in human aortic smooth muscle cells .Biochemistry Biophysical Rsearch Communication, 2002; 294:597-601.
    22. Jones SA,Moore LB,Shenk JL,et al .The pregnane X receptor:a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol,2000; 14(1):27-39.
    23. Henke BR,Blanchard SG,Brackeen MF,et al .N-(2-benzoylphenyl)-L-tyrosine PPARgamma agonists.a discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J Med Chem,1998;41:5020-5036.
    24. Collins JL,Blanchard SG,Boswell GE,et al.N-(2-benzoylphenyl)-L-tyrosine PPARgamma agonists-2-Structure activity relationship and optimization of the phenyl alkyl either moiety. J Med Chem,1998;41:5037-5054.
    25. Cobb JE,Blanchard SG,Boswell EG,et al .N-(2-benzoylphenyl)-L-tyrosine PPARgamma agonists-3-Structure activity relationship and optimization of the N-aryl substituent. J Med Chem,1998;41:5 055-5069.
    26. Oberfield JL,Collins JL,Hohnes CP,etal.A peroxisome proliferator activated receptor gamma ligand inhibits adipocyte differentiation .Proc Natl Acad Sci USA,1999;96: 6102-6126.
    27. Barry GS,William JH.Recent advances in Peroxisome proliferator activated receptor science. Current Med Chem,2003;10:267-280.
    28. Bere r J,David EM.The mechanisms of action of PPARs. Ann Rev Med,2002;53: 409-435.
    29. Takano H, Nagai T, Asakawa M, etal. Peroxisome proliferator-activated receptor activators inhibit lipopolysaccharide-induced tumor necrosis factor-α expression in neonatal rat cardiac myocytes. Circ Res , 2000;87: 596–602.
    30. Kanda H,Nohara,Hasegawa K ,Kishimoto C ,et al .A nuclear complex containing PPARalpha/RXRalpha is markedly downregulated in the hypertrophied rat left ventricular myocardium with normal systolic function. Heart & Vessels,2000; 15:191-196.
    31. Harada M,Itoh H,Nakagawa O,etal.Significance of ventricular myocyte and nanmyocytes interaction during cardiocyte hypertrophy. Circulation ,1997;96:3737- 3744.
    32. Sack MN,Dish D,Rockman H,et al. A role for Sp and nuclear receptors in a cardiac hypertrophic growgh program. Pro Natl Acd Sci USA, 1997;94:6438-6443.
    33. Dish DL,Rader TA,Cresci S,etal. Transcriptional control of a nuclear gene encoding a mitochondurial fatty acid oxidation enzyme in transgenic mice:A role for nuclear receptors in ardiac and brown adipose expression.Mol cell Biol,1996;16:4043-4051.
    34. Planavila A,Laguna JC,Vazquez-Carrera M.Atorvastatin improves peroxisome proliferator-activated receptor signaling in cardiac hypertrophy by preventing nuclear factor-kappa B activation. Biochimica et Biophysica Acta,2005;1687:76-83.
    35. Irukayama-Tomobe Y,Miyauchi T,Sakai S,et al. Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation,2004;109:904-10.
    36. Liang F,Wang F,Zhang S,Gardner DG.. Peroxisome proliferator activated receptor (PPAR)alpha agonists inhibit hypertrophy of neonatal rat cardiac myocytes. Endocrinology, 2003 ;144:4187-94.
    37. Sakai S,Miyauchi T,Irukayama-TomobeY,et al. Peroxisome proliferator-activated receptor-gamma activators inhibit endothelin-1-related cardiac hypertrophy in rats. Clinical Science. 2002 ,48:16S-20S.
    38. Masayuki Aasakawa,Hiroyuki Takano T,Toshino Nagai etal.Perxisome Proliferator –Activated Recptor γ plays a critical Role inhibition of cardial Hypertrophy in vivtro and in vivo.Circulation , 2002;105:1240-1246.
    39. Teiger E,Than V D,Richard I,etal.Apoptosis in pressure overload induced heart hypertrophy in the rat. J Chin Invest,1996;97:2891.
    40. Yang WL, Frucht H: Activation of the PPAR pathway induces apoptosis and COX-2 inhibition in HT-29 human colon cancer cells. Carcinogenesis ,2001;22: 1379–1383.
    41. Shen ZN,Nishida K,Doi H,et al. Suppression of chondrosarcoma cells by 15-deoxy-Delta 12,14-prostaglandin J2 is associated with altered expression of Bax/Bcl-xL and p21. Biochemical & Biophysical Research Communications, 2005; 328:375-82.
    42. Shiau CW,Yang CC,Kulp SK,et al. Thiazolidenediones mediate apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 functions independently of PPARgamma. Cancer Research,2005;1565:1561-9.
    43. Kong JY, Rabkin SW. Reduction of palmitate-induced cardiac apoptosis by fenofibrate. Mol Cell Biochem,2004;258:1-13.
    44. Liu HR, Tao L, Gao E, et al. Anti-apoptotic effects of rosiglitazone in hypercholesterolemic rabbits subjected to myocardial ischemia and reperfusion .Cardiovasc Res,2004;62:135-44.
    45. Ogata T, Miyauchi T, Sakai S, et al. Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. Clin Sci (Lond), 2002;103 Suppl 48:284S-288S.
    46. Diep QN, Benkirane K, Amiri F,et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol, 2004;36:295-304.
    47. Chen K, Chen J, Li D, et al.Angiotensin II regulation of collagen type I expression in cardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension, 2004;44:655-61.
    48. Tyagi SC, Rodriguez W, Patel AM, et al. Hyperhomocysteinemic diabetic cardiomyopathy: oxidative stress, remodeling, and endothelial-myocyte uncoupling. J Cardiovasc Pharmacol Ther,2005;10:1-10.
    49. Lopaschuk GD,Belke DD,Gamble J,etal.Regulation of fatty acid oxidation in the mammalian heart in health and disease .Biochemica Biophysica Acta,1994;1213: 263-276.
    50. Henning SL,Wambolt RS,Schonekess BO,et al.Contribution of glycogen to aerobic myocardial glucose utilization .Circulation,1996;93:1549-1555.
    51. Barger PM,Brandt JM,Leone TC,etal.Deactivation of peroxisome proliferator-activated receptor a during cardiac hypertrophic growth .J Clin Invest ,2000;105:1726-1730.
    52. Yue TL, Bao W, Jucker BM, et al. Activation of peroxisome proliferator-activatedreceptor-alpha protects the heart from ischemia/reperfusion injury. Circulation, 2003;108:2393-9..
    53. Nemoto S, Razeghi P, Ishiyama M, et al. PPAR-gamma agonist rosiglitazone ameliorates ventricular dysfunction in experimental chronic mitral regurgitation. Am J Physiol Heart Circ Physiol,2005;288:H77-82.
    54. Kim SK, Zhao ZS, Lee YJ, et al. Left-ventricular diastolic dysfunction may be prevented by chronic treatment with PPAR-alpha or -gamma agonists in a type 2 diabetic animal model. Diabetes Metab Res Rev,2003;19:487-93.
    55. Sharma R,Coats AJ,Anker SD.The role of inflammatory mediators in chronic heart failure:cytokines,nitric oxide,and endothelin-1.Int J Cardiol,2000;72:175-186.
    56. Brant D,Lisa E,Jama R,et al.Cardiac Failure in transgenic mice with myxardial expression of tumor necrosis factor-a.Circulation,1998;97:1375-1381.
    57. Staels B, Koenig W, HabibA,et al.Activation of human aortic 5 mooth muscle cells
    15 inhibited by PPARαbut not by PPARγ activators .Nature,1998;393 :790-793.
    58. Marx N, Kehrle B, Kohlhammer K, et al .PPAR activatos as anti-inflammatory meditors in human T lymphocytes:implication for atherosclersis and transplantation-associated arteriosclersis. Circ Res,2002;90:703-710.
    59. Rossi A,Kapahi P,NtoliG,et al.Anti-inflammatory cyclopentenone Prostaglandins are direct inhibitors of IkappaB kinase .Nature,2000;403:103-108.
    60. Zuyi Yuan, Yan Liu, Yu Liu,et al. Cardioprotective effects of PPAR- activators in autoimmune myocarditis: anti-inflammatory actions associated with NF- B blockade.Heart, 2005; 10:1136.
    61. SPiegelman BM .PPARγ in monocytes:less Pain,any gain?Cell,1998;93:153-155.
    62. Marx N,Mach F,Sauty A .Peroxisome proliferator-activated receptor gamma activator inhibit INF-gamma-induced expression of the T cell-active CXC chemokines IP-10,Mig,and I一TAC in human endothelial cells. J Immunol,2000; 164:6503-6508.
    63. Shimamoto Y, Hirota K, Fukamizu A. Effect of peroxisome proliferator-activated receptor alpha on human angiotensinogen promoter. Int J Mol Med,2004;13(5):729-33.
    64. Sugawara A, Takeuchi K, Uruno A,et al. Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor-gamma in vascular smooth muscle cells. Endocrinology. 2001;142:3125-34.
    65. Ryan MJ, Didion SP, Mathur S, et al. PPAR(gamma) agonist rosiglitazone improves vascular function and lowers blood pressure in hypertensive transgenic mice. Hypertension,2004;43:661-6.
    66. Wayman NS, Hattori Y, McDonald MC,et al. Ligands of the peroxisome proliferator-activated receptors (PPAR-gamma and PPAR-alpha) reduce myocardial infarct size. FASEB J. 2002;16:1027-40.
    67. SHIOMI T., TSUTSUI H., HAYASHIDANI S., et al Pioglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates left ventricular remodeling and failure after experimental myocardial infarction. Circulation ,2002;106: 3126–3132.
    68. Xu Y, Gen M, Lu L, Fox J, et al. PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. PPAR-gamma activation fails to provide myocardial protection in ischemia and reperfusion in pigs. Am J Physiol Heart Circ Physiol,2005;288:H1314-23.
    69. FRANTZ S,HU K,WIDDER,J,et al. Peroxosome-proliferator activated receptor agonism and left ventricular remodeling in mice with chronic myocardial infarction. Br J Pharmacol,2004;141:9-14.
    70. DELEA T., HAGIWARA M., EDELSBERG J, OSTER G..Exposure of glitazones anti-diabetics and risk of heart failure among persons with type 2 diabetes: a retrospective population-based cohort analysis. JACC,2002;39 ;(abstract 858-3).
    1. Ding B, Price RL, Goldsmith EC, Borg TK, Yan X, Douglas PS, et al.Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation,2000;101:2854 – 62.
    2. Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med,2000;6:556–63.
    3. Sadoshima J, Montagne O, Wang Q, Yang G, Warden J, Liu J, et al.The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest ,2002;110:271– 9.
    4. Peker C, Sarda-Mantel L, Loiseau P, Imaging apoptosis with (99m)Tc-annexin-V in experimental subacute myocarditis. J Nucl Med,2004;45,:1081-6.
    5. Chen J, Jin K, Chen M, Pei W, Kawaguchi K, Greenberg DA, Simon RP.Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death. J Neurochem, 1997 ; 69,:232-45.
    6. Mak KM,Wen K,RenC,Lieber CS. Dilinoleoylphosphatidylcholine reproduces the antiapoptotic actions of polyenylphosphatidylcholine against ethanol-induced hepatocyte apoptosis. Alcohol Clin Exp Res,2003;27:997-1005.
    7. Filippatos G, Uhal BD. Blockade of apoptosis by ACE inhibitors and angiotensin receptor antagonists. Curr Pharm Des,2003;9(9):707-14.
    8. Robertson JD ,John DR ,Orrenius SB , et al. Review: nuclearevents in apoptosis. J Struct Biol ,2000;129:346- 358.
    9. Young Mok Jang, Suma Kendaiah, Barry Drew,et al. Doxorubicin treatment in vivo activates caspase-12 mediated cardiac apoptosis in both male and female rats . FEBS Letters,2004;577:483-490
    10. Jennifer Y,Kong,Simon W,et al.Cytoskeletal actin degradation induced by lovastatinin cardiomyocytes is mediated through caspase-2.Cell Biology International, 2004;28:781-790
    11. Sebastian Philipp, Ines Pagel, Klaus H?hnel, et al. Regulation of caspase-3 and Fas in pressure overload-induced left ventricular dysfunction.European Journal of Heart Failure,2004;6:845-851
    12. Yamaoka M, Yamaguchi S , Suzuki T , et al . Apoptosis in rat cardiac myocytes induced by Fas ligand : priming for Fas-mediated apoptosis with doxo rubicin.J Mol Cell Cardiol ,2000;32; :881 - 889.
    13. Denver Sallee, Yaling Qiu, Jun Liu, et al.Fas ligand gene transfer to the embryonic heart induces programmed cell death and outflow tract defects.Developmental Biology ,2004;267:309-319.
    14. Evan GI , Buhie R , pall Cg , et al. Induction of apoptosis in fibroblasts by c- myc protein. Cell , 2001;69 :l19~128
    15. Ping Yue, Carlin S. Long, Richard Austin, et al. Massie Post-infarction Heart Failure in the Rat is Associated with Distinct Alterations in Cardiac Myocyte Molecular Phenotype .Journal of Molecular and Cellular Cardiology, 1998;30:1615-1630
    16. Dzimiri N, Al-Bahnasi K, Al-Halees Z. Myocardial hypertrophy is not a prerequisite for changes in early gene expression in left ventricular volume overload. Fundam Clin Pharmacol,2004 ;18:39-44.
    17. Oltvai ZN , Milliman CL , Korsmeyer SJ . Bcl-2 heterodimerizes invivo with a conserved homolog , Bax , that accelerates programmed cell death. Cell , 1993;74:609-619.
    18. Qin F, Liang MC, Liang CS. Progressive left ventricular remodeling, myocyte apoptosis, and protein signaling cascades after myocardial infarction in rabbits.Biochim Biophys Acta,2005;1740:499-513.
    19. Lancel S, Petillot P, Favory R, Stebach N,et al. Expression of apoptosis regulatory factors during myocardial dysfunction in endo toxemic rats. Crit Care Med,2005; 33:492-6.
    20. Kitaoka H,Kuwahara T,Nishida K,et al.Hypertrophic cardiomyopathy with progressionfrom apical hypertrophy to asymmetrical septal hypertrophy: a case report. J Cardiol,2005;45:155-9.
    21. Cerisano G, Bo lognese L , Carrabba N , et al. Dopper-Derived Mitral Deceleration Time: An Early Strong Predictor of Left Ventricular Remodeling After Reperfused Anterior Acute Myocardial Infarction. Circulation, 1999;99 : 230-236
    22. Michelena HI, VanDecker WA. Radionuclide-based insights into the pathophysiology of ischemic heart disease: beyond diagnosis. J Investig Med,2005 ;53:176-91
    23. Takemura G,Fujiwara H.Role of apoptosis in remodeling after myocardial infarction.Pharmacol Ther,2004;104:1-16.
    24. H. Fliss and D. Gattinger.Apoptosis in ischemic and reperfused rat myocardium.Circ Res,1996;79:949–956.
    25. Teiger E,Than V D,Richard I,etal.Apoptosis in pressure overload induced heart hypertrophy in the rat. J Chin Invest,1996;97:2891
    26. Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure.J Clin Invest, 2003;111:1497– 1504.
    27. Van Empel VP, Bertrand AT, Hofstra L,et al. Myocyte apoptosis in heart failure. Cardiovasc Res,2005;67:21-9.
    28. K. Hayakawa, G. Takemura, M. Kanoh, Y. et al., Inhibition of granulation tissue cell apoptosis during the subacute stage of myocardial infarction improves cardiac remodeling and dysfunction at the chronic stage.Circulation ,2003;108:104–109.
    29. W.M. Yarbrough, R. Mukherjee, G.P. Escobar, et al., Pharmacologic inhibition of intracellular caspases after myocardial infarction attenuates left ventricular remodeling: a potentially novel pathway.J Thorac Cardiovasc ,2003;126:1892–1899.
    30. J. Kajstura, E. Cigola, A. Malhotra, P,et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro.J Mol Cell Cardiol,1997;29:859–870.
    31. H.N. Sabbah, V.G. Sharov and R.C. Gupta et al., Chronic therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart failure.J Am Coll Cardiol ,2000;36:1698–1705.
    32. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation,1998;97:276–281.
    33. Balsam LB, Kofidis T, Robbins RC.Caspase-3 inhibition preserves myocardial geometry and long-term function after infarction. J Surg Res,2005 ;124:194-200.
    34. Hayakawa Y, Chandra M, Miao W, Shirani J, Brown JH, Dorn II GW,et al. Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation ,2003;108:3036 - 41.
    35. Zhao ZQ, Morris CD, Budde JM, Wang NP, Muraki S, Sun HY, et al.Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res,2003;59:132-42.
    36. Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol, 2005;38:47- 62.
    37. A. Barbone, J.W. Holmes, P.M. Heerdt, et al.Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation, 2001; 104:670–675.
    38. N. de Jonge, D.F. Van Wichen, J. Van Kuik, et al., Cardiomyocyte death in patients with end-stage heart failure before and after support with a left ventricular assist device: low incidence of apoptosis despite ubiquitous mediators.J Heart Lung Transplant,2003;22: 1028–1036.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700