微生物降解水稻秸秆及沼气发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的纤维素资源非常丰富,仅农作物秸秆,每年产量就达7亿多吨。我国三大秸秆中玉米秸占(35%)、小麦秸占(21%)、稻草占(19%)。除少量用于造纸、建筑、纺织等行业,或用作粗饲料、薪柴外,大部分秸秆未被有效利用而白白烂掉或烧掉,甚至还造成环境污染。充分、合理、有效地利用农作物秸秆资源,有益于生态环境的改善和循环经济的发展。
     在可再生物质能中,CO_2和H_2O通过光合作用固定在农作物秸秆中的碳氢化合物—纤维素被认为是发展生物质能最廉价的原料。但由于秸杆纤维素中碳氢比过低导致秸秆中能源密度较低,不能像化石燃料一样直接用于体现现代文明的运输工具和经济活动。通过生物和化学的方法将秸秆中纤维素降解并产生五碳糖、六碳糖、甲醇、己醇、CO_2、甲烷、氢气等低分子化合物,就能够提高碳氢比并增加能源密度。
     在玉米秸、小麦秸和稻草三大秸秆中,稻草中富含蜡质且纤维素聚合度更高,比玉米秸秆和小麦秸秆更难被降解。本文就降解水稻秸秆的相关微生物菌株的筛选和育种、甲烷菌的筛选及沼气发酵等方面进行相关研究,主要包括3个方面的内容:
     (1)降解水稻秸秆的好氧性丝状真菌菌株的筛选、育种和初步鉴定。从湖南农业大学实验田和牛奶场腐烂稻草秸秆中分离筛选到7株可降解玉米和稻草秸秆的微生物菌株,它们的编号分别为:3号、5号、20号、22号、23号、48号、59号,其中以22号、59号降解秸秆纤维素能力较强;23号、48号降解秸秆半纤维素能力较强。
     通过对所选项菌株的菌落形态特征、个体形态特征的观察并结合《真菌鉴定手册》进行鉴定,所选优势菌株鉴定结果如下:22号菌株属半知菌类丛梗孢目丛梗孢科单胞亚科卵形孢族卵形孢属梨卵形孢组;59号菌株属菌株属半知菌类丛梗孢目丛梗孢科单胞亚科卵形孢族卵形孢属梨卵形孢组;23号菌株属藻菌纲毛霉目毛霉科毛霉属总状枝毛霉组;48号菌株属半知菌类丛梗孢目丛梗孢科曲霉族曲霉属烟色曲霉组。
     (2)初筛好氧性丝状真菌菌株的细胞融合育种及融合子菌株和发酵条件优化。将初筛菌株22号和48号经过紫外线诱变和原生质体融合,得到遗传稳定性较强的5株融合子菌株,分别编号为:22481~22485号。其中22483号菌株产葡萄糖有明显提高,其发酵醪液中葡萄糖含量达到0.7712mg/mL,而其产木糖的能力基本与48号菌株接近,其发酵醪液中木糖含量达到0.0902mg/mL。经发酵条件优化后,在30℃、108h发酵时间、加入0.5%硫酸铵、0.3%氯化钴,其发酵醪液中葡萄糖含量达到2.2712mg/mL。
     (3)降解水稻秸秆的厌氧性菌株和甲烷菌的筛选、鉴定及其沼气发酵的研究。从沼气渣滓和下水道污泥中分离筛选到13株可降解稻草秸秆产生甲酸、乙酸、丁酸、乙醇、CO2及甲烷的厌氧性细菌菌株,将它们的分别编号为:1~13号。
     通过对所选厌氧性细菌菌株的菌落形态特征、个体形态特征的观察及生化试验结果并结合《伯杰氏鉴定手册》进行鉴定,所选厌氧性细菌菌株鉴定结果如下:1号菌株属芽孢杆菌梭菌属中生孢子明胶不水解群未知种;3号菌株属芽孢杆菌梭菌属端生孢子明胶水解群未知种;12号菌株属芽孢杆菌梭菌属端生孢子明胶水解群生孢梭菌;8号菌株属芽孢杆菌梭菌属次端生孢子有特殊生长要求群热纤梭菌种;6号芽孢杆菌梭菌属端生孢子有特殊生长要求群克氏菌种;7号芽孢杆菌梭菌属端生孢子明胶水解群腐化梭菌。4号菌株属甲烷菌科甲烷杆菌属甲酸甲烷杆菌;5号菌株属甲烷菌科甲烷杆菌属索氏甲烷杆菌;8号菌株属甲烷菌科甲烷杆菌属反刍甲烷杆菌;2号菌株属甲烷菌科甲烷杆菌属热自养甲烷杆菌;10号菌株属甲烷菌科甲烷球菌属马氏甲烷球菌。
     本试验将所选降解水稻秸秆的厌氧性细菌菌株和甲烷菌菌株制备成发酵剂,并将这些发酵剂按适当比例配合进行了发酵秸秆产沼气试验。此混合发酵剂在气温低于20℃时可正常发酵产沼气,并在发酵第3天即开始产沼气并能燃烧,第5天所产沼气燃烧时间最长,第15天后所产沼气较小无法正常燃烧。
China's rice straws and husks (which is rich in cellulose) production is more than 700 million ton per annum, in which the occupancy rate of maize straws is about 35 percent, wheat straws 21 percent and rice straws take up 19 percent—the 3 main native straw resources. Most of them were rotten spontaneously or burned up instead of using efficiently, thus, polluting the environment. People compelled to take steps to look for new reproducible substitute energy owing to the rising international crude oil price which approached to $150 per barrel several times especially in the recent years.
     Rice straw is an annually renewable, abundant, and cheap source for naturalcellulose fibers. Cellulose is an organic compound, a polysaccharide consisting of a linear chain of several hundred to over ten thousandβ(1→4) linked D-glucose units, is also considered as the cheapest raw material for developing biological energy among the reproducible energy. However, due to the very low carbon-hydrogen ratio of straw cellulose it results in lower energy density in straws, which cannot be used directly like fossil fuel in transportation and economic activity. The ratio can be improved to increase the energy density from biological and chemical method of decomposing the cellulose in straws into low-molecule compounds such as pentoses, hexoses, methanol, hexanol, CO_2, methane and hydrogen. As such, this study was conducted to determine the following: (1) identification of aerobic filamentous fungi strains degrading rice straw through sifting and breeding technique; (2) selection of aerobic filamentous fungi strains by cell fusion and optimization of fermentation conditions; and (3) selection and identification of the anaerobic strains degrading rice straws and the methanobacteria.
     During the rice straw degradation process, 13 microbial strains were isolated from experimental plot (applied with strains 3, 5, 20, 22, 23, 48 and 59) of the Hunan Agriculture University and rotten rice straws from dairy. Strains 22 and 59 showed that degradation of cellulose was better, while strains 23 and 48 are better at degrading hemicellulose of straws. Colonies and individual morphological characteristics of those strains were observed and identified using the Manual of Determinative Fungi. Results showed that 22nd strain belongs to fungi imperfecti, moniliales, monilliella, pseudomonas subfamily, ovoidites, and pear ovoidites; 59th strain belongs to fungi imperfecti, moniliales, monilliella, pseudomonas subfamily, ovoidites, and pear ovoidites; 23rd strain belongs to phycomyceteae, mucorales, mucoraceae, mucor, and racemousus; and 48th strain belongs to fungi imperfecti, moniliales, monilliella, aspergillus, and aspergillus furnigatus.
     Moreover, application of ultraviolet radiation mutagenesis and protoplast fusion method for the preliminarily selection of strains 22nd and 48th, 5 fusant strains of high genetic stability numbered 22481-22485 were obtained. The ability of producing glucose of 22483 strains has an obvious improvement, wherein glucose content of fermented liquor was 0.7712mg/ml. And the ability of producing xylose is basically close to the 48th parent strain. The xylose content of fermented liquor obtained was 0.0902mg/ml. After the optimization of fermenting conditions, at 30℃, fermenting time of 108 hours, addition of 0.5% ammonium sulfate and 0.3% cobalt chloride, the content of glucose of fermented liquor had increased to 2.2712mg/ml.
     Thirteen (13) strains of anaerobic bacteria which can degrade rice straws into methanoic acid, ethanoic acid, butyric acid, ethanol, CO_2 and methane were isolated from marsh gas off scouring and sewage sludge (with strain numbers 1 to 13). Colonies and individual morphological character of those anaerobic bacteria strains were observed and identified using the Bergeys Manual of Determinative Bacteriology. The following results showed that the 1st strain belongs to F. bacillus, endospore, and gelatin-unhydrolyzed unknown strain. The 3rd strain belongs to F. bacillus, terminal spore gelatin-hydrolyzed unknown strain. The 12th strain belongs to F. bacillus, terminal spore gelatin-hydrolyzed and ctostridium. The 8th strain belongs to F. bacillus, hypo-terminal spore, and special growing demand thermococcales. The 6th strain belongs to F. bacillus, terminal spore, and special growing demand Kluyveri species. The 7th strain belongs to F. bacillus, terminal spore, gelatin-hydrolyzed F. rotten. The 4th strain belongs to methanobacteriaceae, methanobacterium, and methanobacterium formicicum. The 5th strain belongs to methanobacteriaceae, methanobacterium, and methanobacterium sohngenii. The 9th strain belongs to methanobacteriaceae, methanobacterium, and methanobacterium ruminantium. The 2nd strain belongs to methanobacteriaceae, methanobacterium, and methanotherm obacterther mautotrophicus. The 10th strain belongs to methanobacteriaceae, methanococcus, and methanococcus Mazei.
     In this experiment, starter prepared by anaerobic bacterial strain and methanebacteria strain, which have been selected before for degrading rice stalk was made and mixed in an appropriate proportion in order to produce biogas by straw fermentation. Consequently, the straw could ferment normally at temperature lower than 20℃to produce biogas using mixed starters. Biogas begun to produce and was burned on the third day of the fermentation. On the other hand, the burning time of the biogas produced in the fifth day lasts longer.
引文
[1]陈洪章.纤维素生物技术[M].北京:化学工业出版社,2006,3:1-9;40-63
    [2]杨淑惠.植物纤维化学[M].北京:中国轻工业出版社,2001,1:6;228-229
    [3]国际新能源网.日本以稻草为原料生产新型生物乙醇[J].媒体荟萃,2008,16(24):5
    [4]黄诗铿.我国粮食供求态势与燃料乙醇原料选择[J]中国食物与营养,2006,4:36-38
    [5]李盛贤,贾树彪,顾立文.利用纤维素原料生产燃料酒精的研究进展[J].酿酒,2005,03:32-2
    [6]彭万喜,吴义强,武书彬等.稻草高品位资源化利用的Py.GC/MS分析[J].农业机械学报2008,39(8):199-201
    [7]单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46
    [8]黄宇彤,杜连祥,赵继湘.世界燃料酒精生产形势[J].酿酒,2001,28(5):24-26
    [9]高寿清.燃料酒精发展的国际情况与分析[J].食品与发酵.2001,12:59--62。
    [10]王正友.美国生物燃料乙醇生产近况[J].粮油食品科技.20.06,14,1-62
    [11]张绪霞,董海洲,侯汉学.燃料酒精制备及其开发前景[J].粮食与油脂,2006,2:7-9
    [12]张绪霞,董海洲.燃料酒精制备研究[J].粮食与油脂,2006,6:22-24
    [13]徐惠娟,王世锋,龙敏南.燃料酒精生产的研究进展[J].厦门大学学报,2006,B05:37-42
    [14]张绪霞,董海洲,侯汉学等.燃料酒精制备及其开发前景[J].粮食与油脂,2006,2:7-9
    [15]孙健,陈砺,王红林.纤维素原料生产燃料酒精的技术现状[J].可再生能源2003,112:4-9
    [16]杨德荣.秸秆综合综合利用技术及应用[J].农村实用工程技术,2004,8:58-5
    [17]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,2:78-82
    [18]黄洪河,蔡秋华,游晴如.稻草高效综合循环利用技术模式研究[J].江西农业学报,2008,20(9):134-137
    [19]张全国.沼气技术及其应用[M].北京:化学工业出版社.2005,6:1-3
    [20]沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999,6:214-227
    [21]大连轻工业学院,华南理工大学等合编.食品分析[M].北京:中国轻工业出版社,2007,1:28;75-79;98-103;173:202-207.
    [22]林琳.戊聚糖含量测定方法的优化[J].食品与发酵工业,2005,6:101-104.
    [23]金显春,郭文杰,杨勇等.直接降解稻草秸秆的菌株筛选及其发酵过程研究[J].安徽农业科学,2006,34(20):5144-5145
    [24]金显春,陶文沂.直接降解稻草菌种筛选及降解稻草过程优化[J].化学工程,2007,35(11):38-39
    [25]谢菊兰,吕晓星,陈伟茹等.利用组合发酵对稻草降解作用试验[J].湖南饲料,2007,5:13-15
    [26]王佳垄,叶丹妮,李文婷等.化学预处理对稻草硅化程度的影响及其对瘤胃降解率的改善效果[J].动物营养学报,2008,20(2):170-175
    [27]谢菊兰,吕晓星,肖兵南等.自腐真菌对稻草木质纤维素的降解实验[J].湖南,畜牧兽医,2007,6:10-11
    [28]金显春,郭文杰,杨勇等.直接降解稻草秸秆的菌株筛选及其发酵过程研究[J].安徽农业科学,2006,34(20):5144-5145
    [29]谭周进,肖嫩群,张杨珠等.纤维素分解混合菌群腐解稻草的使用技术研究[J].生态环境2007,16(2):573-578
    [30]杜娟,林觐勤,徐昶等.灰绿曲霉突变株降解稻草秸秆及联合产氢的研究[J].食品与发酵工业,2007,33(2):19-21
    [31]]燕红,杨谦.蜡样芽孢杆菌对稻草的降解作用[J].哈尔滨工业大报,2008,40(8):1243-1246
    [32]林元山,张曙光,梁智群.绿色木霉固态发酵稻草秸秆产纤维素酶的研究[J].湖南农业科学2007,(3):46-48
    [33]刘海臣,赵丹华,张敏楠等.酸法与酶法两步降解稻草纤维素工艺条件优化[J].江苏农业科学,2008,1:228-230
    [34]魏景超.真菌鉴定手册[M].上海:上海科技出版社,2005.7
    [35]刘钢.真菌分类技术的进展[J].微生物学通报,2005,22(6):362-365.
    [36]施巧琴,吴松刚.工业微生物育种学[M].北京:科学出版社,2007,12:296-341
    [37]周德庆.微生物学实验教程[M].北京:高等教育出版社,2007,8:178-183
    [38]赫林.食品微生物学实验技术[M].北京:中国农业出版社2001,59-60.
    [39]刘如林.微生物工程概论[M].天津:南开大学出版社,1995.
    [40]熊宗贵.发酵工艺原理[M].北京:中国医药科技出版社,1995.
    [41]姚汝华.微生物工程工艺原理[M].广州:华南理工大学出版社,1996.
    [42]夏淑兰.现代微生物实验技术[M].北京:轻工业出版社,1988.36-48。
    [43]诸葛健,王正祥.工业微生物实验技术手册[M].北京:中国轻工业出版社,1997.220-223.
    [44]郑敏,罗玉萍.真核生物基因组多态性分析的DNA指纹技术[J].生物技术,1999(3):35-38.
    [45]方心芳.应用微生物学实验法[M].北京:中国财政经济出版社,1962.
    [46]毛华,曲音波,高培基等.酵母属间原生质体融合改进菌株木糖发酵性能[J].生物工程学 报,1996,12:157-162.
    [47]孙君社,李雪,李军席.原生质体融合构建耐高温酵母菌株[J].食品与发酵工业,2005,9.
    [48]陶文沂主编。工业微生物生理与遗传育种学[M].北京:中国轻工业出版社,1997.335-343.
    [49]毛华,曲音波,高培基等.酵母属间原生质体融合改进木糖发酵性能[J].生物工程学报,2000,12:157-162.
    [50]王钦德,杨坚.食品试验设计与统计分析[M].中国农业大学出版社,20.08,17(1):39-42
    [51]R.E.布坎南,N.E.吉本斯.伯杰氏细菌鉴定手册[M].科学出版社,1984,12:452-458;729-794.
    [52]李阜棣,喻子牛,何绍江.农业微生物实验技术[M].中国农业出版社,1996,1:248-258
    [53]胡伟莲,王佳垄,郭嫣秋.瘤胃体外发酵产物中的甲烷和有机酸含量的快速测定[J].浙江大学学报,2006.,32(2):217-221,
    [54]闵航,谭玉龙,昊伟祥.厌氧甲烷氧化菌菌株的分离、纯化和特征研究[J].浙江大学学报,2000,28(6):619-624,
    [55]单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生志,2003,23(6):42-48
    [56]马光庭,G。Gottschtalk.甲酸甲烷杆菌和甲烷八叠球菌的分离和特征[J].广西农业大学学报,1994,13(3):267-271
    [57]刘莉,刘晓凤,王娟.利用沃氏甲烷球菌将CO转化成CH4的研究初报[J].中国沼气,2006,24(1):15-17
    [58]何绍江,冯新梅,龚小平等.奶牛粪沼气池中三株产甲烷菌分离和基本特征[J].华中农业大学学报,1994,13(1):59-63
    [59]龚革,王修垣.九株嗜热产甲烷菌的特性[J]微生物学报,1997,37(5):378-384
    [60]Nichols NN,Dien BS,Bothast RJ.Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol[J].Appl Microbiol Biotechnoi,2001,56:120-125.
    [61]Yomano LP,York SW,Imgram LO.Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production[J].J Ind Microbiol Biotechnol,1998,20:132-138.
    [62]Jin YS,THLee,YD Choietal.Conversion ofxylose toethanol by recombinant Saccharomy cescerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichiastipitis[J].Microbiol Biotechnol Technol,2000,10:564-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700