生物质预提取技术在APMP竹浆中的应用及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对全球的资源和能源危机,世界掀起了全球范围的生物质技术研究热潮,生物质资源因其可再生性和环保性而倍受到人们的重视。而竹子是一种优良的生物质资源,其纤维质量优良,是很好的造纸原料,并在广西拥有丰富的资源。但高得率竹浆光学性能较差,漂白浆白度偏低且白度稳定性差,严重制约了高得率竹浆的应用范围。本论文研究了粉单竹竹沥液的组份及竹沥液主要组份对APMP竹浆白度的影响;竹沥液预提取、热水预提取和碱性过氧化氢预提取的技术对预提取粉单竹半纤维素及APMP制浆过程的影响;竹子碱性过氧化氢预提取过程中糖组分溶出的规律及动力学模型的建立。研究结果如下:
     (1)通过GC-MS分析知道,粉单竹竹沥液成份中含量较大的为甲苯75.88%,二甲苯0.98%,对苯二酚0.41%,六甲基环三硅氧烷0.48%,二十二酸甘油酯0.44%,硬脂酸甲酯2.07%。其中甲苯、二甲苯和对苯二酚这三种物质对APMP竹浆的白度影响都较大。通过XPS分析知道添加甲苯、二甲苯和对苯二酚后,纤维表面C=O、0—C—O和O=C—0基团增加了,C1峰面积增加的幅度几乎一样,并且C3和01峰面积在添加对苯二酚后增加最大,其次是甲苯,最小是二甲苯。压榨后经60%乙醇预提取竹沥液制备得的APMP原浆白度比未经预提取的高3.5%ISO,漂后浆的白度也高出5.9%ISO,PC值也降低56%,打浆转数下降了23%左右,但浆的各项物理指标均稍有所下降。
     (2)热水预提取粉单竹半纤维素的最佳工艺为:用50min升到120℃,再用35min从120℃升到最高温度170℃,在最高温度下保温2h,液比1:5,在这工艺下半纤维素的提取率和预提取后竹片得率均较高分别为43.48%和86.84%。提取后提取液的pH值都在3.5-4.5之间,竹片得率普遍都较低,且竹片的颜色加深,成浆强度下降很大,但打浆转数下降了20%左右。其中,预提取的保温时间和液比对半纤维素的提取率和预提取后竹片得率的影响比最高温度的影响大。
     另外,通过FTIR分析磨木木素结构变化知道,热水预提取后增加的基团主要是酯羰基C=O、芳环结构、C—C、C—O、C—-H苯环键,而紫丁香基木素、缩合愈创木基木素以及愈创木基木素也增加了。通过13C-NMR分析知道,预提取后,木素结构中的酚型乙酰化紫丁香基C2或C6,β-0-4中的Ca和Cγ,醚化的愈创木基中的C1,肉桂醛中的Cβ,对羟苯基中的C2/C6,β-5中的C1,愈创木基中的C2,松脂醇中的Cγ,亚甲基和乙酰基中的甲基都增加较大,但紫丁香基中的C3/C4、β-β单元中的C。和甲氧基都减少了。通过对磨木木素的发色基团含量分析发现,竹子原料中含有较多的醚化羰基和邻酚结构,热水预提取后原料、未漂浆和漂后浆的共轭羰基总含量、邻酚和邻醌含量均增加了。
     (3)碱性过氧化氢预提取粉单竹半纤维素的最佳工艺为:H202用量1.5%,液比1:8,用30min升到最高温度90℃,在最高温度下保温2h,在这工艺下半纤维素的提取率和竹片得率均较理想分别为1.68%和96.21%。但是与热水预提取的相比,半纤维素的提取率较低,预提取后的竹片得率保持较好,并且预提取后竹片的颜色变浅了。液比对半纤维素的提取率和预提取后的竹片得率影响最大,其次是保温时间和反应温度,最后是H202用量。提取液的pH值不断下降,但都成碱性。预提取后APMP浆的得率能保持较好,度提高了5%1SO-7%ISO,打浆转数下降了55%左右,但撕裂指数和耐折度有所下降。碱性过氧化氢预提取非常有利于1%氢氧化钠抽出物和苯醇抽出物的溶出,对灰分和酸不溶木素的溶出很小,随着预提取条件的加剧综纤维素、聚戊糖和酸溶木素的溶出稍有增大。
     另外,通过FTIR分析磨木木素结构变化可知,碱性过氧化氢预提取后木素中的芳香环结构、C—C、C—O、酯羰基C=O、愈创木基的C—-H苯环键等基团减少了。通过13C-NMR分析知道,经预提取后竹子原料中-COO-、肉桂醛中的Cβ、乙酞化愈创木基、愈创木基、β-0-4型木素;未漂APMP浆中的醚化愈创木基、愈创木基、醚化β-芳基醚、β-0-4型木素;漂后浆的酚型酸中的C=0、愈创木基中的C6(α-OR)和醚化的β一芳基醚(赤)C5(α-OAC)等基团和木素都较少了。通过发色基团含量分析发现,预提取后原料、未漂浆和漂后浆中的共轭羰基总含量、邻酚和邻醌含量分别都比相应的未预提取的减少,其中试样中醚化羰基和未漂浆中邻醌的含量下降较大。
     (4)通过HPAEC分析知道,随保温时间的延长和温度的升高,碱性过氧化氢预提取液中固形物含量和各种糖组分(葡糖糖、阿拉伯糖、半乳糖和木糖)的溶出率不断增长。在保温时间延长到1h时,各种糖溶出率的增长幅度均最大,最高温度对预提取的影响较大,尤其当最高温度由80℃升到90℃时。预提取过程中木糖的溶出率较低不到1%;阿拉伯糖和半乳糖的溶出率较高分别为7%和12%。竹子碱性过氧化氢预提取过程中碳水化合物溶出动力学模型可用Fick第二定律来描述,内扩散是提取过程的主要控制步骤,建立的动力学模型为。通过对葡糖糖、阿拉伯糖、半乳糖和木糖动力学模型的验证可知,温度为90℃时葡糖糖、阿拉伯糖、半乳糖和木糖浓度的Ln[C∝/(C∝-C)]和时间t有良好的线性关系,建立的动力学方程分别为:y=0.747x;y=0.7524x;y=0.8414x;y=2.0562x,而建立的动力学模型和动力学方程能够很好的预测竹子碱性过氧化氢预提取葡糖糖、阿拉伯糖、半乳糖和木糖的含量。
In order to deal with the global resources and energy crisis, the research of biomass technology has been set off worldwide. Biomass resource has been paid great attention because it is renewable and the environment friendly. Bamboo is an excellent resource due to its high fiber quality, and widely distributed in GX. However, bamboo high-yield pulp has poor optical properties, such as brightness and brightness stability of bleached pulp, which seriously limits the usage scale of high-yield bamboo pulp. This essay studies the effect of succus bambusae pre-extraction, pressurized hot water and alkaline hydrogen peroxide, on bambusa chungii APMP pulping, and the dynamics characteristics of sacharide dissolution during the process of bamboo alkaline hydrogen peroxide pre-extraction bamboo. Then the dynamics model of sacharide dissolution was built. The results were showed as follow:
     (1) In the succus bambusae, several components with large amounts including toluene77.88%, xylene0.98%, hydroquinone0.41%, hexamethyl cyclotrisiloxane0.48%, glyceryl monostearate0.44%and methyl stearate2.07%, were detected by GC-MS analysis. Amony those components, toluene, xylene and hydroquinone had great influence on the brightness of APMP pulp. After adding hydroquinone, toluene and xylene, XPS analysis results showed that the groups of C=O、O-C-O and O=C-O on the fiber surface increased, and the increasing rate of peak area of C1was almost the same, and the peak area of C3and O1increased mostly after adding the hydroquinone, then toluene and xylene as follow. However, After the bamboo were pressed and pre-extracted succus bambusae by60%ethanol, the brightness of original APMP pulp was higher than those without pre-extraction, which was3.5%ISO, as well as the bleached pulp brightness, which was5.9%ISO, and the PC was lower56%, and the PFI milling decreased about23%, but the physical index had deceased a little.
     (2) The optimum conditions for hot water pre-extraction of bamboo hemicellulose were:the temperature rose to120℃in50min, then to maximum temperature of170℃in35min, and holding time was2hours, liquor-to-wood ratio was1:5. Under the optimum conditions the extraction yields of hemicellulose and bamboo were high of43.48%and86.84%separately, and the PFI milling reduced about20%, but the bamboo yield was low generally, as well as the color and the strength of pulp was decreased. In addition, the influence of holding time at maximum temperature and liquor-to-wood ratio on the extraction yield of hemicelluloses and bamboo was greater than the maximum temperature. The pH value of extracted liquid was between3.5-4.5.
     In addition, the structure changes of milled wood lignin were analyzed by FTIR, the results showed that after pre-extracting the groups of carbonyl C=O, aromatic ring, C-C, C-O, the C-H of benzene ring, lilac type lignin, and guaiacyl lignin and condensed guaiacyl lignin all increased. Using13C-NMR analysis, the groups of C2or C6in phenol acetylation syringyl, Ca and Cy in β-O-4, C1in etherified guaiacyl, Cp in pinoresinol, C2/C6in hydroxyphenyl, C1in β-5, C2in guaiacyl, Cy in pinoresinol, methyl in methylene and acetyl all increased a lot, but the C3/C4in syringyl, Ca in P-(3and methoxy decreased. By the analysis of chromophore's content, it was found that the bamboo material contained more etherification of carbonyl and o-phenol structure. After pre-extracting, the content of conjugated carbonyl、o-phenol and o-quinone in bamboo materials、 unbleached pulp and bleached pulp all increased.
     (3) The optimum conditions for alkaline hydrogen peroxide pre-extraction of bamboo hemicellulose were:H2O2dosage of1.5%, liquor-to-wood ratio of1:8, the temperature rose to maximum temperature of90℃in30min, and holding time was2hours. In this process, both hemicellulose extraction and bamboo yield were ideally, for1.68%and96.21%respectively. However, compared to hot water pre-extraction, the hemicellulose extraction yield was lower, while the bamboo yield was remained high, and the color of pre-extracted bamboo was lighter. The liquor-to-wood ratio had the greatest impact on the extraction of hemicellulose and the bamboo yield, followed by the holding time at maximum temperature, next reaction temperature, and the last H2O2dosage. The pH value of extracted liquid was dropped, but it still be alkaline. The APMP pulp yield after pre-extracting was good, and the brightness increased5%ISO-7%ISO, and the PFI milling dropped45%significantly, but the tear index and folding ability of pulp decreased. The pre-extraction of alkaline hydrogen peroxide was very beneficial to the dissolution of1%sodium hydroxide and alcohol benzene extractives, while it had little influence on the content of ash and acid-insoluble lignin. The intensification of pre-extraction conditions had a certain effect on the dissolution of holocellulose, poly pentose and acid soluble lignin. Holding time at maximum temperature and liquor-to-wood ratio had greater effect on the dissolution of holocellulose than the other pre-extraction conditions.
     FTIR analysis of milled wood lignin showed that after alkaline hydrogen peroxide pre-extraction the groups of aromatic, C-C, C-O, ester carbonyl C=O, C-H benzene bond in guaiacyl and HGS type lignin had reduced. After pre-extracting, the groups of-COO-, Cβ in cinnamic aldehyde, acetylated guaiacyl, guaiacyl, β-O-4lignin in raw bamboo materials; the groups of etherified guaiacyl, guaiacyl, etherified β-aryl ether, β-O-4lignin in unbleached APMP pulp; the groups of C=O in phenolic acid, C6(α-OR) in guaiacyl and C5(α-OAC) in etherified β-aryl ether in bleached pulp all decreased. Chromophore content analysis indicated after pre-extracting the content of conjugated carbonyl, adjacent phenol and o-quinone was lower than those without pretreatment in the raw materials, unbleached pulp and bleached pulp, especially the content of etherified carbonyl in pretreated pulp and the content of o-quinone in unbleched pulp.
     (4) HPAEC analysis results showed that the dissolution rate of sacharide (glucose, arabinose, galactose and xyloseand) and the content of solids in the extract liquid were increased with the holding time extended and temperature rose. The gains of varieties of sugars'dissolution all reached to the maximum when the holding time was extended to1hour. The maximum temperature had the greatest impact on sugar's dissolution, especially when temperature increased from80℃to90℃. The dissolution rate of xylose was very low, less than1%, while the arabinose and galactose were higher,7%and12%respectively. The dynamic model of carbohydrate dissolution druing alkaline hydrogen peroxide pre-extracting bamboo process could be expressed by the second law of Fick's, the dynamic model was, the diffusion was the major controlling step during pre-extraction process. When the temperature was90℃, the ln[C∞/(C∞-C)] of glucose, arabinose, galactose and xyloseand had a good linear relationship with time, and the dynamic equations of these sacharides were y=0.747x, y=0.7524x, y=0.8414x, y=2.0562x respectively, and the dynamic model and equations could forecast well to the sacharide dissolution during alkaline peroxide pretrement process.
引文
[1]蒋忠道,许元春.节约造纸能源促进造纸工业发展[J].黑龙江纸业,2003
    [2]顾民达.我国造纸原料结构调整及政策法规[J].纸和造纸,2008,27(2):1-4
    [3]熊建华,程昊,王双飞.几种竹子原料的化学组成与纤维形态及其CMP制浆性能的研究[J].造纸科学与技术,2010,29(1):1-5
    [4]Martin J. S, Willari L. B.. Alkaine peroxide mechanical pulping of hardwoods. Procedings of intemational mechanical pulping conference. Sweden Forest Products Research laboratory,1989, (1):184
    [5]林本平.粉单竹APMP制浆漂白机理及返黄机理的研究[D].南宁,广西大学,2006
    [6]唐艳军,刘秉怴.APMP的研究及应用[J].中国造纸学报,2004增刊:243-248
    [7]骆莲新,陈楠,陈永利等.粉单竹高得率浆返黄过程中竹沥液对纤维素的影响[J].造纸科学与技术,2010,29(3):20-23
    [8]沈葵忠,房桂干,胡剑民.慈竹化机浆漂白性能研究[J].中国造纸,2010,29(3):1-4
    [9]房桂干,沈兆邦,黄德裕.发展高得率浆生产是保证我国造纸工业可持续发展的重要途径之一[J].林产化工通讯,2000,34(4):29
    [10]陈洪雷,黄峰,詹怀宇.半纤维素含量对碱性过氧化氢机械浆性能的影响[J].中华纸业,2009,30(20):55-58
    [11]詹怀宇主编.纤维化学与物理[M].北京,科学出版社,2005:40-49
    [12]郭三川.生桉木低污染制浆漂白及纸浆纤维性质的研究[D].广州,华南理工大学,2008
    [13]马乃训,张文燕.木材制浆造纸述评[J].林业科学研究,1995,8(3):329-333
    [14]夏玉芳.料慈竹纤维形态和造纸性能及其与其他竹种的比较研究[J].竹子研究汇刊,1997,16(4):16-20
    [15]甘家齐.我国开发利用竹林制浆造纸前景探讨.西南造纸,2002,(2):8-10
    [16]杨淑惠.植物纤维化学[M].北京,中国轻工业出版社,2001
    [17]张达俊.广西的竹子及制浆造纸[J].中华纸业,2002,23(7):15-18
    [18]徐有明.意杨纸浆材材性的研究[J].木材工业,1994,8(1):38-44
    [19]宋海农,郑艳民,王双飞.低少污染竹子制浆造纸新技术与我国的竹浆产业化[J].竹子研究汇刊,2003,22(3):49-54
    [20]J. M. O. Scurlock, D. C. Dayton and B. Hames.. Bamboo an overlooked biomass resources [J]. Biomass and Bioenergy,2000,19:229
    [21]辉朝茂,王文久.双江县竹类资源及主要竹种竹材造纸性能评定[J].西南林学院学报,1993,13(2):79-87
    [22]National Renewable Energy Laboratory (NREL). Available from: http//www.nrel.gov/biomass/biorefinery. html
    [23]Keller F. A.. Integrated bioprocess development for bioethanol production. In:Handbook of Bioethanol:Production and Utilization (ed. C. Wyman) [D]. Taylor and Francis Publishers, New York,1996.
    [24]Kamm, B.& Kamm, M.. Principles of biorefinery[J]. Applied Microbiological and Biotechnology,2004(64):137-145.
    [25]Van Dyne D. L., Blase M. G.& Clements L. D.. A strategy for returning rural America to long-term full employment using biomass refineries [J]. In: Perspectives on New Crops and New Uses (ed. J. Janick), ASHS Press, Alexandria, VA.,1999
    [26]Rendleman C.M.& Shapouri H.. New Technologies in Ethanol Production[D], USDA, Report Number 842,2007
    [27]Perlack R. D., Wright L. L., Turhollow A. F., Graham R. L., Stokes B. J. &Erbach D. C.. Biomass as Feedstock for a Bioenergy and Bioproducts Industry:The Technical Feasibility of a Billion-Ton Annual Supply/DOE/GO-102005-2135. Oak Ridge National Laboratory, Oak Ridge, TN.,2005
    [28]Foust T. D., Wooley R., Sheehan J., Wallace R., Ibsen K., Dayton D., Himmel M., Ashworth J., McCormick R., Melendez M., Hess J. R., Kenney K., Wright C., Radtke C., Perlack R.,Mielenz J., Wang M., Synder S.& Werpy T.. A National Laboratory Market and TechnologyAssessment of the 30×30 Scenario. NREL/TP-510-40942. National Renewable Energy Laboratory, Golden, CO.,2007
    [29]Himmel M. E., Ding S. Y, Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W.& Foust T. D.. Biomass recalcitrance:Engineering plants and enzymes for biofuels production. Science[J],2007(315):804-807
    [30]胡会超.竹子半纤维素热水预提取及其对KP法制浆和ECF漂白性能的影响[D];华南理工大学,2010年
    [31]于建仁,张曾,迟聪聪.生物质精炼与制浆造纸工业相结合的研究[J].中国造纸学报,2008,23(1):80-84
    [32]Adriaan V. H.. Converting a kraft pulp mill into an integrated forest biorefinery[J]. Pulp&Paper Canada,2006,107(6):38-43
    [33]Ragauskas A..Williams C., Davison, B.. The path forward for biofuels and biomaterials[J]. Science,2006,311(5760):484-489
    [34]American Forest&Paper Association. Agenda 2020:a technology vision and research agenda for america's forest, wood and paper industry[OL]. www.agenda2020.org,2010
    [35]Mendesa C. V. T., Carvalhoa M. G. V. S., Baptista C. M. S. G., et al. Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept[J]. Food and Bioproducts Processing,2009,87(3):197-207
    [36]姚光裕.制浆过程中提取半纤维素的方法[J].造纸信息2009,3:43
    [37]于建仁,张曾,迟聪聪.生物质精炼与制浆造纸工业相结合的研究[J].中国造纸学报,2008,23(1):80-84
    [38]AL EXANDRA A.. Heat extraction of corn fiber hemicellulose [J]. Applied Biochemistry and Biotechnology,2007:253-266.
    [39]詹怀宇,胡会超,付时雨.竹子热水预提取过程中糖组分的溶出规律[J].华南理工大学自然学报,2010,38(4):6-11
    [40]Michael E. Himmel.生物质抗降解屏障——解构植物细胞壁产生物能[M].化学工业出版社,2010:299-303
    [41]Millett M. A., Effland M. J.& Caulfield D. L.. Influence of fine grinding on the hydrolysis of cellulosic materials acid versus enzymes. Advances in Chemistry Series,1979(181):71
    [42]Fan L. T., Lee Y.& Gharpuray M. M.. The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Advances in Biochemical Engineering, 1982(23):157.
    [43]Tassinari T., Macy C.& Spano L.. Energy requirements and process design considerations in compression-milling pretreatment of cellulosic wastes for enzymatic hydrolysis. Biotechnology and Bioengineering,1980 (22):1689.
    [44]Tassinari T., Macy C.& Spano L.. Technology advances for continuous compression milling pretreatment of lignocellulosics for enzymatic hydrolysis. Biotechnology and Bioengineering,1982 (24):1495.
    [45]Cadoche L.& Lopez G. D.. Assessment of size reduction as a preliminary step in the production of ethanol form lignocellulosic wastes. Biological Wastes, 1989 (30):153.
    [46]Sun Y & Cheng J.. Hydrolysis of lignocellulosic materials for ethanol production:A review. Bioresource Technology,2002(83):1.
    [47]Hsu T. A.. Pretreatment of biomass. In:Handbook on Bioethanol, Production and Utilization (ed. C. E. Wyman). Taylor & Francis, Washington, DC,1996
    [48]Duff S. J. B & Murray W. D.. Bioconversion of forest products industry waste cellulosics to fuel ethanol:A review. Bioresource Technology,1996 (55):1.
    [49]McMillan, J. D.. Pretreatment of lignocellulosic biomass. In:Enzymatic Conversion of Biomass for Fuels Production (eds. M. E. Himmel, J.0. Baker & R. P. Overend). American Chemical Society, Washington, DC.,1994
    [50]Chum H. L., Johnson D. K., Black S., Baler J., Grohmann K.& Sarkanen K. V. Organosolv pretreatment for enzymatic hydrolysis of poplars:1. Enzyme hydrolysis of cellulosic residues. Biotechnology and Bioengineering,1988 (31):643.
    [51]Thring R. W., Chornet E.& Overend R.. Recovery of a solvolytic lignin: Effects of spent Liquor/acid ratio, acid concentration and temperature. Biomass, 1990 (23):289.
    [52]Black S. K., Hames B. R.& Myers M. D.. Method of separating lignocellulosic material into lignin, cellulose, and dissolved sugars. U.S. Patent,1998 (5):730,837.
    [53]Bobleter 0.. Hydrothermal degradation of polymers derived from plants. Progress in Polymer Science[J],1994 (20):2083.
    [54]Mok W. S. L.& Antal M. J.. Uncatalyzed solvolysis of whole biomass hernicellulose by hot compressed liquid water. Industrial and Engineering Chemistry Research[J],1992 (31):1157.
    [55]Allen S. G., Schulman D., Lichwa J., Antal M. J. Jennings E.& Elander R. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Industrial and Engineering Chemistry Research[J], 2001(40):2352
    [56]Allen S. G., Kam L. C., Zeman A. J.& Antal M. J.. Fractionation of sugar cane with hot compressed liquid water. Industrial and Engineering Chemistry Research[J],1996 (35):2709
    [57]Liu C.& Wyman C. E.. The effect of flow rate of compressed hot water on xylan. lignin, and total mass removed from corn stover. Industrial and engineering chemtstry research,2003(42):5409
    [58]Zhao Y. L., Wang Y., Zhu J. Y., et al. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature. Biotechnology and Bioengineering[J], 2008,99(6):1320-1328
    [59]Gabrielii I., Gatenholm P., Glasser W. G., et al, Separation, characterization and hydrogel-formation of hemicellulose from aspen wood[J]. Carbohydrate Polymers,2000,43(4):367-374.
    [60]Sun R. C., Fang J.. M., Tomkinson J., et al. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood[J]. Carbohydrate Polymers,2001, 44(1):29-39.
    [61]Alvira P., Tomas-Pejo E., Ballesteros M., et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review[J]. Bioresource Technology,2010,101 (13):4851-4861
    [62]Huang H. J., Shri R., Tschirner U. W., et al. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology,2008,62(1):1-21
    [63]Yu Y., Lou X., Wu H. W.. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods[J]. Energy & Fuels,2008,22 (1):46-69
    [64]Feng S. H., Chen J.S.,Shi Z.. Hydrothermal reactions and techniques[M]. Singapore:world scientific publishing,2003:169-176
    [65]Amidon T. E., Liu S. J.. Water-based woody biorefinery [J]. Biotechnology Advance,2009,27(5):542-550
    [66]Srokol Z., Bouche A.-G, Estrik A. V., et al. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds[J]. Carbohydrate Research,2004,339 (10):1717-1726
    [67]Yoon S. H., Macewan K., Adriaan V. H.. Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery[J].Tappi Journal, 2008,7(6):27-32
    [68]Mendesa C. V. T., Carvalhoa M. G. V. S., Baptista C. M. S. G, et al. Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept[J]. Food and Bioproducts Processing,2009,87(3):197-207
    [69]Helmerius J., Walter J. V. V, Rova U., et al. Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties [J]. Bioresource Technology,2010,101 (15):5996-6005
    [70]Yoon S.-H., Adriaan V. H.. Kraft pulping and papermaking properties of hot-water pre-extraction loblolly pine in an integrated forest products biorefinery[J]. Tappi journal,2008,7(6):22-27
    [71]Leschinsky M., Zuckerstatter G., Weber H. K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. part 1:comparison of different lignin fractions formed during water prehydrolysis[J]. Holzforschung, 2008,62(6):645-652
    [72]Leschinsky M., Zuckerstatter G., Weber H. K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. part2:influence of autohydrolysis intensity [J]. Holzforschung,2008,62(6):653-658
    [73]Michael E. Himmel.生物质抗降解屏障——解构植物细胞壁产生物能[M].化学 工业出版社,2010:2
    [74]Ding S. Y.& Himmel M. E.. The maize primary cell wall microfibril:A new model derived from direct visualization. Journal of Agricultural and Food Chemistr,2006(54):597-606
    [75]McMillan J. D.. Pretreatment of lignocellulosic biomass. In:Enzymatic Conversion of Biomass for Fuels Production (eds. M. E. Himmel, J.O. Baker & R. P. Overend). American Chemical Society, Washington, DC,1994.
    [76]Wyman C. E., Dale B. E., Elander R. T., HoLtzapple M., Ladisch, M. R.& Lee, Y. Y.
    [77]詹怀宇主编.制浆原理与工程[M].北京,中国轻工业出版社,2010:147-149
    [78]Hsu T. A.. Pretreatment of biomass. In:Handbook on Bioethanol, Production and Utilization(ed. C. E. Wyman). Taylor & Francis, Washington, DC,1996.
    [79]Duff S. J. B.& Murray W. D.. Bioconversion of forest products industry waste cellulosics to fuel ethanol:A review. Bioresource Technology,1996(55):1
    [80]McMillan J. D.. Pretreatment of lignocellulosic biomass. In:Enzymatic Conversion of Biomass for Fuels Production (eds. M. E. Himmel, J.O. Baker & R. P. Overend). American Chemical Society, Washington, DC,1994.
    [81]Wyman C. E., Dale B. E., Elander R. T., Holtzapple M., Ladisch M. R.& Lee Y. Y.. Coordinated development of leading biomass pretreatment technologies. Bioresource Technology,2005(96):1959
    [82]Bjerre A. B.,Olesen A. B.& Fernqvist T.. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnology and Bioengineering,1996(49):568
    [83]Wiselogel A., Tyson S.& Johnson D. K.. Biomass feedstock resources and composition. In:Handbook on Bioethanol:Production and Utilization (ed. C. E. Wyman). Taylor and Francis, Washington, DC,1996.
    [84]Torget R., Werdense P., Himmel M.& Grohmann K.. Dilute acid pretreatment of short rotation woody and herbaceous crops. Applied Biochemistry and Biotechnology,1990(24-25):115-126
    [85]Michael E. Himmel.生物质抗降解屏障——解构植物细胞壁产生物能[M].化学工业出版社,2010:224
    [86]Antal M. J., Leesomboon T., Mok W. S.& Richards G. N.. Mechanism of formation of 2-furaldehyde from D-xylose. Carbohydrate Research,1991(217):71-85
    [87]Qian X., Nimlos M. R., Johnson D.K.& Himmel M. E.. Acidic sugar degradation pathways:An initio molecular dynamics study. Applied Biochemistry and Biotechnology,2005(121-124):989-997
    [88]Nimlos M. R., Qian X., Davis M., Himmel M. E.& Johnson D. K.. Energetics of xylose decomposition as determined using quantum mechanics modeling. Journal of Physical Chemistry A,2006(110):11824-11838
    [89]Liu C. G.& Wyman C. E.. The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180℃. Carbohydrate Research,2006(341):2550-2556
    [90]Bobleter 0., Bonn G.. The hydrothermolysis of cellobiose and its reaction-product d-glucose[J]. Carbohydrate Research,1983,124(2):185-193
    [91]Lu, X. Y., Sakoda A., Suzuki M.. Decomposition of cellulose by continuous near-critical water reactions [J]. Chinese Journal of Chemical Engineering,2000, 8(4):321-325
    [92]Sasaki M., Adschiri T., Arai K.. Production of cellulose II from native cellulose by near and supercritical water solubilization[J]. Journal of Agricultural and Food Chemistry,2003,51 (18):5376-5381
    [93]Kabyemela B. M., Adschiri T., Malaluan R., et al. Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical Water [J]. Industrial & Engineering Chemistry Research,1997,36(6):2025-2030
    [94]Kabyemela B. M., Adschiri T., Malaluan R., et al. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water [J]. Industrial & Engineering chemistry Research,1997,36(5):1552-1558
    [95]Sakaki T., Shibata M., Miki T., et al. Decomposition of cellulose in near-critical water and fermentability of the products[J]. Energy & Fuels, 1996,10(3):684-688
    [96]Sakaki T., Shibata M., Miki, T., et al. Reaction model of cellulose decomposition in near-critical water and fermentation of products[J]. Bioresource Technology,1996,58(2):197-202
    [97]Sakaki T., Shibata M.. Sumi T., et al. Saccharification of cellulose using a hot-compressed water-flow reactor[J]. Engineering Industrial & chemistry Research,2002,41(4):661-665
    [98]Sasaki M., Fang Z., Fukushima Y., et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research,2000,39(8):2883-2890
    [99]Sasaki M., Iwasaki K., Hamaya T., et al. Super-rapid enzymatic hydrolysis of cellulose with supercritical water solubilization pretreatment [J]. Kobunshi Ronbunshu,2001,58 (10):527-532
    [100]Varhegyi, G., Szabo P., Mok W. S.-L., et al. Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. effects of the presence of water on the reaction mechanism[J]. Journal of Analytical and Applied Pyrolysis,1993,26(3):159-174
    [101]Aida T. M., Sato Y., Watanabe M., et al. Dehydration of d-glucose in high temperature water at pressures up to 80MPa[J]. The Journal of Supercritical Fluids,2007,40(3):381-388
    [102]Aida T. M, Sato Y., Watanabe M., et al. Reactions of d-fructose in water at temperatures up to 400℃ and pressures up to 100MPa[J]. The Journal of Supercritical Fluids,2007,42 (1):110-119
    [103]Kabyemela B.M., Adschiri T., Malaluan R. M., et al. Glucose and fructose decomposition in subcritical and supercritical water:detailed reaction pathway, mechanisms, and kinetics[J]. Industrial & Engineering Chemistry Research, 1999,38(8):2888-2895
    [104]Kabvemela B. M., Adschiri T., Malaluan R. M., et al. Rapid and selective conversion of glucose to erythrose in supercritical water [J]. Industrial & Engineering chemisiry Research,1997,36 (12):5063-5067
    [105]Sasaki M., Goto K., Tajima K., et al. Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water[J]. Green Chemistry,2002,4(3):285-287
    [106]Sinag A., Kruse A., Rathert J.. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor[J]. Industrial & Engineering Chemistry Research,2004,43(2):502-508
    [107]Sinag A., Kruse A., Schwarzkopf V.. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3[J]. Industrial & Engineering Chemistry Research,2003,42 (15):3516-1521
    [108]Sinag A., Kruse A., Schwarzkopf V.. Formation and degradation pathways of intermediate products formed during the hydropyrolysis of glucose as a model substance for wet biomass in a tubular reactor [J]. Engineering in Life Sciences, 2003,3 (12):469-473
    [109]Watanabe M., Aizawa Y., Iida T., et al. Glucose reactions with acid and base catalysts in hot compressed water at 473K[J]. Carbohydrate Research,2005, 340(12):1925-1930
    [110]Watanabe M., Aizawa Y, Iida T., et al. Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water[J]. Carbohydrate Research,2005,340 (12):1931-1939
    [111]Watanabe M., Aizawa Y., Lida T., et al. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473K:Relationship between reactivity and acid-base property determined by TPD measurement[J]. Applied Catalysis A: General,2005,295(2):150-156
    [112]Watanabe M., Inomata H., Arai K.. Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water [J]. Biomass and Bioenergy,2002,22(5):405-410
    [1]Mu Jun, Uehara Tohru, Li Jianzhang etal. Identification and evaluation of Antioxidant activities of bamboo extracts. Forestry Studies in China, 2004,6 (2):1-5
    [2]张文标,李文珠,方伟等.不同竹种竹醋液组分分析.世界竹藤通讯,2008,6(6):1-5
    [3]刘海滨.非纤维成分对竹子SCMP浆性能的影响[D].南宁,广西大学,2007
    [4]关亮.竹沥液成分测定及其对漂白、返黄性能影响的分析[D].南宁,广西大学,2007
    [5]熊艳,吴学文,蒋孟良.淡竹沥四种不同制备工艺的比较研究.中成药,2006,28(12):1825-1826
    [6]黄世德,夏厚林,卢先明等.慈竹沥化学成分的研究.化学研究与应用,1994,6(2):77-81
    [7]欧敏锐,许小平.福建产竹醋液与日本产竹醋液的组分比较[J].海峡药学,2004,16(2):69-70
    [8]庄晓伟,陈顺伟,柏明娥.精制处理前后竹醋液组分及其含量的分析[J].林产化工通讯,2005,39(6):20-24
    [9]张文标,叶良明,刘力德.竹醋液的组分分析[J].竹子研究汇刊,2001,20(4):72-77
    [10]卢谦和主编.造纸原理与工程,中国轻工业出版社,2004
    [11]杜官本.表面光电子能谱及其在木材科学与技术领域的应用.木材工业,1999,13(3):17-20
    [12]M. D. DORRIS and D. G. GRAY. The surface analysis of paper and wood fiber by ESCA,1, application to cellulose and lignin. Cellulose Chemistry and Technology,1978,12:9-23
    [13]M. D. DORRIS and D. G. GRAY. The surface analysis of paper and wood fiber by ESCA,2, surface composition of mechanical pulps. Cellulose Chemistry and Technology,1978,12:721-734
    [1]于建仁,张曾,迟聪聪.桉木半纤维素预提取液中戊聚糖快速测定方法的探讨[J],中国造纸,2007,26(11):10-13
    [2]Michael E.Himmel. Biomass recalcitrance:Deconstructing the plant cell wall for bioenergy[M], John Wiley & Sons Limited,2010:300-303
    [3]Mok W.S.L.& Antal M.J.. Uncatalyzed solvolysis of whole biomass hernicellulose by hot compressed liquid water. Industrial and Engineering Chemistry Research[J],1992 (31):1157
    [4]Allen S.G, Schulman D., Lichwa J., Antal M.J. Jennings E.& Elander R.. A comparison of aqueous and dilute-acid single-temperature pretreatment of yellow poplar sawdust. Industrial and Engineering Chemistry Research[J],2001 (40):2352
    [5]Allen S.G., Kam L.C., Zeman A.J.& Antal M.J.. Fractionation of sugar cane with hot compressed liquid water. Industrial and Engineering Chemistry Research[J],1996 (35):2709
    [6]Liu C.&Wyman C.E.. The effect of flow rate of compressed hot water on xylan. lignin, and total mass removed from corn stover[J]. Industrial and engineering chemtstry research, 2003(42):5409
    [7]林兰东.纸浆与木材戊聚糖分析方法之研究[J].台大实验林研究报告,2003,17(2):107
    [8]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州,华南理工大学出版社,1989
    [9]石淑兰,何福望.制浆造纸分析与检测[M].北京,中国轻工业出版社,2003
    [10]于建仁,张曾,伍红等.半纤维素预提取对桉木纤维形态及浆料性能的影响[J].造纸科学与技术,2007,26(6):25-28
    [11]刘轩,张曾,迟聪聪等.水预水解提取半纤维素对桉木碱法制浆的影响[J].中国造纸,2009,28(1):20-34
    [12]造纸原料多戊糖含量的测定[S].中华人民共和国国家标准,GB/T2677.9-1994
    [13]Bjorkman A.. Studies on finely divided wood. Part Ⅰ:Extraction of lignin with neutral solvents[J]. Svensk Papperstidn,1956,59(13):477
    [14]Lundquist K, Ohlsson B and Simonson R. Isolation of Lignin by Means of Liquid-liquid Extraction[J]. Svensk Papperstidning, Nordisk Cellulosa.1977,80(5):143
    [15]Lundquist K.. NMR studies of Lignin 1, Signal due to protons in formyl groups[J], Acta Chemica Scandinavica,1977, B31(9):788-792
    [16]F. Imsgard. On Possible Chromophoric Structures in Spruce Wood[J], TAPPI, 1971,54(10):1680-1684
    [17]Raymond D., Closset G. Forest products Biorefinery. Technology for a New Future [J], Solutions,2004,87(9):49-53
    [18]胡会超.竹子半纤维素的热水预提取及其KP法制浆和ECF漂白性能的影响[D],广州,华南理工大学,2010::20-26
    [19]胡会超.竹子半纤维素的热水预提取及其KP法制浆和ECF漂白性能的影响[D],广州,华南理工大学,2010::28-29
    [20]Michael E. Himmel. Biomass recalcitrance:Deconstructing the plant cell wall for bioenergy[M], John Wiley&Sons Limited,2010:224
    [21]Michael E. Himmel.生物质抗降解屏障——解构植物细胞壁产生物能[M].化学工业出版社,2010:75
    [22]Michael E.Himmel. Biomass recalcitrance:Deconstructing the plant cell wall for bioenergy[M], John Wiley & Sons Limited,2010:297
    [23]卢谦和主编.造纸原理与工程[M],北京,中国轻工业出版社,2004
    [24]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州,华南理工大学出版社,1989:112
    [25]覃程荣,詹怀宇,王双飞.硫酸盐竹浆ECF和TCF漂白过程中木素结构的变化[J].中国造纸学报,2008,(4)
    [26]宁永成.有机波普学谱图解析[M].北京:科学出版社,2010:42-43
    [27]武书彬,娄瑞,赵增立.秸秆原料EMAL木素的分离及其特征研究[J].造纸科学与技术,2008,27(6):87-92
    [28]李友明,王宗和,梁文芷.针叶木磨木木素色团的定量及其对颜色的影响[J],中国造纸学报,1992,7:43-49
    [29]杨淑惠主编.植物纤维化学[M].北京,中国轻工业出版社,2001
    [30]李友明,陈中豪.木素在Na2S03处理的发色效果[J],中国造纸学报,1994,9: 99-104
    [31]Imsgard F., Falkehag I., Kringstad, et al. On possible chromophoric structures in spruce wood[J], Tappi,1971,54(10):1680
    [32]Pewc J. C., Connrs W. J., Color of coniferous lignin[J], Tappi,1971,54(2):245
    [33]Stephen Y, Lin, Kunt P, Kringstad. Photosensitive groups in lignin and lignin model compounds[J], Tappi,1970,53(4):658-663
    [34]郗伟,李新平.对过氧化氢与β-0-4型木质素醌型发色基团反应特性的研究[J],中华纸业,2008,16:32-35
    [35]Kempf A. W.. The reaction of hardwood lignin model compounds with alkaline hydrogen peroxide[J], Tappi,1975,58(6):104
    [36]李友明,陈中豪.木素H202漂白的浅色化效果[J],中国造纸学报,1995,10:27-32
    [37]骆莲新.竹沥液对粉单竹APMP浆返黄影响的研究[D],广西大学,南宁市,2010:78
    [1]Mosier N., Hendrickson R., Ho N., et al. Optimization of pH controlled liquid hot water pretreatment of corn stover [J]. Bioresource Technology, 2005,96(18):1986-1993
    [2]Huang H. J., Shri R., Tschirner U. W., et al. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology,2008,62(1):1-21
    [3]Yoon S.-H., Adriaan V. H.. Kraft pulping and papermaking properties of hot-water pre-extraction loblolly pine in an integrated forest products biorefinery[J]. Tappi Journal,2008,7(6):22-27
    [4]Leschinsky M., Zuckerstatter G., Weber H. K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. part 1:comparison of different lignin fractions formed during water prehydrolysis[J]. Holzforschung, 2008,62(6):645-652
    [5]Leschinsky M., Zuckerstatter G., Weber H. K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure, part 2:influence of autohydrolysis intensity[J]. Holzforschung,2008,62(6):653-658
    [6]Raymond D, Closset G. Forest products Biorefinery. Technology for a New Future [J]. Solutions,2004,87(9):49-53
    [7]石淑兰,何福望.制浆造纸分析与检测[M].北京,中国轻工业出版社,2003
    [8]郑永文.绿竹改良碱性过氧化氢机械浆制浆工艺及其机理的研究[D],福建农林大学,2005
    [9]Michael E. Himmel. Biomass recalcitrance:Deconstructing the plant cell wall for bioenergy[M], John Wiley & Sons Limited,2010:224.
    [10]王习文,詹怀宇,李兵云.自由基与过氧化氢漂白[J],中国造纸学报,2003,18(1):45-48
    [11]Hsu T. A.. Pretreatment of biomass. In:Handbook on Bioethanol, Production and Utilization(ed. C. E. Wyman). Taylor & Francis, Washington, DC,1996
    [12]周辉.碱性过氧化氢预提取改善TMP浆渣的精磨效果[J],造纸化学品,2008,20(1):49-53
    [13]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003:184
    [14]石淑兰,何福望.制浆造纸分析与检测[M].北京:中国轻工业出版社,2003:177
    [15]姚光裕.制浆过程中提取半纤维素的方法[J].造纸信息2009,3:43
    [16]卢谦和主编.造纸原理与工程[M],北京,中国轻工业出版社,2004:62-63
    [17]陈嘉翔,余家鸾.植物纤维化学结构的研究方法[M].广州:华南理工大学出版社,1989:112
    [18]覃程荣,詹怀宇,王双飞.硫酸盐竹浆ECF和TCF漂白过程中木素结构的变化[J].中国造纸学报,2008,(4):
    [19]骆莲新.竹沥液对粉单竹APMP浆返黄影响的研究[D],广西大学,南宁市,2010:76
    [1]Elbein, A. D.. Biosynthesis of a cell glucomannan in mung bean seedlings [J]. Journal of biological chemistry,1969(244):1608-1616
    [2]Dalessandro, G., piro, G.& northcote, D. H.. Glucomann synthase activity in differentiating cells of pinus sylvestris L. planta,1986(169):564-574.
    [3]Dunn, E. K, shoue, D. A, huang, X., Kline, R. E., et al. spectroscopic and biochemical analysis of regions of the cell wall of the unicellular "mannan weed", Acetabularia acetabulum[J]. Plant and cell physiology, 2007(48):122-133.
    [4]Liepman, A. H., Nairn, C. J., Willats, WG. T., et al. Nctional genomic analysis supports conservation of function among cellulose synthase-likegene family members and suggests diverse roles of mannans in plants[J]. Plant Physiology, 2007 (143):81-1893
    [5]Edwards, M., Bulpin, P. V., Dea, I. C.M.& Reid, J. S. G.. Biosynthesis of legume-seed galac-tomannans in-vitro:cooperative interactions of a guanosine 5'-diphosphate mannose-linked1-4-beta-D mannosyltransferase and a uridine 5'-diphosphate galactose-linked alpha-D galac-tosyltransferase in particulate enzyme preparations from developing endosperms of fenugreekTrigonella foenum graecum L. and guar Cyamopsis tetragonoloba L. Taub. Planta,1989 (178):41-51
    [6]Hayashi, T.. Xyloglucans in the primary cell wall[J]. Annual Review of plant physiology,1989(40):139-168
    [7]. Popper, Z. A.& Fry, S. C.. Primary cell wall composition of pteridophytes and spermatophytes[J]. New phytologist,2004(164):165-174
    [8]Popper, Z. A.& Fry, S. C.. Primary cell wall composition of bryophytes and charophytes Annals of Botany,2003(91):1-12
    [9]. Staudte, R. G., Woodward, J. R., Fincher, G. B.&Stone, B. A.. Water-soluble (1,3), (1,4)-β-D-glucans from barley (Hordeum vulgare) endosperm:III. Distribution of cellotriosyl andcellotetraosyl residues. Carbohydrate Polymer, 1983 (3):299-312
    [10]Liang Lina, Zhang Ping, Cai Yaqiet al.. High-performance anion exchange chromatograpHy with pulsed amperometric detection for simultaneous determination of monosaccharides and uronic acids[J]. Chinese Journal of Analytical Chemistry,2006,34(10):1371-1374
    [11]庄新姝,王树荣,袁振宏等.纤维素超低酸水解产物的分析[J].农业工程学报,2007,23(2):177-182
    [12]胡会超.竹子半纤维素的热水预提取及其对KP法制浆和ECF漂白性能的影响[D].广州,华南理工大学,2010年:20
    [13]詹怀宇,胡会超,付时雨.竹子热水预提取过程中糖组分的溶出规律[J].华南理工大学自然学报,2010,38(4):6-11
    [14]彭湃.竹子主要组分的分离及结构鉴定[D].西北农林科技大学,2010年
    [15]Spiro M., Page CM. The kinetics and mechanism of caffeine infusion from coffee:hydrodynamic aspects[J]. J Sci Food Agric,1984(35):925-930
    [16]储茂泉,刘国杰.中药提取过程的动力学[J].药学学报,2002,37(7):559-562
    [17]黄琨.葛根有效成份的提取及分离[D].武汉工程大学,2009年:31-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700