植物黄酮抗肿瘤效应的结构—效应关系及ROS相关作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物黄酮为一类天然植物多酚化合物,广泛存在于水果、蔬菜、谷类等植物性食物中,流行病学调查和实验研究证实,植物黄酮具有抗氧化、抗炎症、抗肿瘤、抗动脉粥样硬化等广泛、优良的生物学效应,特别是对于肿瘤的发生、增殖、迁移、侵袭、血管生成以及耐药性等各阶段、各方面都具有显著的抑制作用,植物黄酮抗肿瘤活性以其天然、低毒、高效而倍受关注。
     植物黄酮发挥各种药理作用的基础在于其分子结构,不同分子结构的植物黄酮其药理效应可能存在很大差异,而黄酮分子结构中某些特定的取代基或结构特征,对于植物黄酮发挥某一种特定药理效应可能是必需或极重要的,这些结构元件被称为关键结构-效应元件,研究并分析植物黄酮特定分子结构与其特定药理效应之间的构效关系,阐明其中的关键结构-效应元件,对于揭示植物黄酮特定药理学作用的机制,以及寻找高效的植物药和合成新药都具有重要的参考价值。植物黄酮抗肿瘤研究一直为国内外一个研究热点,但绝大多数研究只侧重于某一种植物黄酮的抗肿瘤效应,对不同植物黄酮化合物的抗肿瘤作用的差异研究较少,缺乏相互之间的比较,特别是对于植物黄酮特定分子结构与其抗肿瘤效应之间的构效关系缺乏研究,其中的关键结构-效应元件尚不清楚,因此值得深入探讨。
     植物黄酮等多酚类化合物作为优良的天然抗氧化剂已众所周知,但事实上植物黄酮可同时具有抗氧化和促氧化两种相反特性。研究表明,在某些环境下(如O_2大量存在或细胞过氧化物酶活性较高),或某些因素诱导下(如过渡金属Fe或Cu的催化),植物黄酮可被过氧化物酶氧化生成酚自由基,并形成酚氧化反应链,这些酚过氧化物可催化谷胱甘肽或辅酶Ⅰ共氧化并产生活性氧。植物黄酮对疾病的防治作用一般认为在于其优良的抗氧化及清除自由基特性,然而近期研究发现,这些植物多酚物质在抗肿瘤及诱导肿瘤细胞凋亡方面,其促氧化活性可能比其抗氧化活性更加重要,因为ROS可以介导DNA片段化并导致凋亡发生,很多抗肿瘤药物诱导肿瘤细胞凋亡都与引发ROS的产生密切相关,如抗肿瘤药物三氧化二砷、顺铂、以及醌类抗癌药物诱导肿瘤细胞凋亡过程中,胞内ROS的产生都发挥着重要作用。
     正常情况下,细胞内ROS的产生与消解处于动态平衡过程中,细胞内环境氧化-还原状态保持相对稳定,而细胞氧化-还原状态对于细胞的生存及各种功能都是至关重要的,破坏细胞氧化-还原状态平衡的主要因素是ROS和GSH,现已知道,低微水平的ROS升高可促进细胞增殖,而较高水平的ROS则引发细胞凋亡,更高水平的ROS则直接导致细胞坏死。多项研究表明,肿瘤细胞内的抗氧化酶如SOD和CAT等,其活性都显著低于正常细胞,肿瘤细胞清除ROS和生成GSH的能力较低,而肿瘤细胞胞内ROS的产生又往往远高于正常细胞,因此肿瘤细胞内存在严重的氧化压力,对ROS十分敏感,ROS对肿瘤细胞具有选择性杀伤力,近年来,人们已经开始开发利用ROS诱导肿瘤细胞凋亡的抗肿瘤新药,而某些膳食多酚化合物,其特性例如与DNA结合、剪切DNA、在过渡金属存在下产生ROS,都与一些抗肿瘤药物相似。由此我们推断,在肿瘤细胞内特别是在细胞关键部位如细胞膜、线粒体膜表面及细胞核内引发ROS,改变细胞氧化-还原状态平衡,对细胞内关键靶点造成氧化压力,从而启动细胞凋亡,这可能是某些植物黄酮抗肿瘤作用的重要机制。
     基于以上分析,本课题应用槲皮素等23种分子结构明确、纯度单一的常见植物黄酮,作用于白血病HL-60细胞、乳腺癌MCF-7细胞、前列腺癌PC3细胞等6种不同肿瘤细胞,检测评价不同植物黄酮对肿瘤细胞增殖的影响,分析植物黄酮不同分子结构与其抗肿瘤效应间的结构-效应关系,以及其中的关键结构-效应元件;同时筛选出3种抗肿瘤效应强的植物黄酮和对植物黄酮作用敏感的白血病HL-60细胞作为研究对象,运用流式细胞分析、激光共聚焦扫描显微镜、荧光漂白恢复等先进分子生物学检测分析技术,深入研究植物黄酮诱导肿瘤细胞凋亡过程中,其胞内ROS、GSH和氧化-还原电位的变化,同时对于细胞中最易受ROS攻击的细胞膜和线粒体,本课题进一步研究这些植物黄酮对肿瘤细胞膜流动性和线粒体膜电位的影响,并以抗氧化剂NAC进行干预实验,探讨植物黄酮抗肿瘤的ROS相关作用机制。
     本研究主要实验结果和结论如下:
     1.细胞增殖状态检测结果表明,被检测的23种植物黄酮大部分对肿瘤细胞增殖都表现出显著抑制作用,并呈现浓度依赖性趋势,但不同植物黄酮之间存在较大差异,同时不同肿瘤细胞对植物黄酮作用表现出不同的敏感性,在被检测的6种肿瘤细胞中,白血病HL-60细胞对于植物黄酮的细胞毒性作用最敏感,植物黄酮3,6-二羟基黄酮和2'-羟基二氢黄酮对6种肿瘤细胞表现出最强的增殖抑制效应,柚皮素和橙皮素对于6种肿瘤细胞均无显著增殖抑制作用,而印棉黄素和桑黄素对于多种肿瘤细胞的增殖具有促进作用,以IC50为标准,比较植物黄酮抑制肿瘤细胞增殖效应的强弱得出以下顺序:3,6-二羟基黄酮> 2'-羟基二氢黄酮>漆树黄酮> 3,7-二羟基黄酮>毛地黄黄酮> 5,7,4'-三羟基黄酮>槲皮素> 6-羟基黄酮> 7-羟基黄酮> 4'-羟基二氢黄酮>高良姜黄素> 3'-甲氧基, 3, 7, 4'-三羟基黄酮>黄芩黄酮>大豆黄素>白杨黄素>杨梅黄酮>染料木黄酮>黄酮>二氢黄酮>柚皮素>橙皮素>桑黄素>印棉黄素。
     2.细胞增殖检测结果表明,在被检测的23种植物黄酮中3,6-二羟基黄酮表现出最强的抗肿瘤效应,进一步细胞形态学观察结果表明,10μΜ的3,6-二羟基黄酮处理24 h,6种肿瘤细胞的生长状态和形态均发生显著变化,表现为细胞生长稀疏,排列紊乱,大量细胞皱缩变圆,胞质凝缩,并与其周边细胞分离,细胞贴壁性下降,甚至离开瓶壁漂浮到培养基中,这些形态变化都是凋亡细胞或死亡细胞的表现特征;进一步DAPI染色后荧光显微镜下观察可见,正常肿瘤细胞核呈现弥漫均匀的低强度荧光,出现凋亡形态(固缩形态的亮蓝色颗粒)的比率很低,而3,6-二羟基黄酮处理24 h后,6种肿瘤细胞出现凋亡形态的比率均明显升高;流式细胞凋亡分析结果也表明,10μΜ的3,6-二羟基黄酮处理24 h,6种肿瘤细胞的凋亡率均显著升高。这些实验结果表明,3,6-二羟基黄酮具有很强的抗肿瘤效应,可有效诱导6种肿瘤细胞凋亡。
     3.植物黄酮抗肿瘤效应的结构-效应关系分析结果表明,植物黄酮分子中一定数目的羟基(2~4个)、C环2,3位双键、B环定位于2位、3位羟基、6位羟基、B环邻位羟基,对于植物黄酮发挥抗肿瘤效应可能是至关重要的,是其中的关键结构-效应元件,相反,羟基数目的过少或过多、C环2,3位双键的缺失、B环定位于3位(异黄酮结构)、5位羟基和B环间位羟基,则会降低植物黄酮分子的抗肿瘤效应。
     4.细胞ROS水平和凋亡检测分析结果表明,HL-60细胞ROS水平显著高于正常人淋巴细胞,而植物黄酮3,6-dihydroxyflavone、luteolin和geraldol作用HL-60细胞,均能引发ROS,造成ROS水平显著升高,并有效诱导HL-60细胞凋亡,而hesperetin和naringenin对HL-60细胞增殖无显著作用的植物黄酮,对HL-60细胞ROS水平无显著影响,且对HL-60细胞凋亡状况亦无显著影响;进一步研究表明,3,6-dihydroxyflavone、luteolin和geraldol均能显著降低HL-60细胞胞内GSH水平,提高GSSG水平,导致HL-60细胞氧化-还原电位显著升高;膜流动性和线粒体膜电位检测结果表明,3种植物黄酮可显著降低HL-60细胞的膜流动性和线粒体膜电位水平。
     5. NAC干预实验结果表明,NAC干预可有效阻断植物黄酮3,6-dihydroxyflavone、luteolin和geraldol对HL-60细胞诱发的ROS水平升高、GSH水平下降和细胞氧化-还原电位的升高,以及膜流动性和线粒体膜电位的下降,并部分降低3种植物黄酮对HL-60细胞的增殖抑制作用和凋亡诱导作用。这些实验结果表明,引发ROS和氧化-还原电位水平升高,在3,6-dihydroxyflavone、luteolin和geraldol诱导HL-60细胞凋亡过程中起着重要作用,通过引发ROS和细胞氧化-还原电位水平升高介导肿瘤细胞凋亡,是植物黄酮发挥抗肿瘤作用的一个重要机制。
     综上所述,本课题通过检测及比较23种植物黄酮对多种肿瘤细胞的增殖抑制作用,发现3,6-二羟基黄酮具有很强的抗肿瘤活性,结构-效应关系分析表明,一定数目的羟基(2~4个)、C环2,3位双键、B环定位于2位、3位羟基、6位羟基、B环邻位羟基,是植物黄酮发挥抗肿瘤效应的关键结构-效应元件,同时作用机制研究表明,植物黄酮3,6-dihydroxyflavone、luteolin和geraldol可显著提高HL-60细胞ROS水平,降低GSH水平,提高细胞氧化-还原电位,降低细胞膜流动性和线粒体膜电位,诱导细胞凋亡,表明,引发ROS并提高细胞氧化-还原电位从而诱导凋亡,是植物黄酮发挥抗肿瘤作用的重要机制。
Flavonoids are a large class of polyphenolic compounds, which are ubiquitously present in the plant world and our common diet, such as vegetables, fruits and plant-derived beverages. Epidemiological investigations and laboratory studies have indicated several beneficial biological activities of flavonoids, including anti-oxidant, anti-inflammatory, anti-cancer and anti-estrogenic properties. Among these pharmacological properties, there has been an increasing scientific interest in the anti-cancer activity of flavonoids due to their potent inhibition effect on the carcinogenesis, proliferation, migration, invasion, angiogenesis and drug resistance of cancer.
     The pharmacological activities of flavonoids depend on their molecular structure; flavonoids with different molecular structure may have different activity. Some structure substituent groups or features may be critical or essential for their certain pharmacological activity, these structure elements are called key structure-activity elements. To analyze the relation between the molecular structure and activity, elucidating the key structure-activity elements, should be useful for revealing the mechanism of certain pharmacological effect of flavonoids, and for guiding the synthesis of potent anti-cancer compounds from flavonoids for potential clinical application. The anti-cancer activity of flavonoids has been an interesting topic around the world, yet most of the studies lay emphasis on some certain flavonoids, the difference and comparison of the anti-cancer activities of flavonoids are neglected. Furthermore, there is a lack in study of the structure-activity relationship for anti-cancer activity of flavonoids, and the key structure-activity elements are still unclear, therefore it is worthwhile to investigate the related topic.
     Flavonoids, the dietary phenolics, have been well known as effective anti-oxidant, yet in fact, flavonoids can be both anti-oxidative and pro-oxidative. Studies suggested that under some certain conditions (such as in the presence of O2, transition metals copper and iron), upon oxidation by peroxidase, flavonoids formed phenoxyl radicals and redox cycling of phenolics, which catalyzed GSH or NADH co-oxidation and generated ROS. The beneficial properties of flavonoids are generally believed to reflect their ability to scavenge endogenous ROS. However, the pro-oxidant action of plant-derived phenolics rather than their anti-oxidant action may be an important mechanism for their anti-cancer and apoptosis inducing properties, as ROS can mediate apoptotic DNA fragmentation. Apoptotic DNA fragmentation properties of several anti-cancer drugs, such as arsenic trioxide and cisplatin, are considered to be mediated by ROS.
     In normal condition, the production and scavenging of ROS in cells is a dynamic balance, cells maintain a specific redox homeostasis, which plays an important role in the life cycle of cells. ROS and GSH are the key factors influence the redox homeostasis. It has been known that slight elevation of ROS promotes cells proliferation, more high level of ROS induces apoptosis, excessive amount of ROS results in necrosis. Studies indicate that the activities of antioxidases such as SOD and CAT of cancer cells are much lower than that of normal cells, so the ability of scavenging endogenous ROS and producing GSH of cancer cells are much lower. Furthermore, the generation of ROS in cancer cells is higher. Therefore, there is severe oxidation stress in cancer cells; cancer cells are sensitive to ROS, which have selectively cytotoxicities on them. Development of anti-cancer drugs with apoptosis-inducing properties mediated by ROS has currently become a very important topic, and some certain properties of dietary phenolic compounds, such as binding and cleavage of DNA and the generation of ROS in the presence of transition metal ions, are similar to those of known anti-cancer drugs. Therefore, we could raise the hypothesis that flavonoids could induce ROS generation by pro-oxidation in cancer cells, especially in the key points such as lipid and mitochondria membrane, change the redox homeostasis and eventually induce apoptosis, it may be the important mechanism of the anti-cancer activity of flavonoids.
     Based on the analysis mentioned above, we used a library of 23 different flavonoids and evaluated cytotoxicity of them in human leukemia HL-60 cells, breast cancer MCF-7 cells, prostatic cancer PC3 cells et al. Structure-activity relationship and the key structure-activity elements were analyzed. Furthermore, we selected out 3 flavonoids with potent cytotoxicity and HL-60 cells to investigate the effect of these flavonoids on the ROS level, GSH level and redox potential of HL-60 cells, by flow cytometric analysis, laser confocal scanning microscopy and fluorescence recovery after photobleaching. We also investigated the effect of flavonoids on the membrane phospholipids mobility and mitochondria membrane potential of HL-60 cells, and observed the influence of NAC pre-treatment on the cytotoxicity and apoptosis induction activity.
     The main results and conclusions were summarized as follows:
     1. Cells viability assay indicated that most of the 23 flavonoids tested in this study showed significant inhibitory effect on cancer cells proliferation and the effect were enhanced along with increasing concentration. However, the intensity of their effects was different, and HL-60 cells were most sensitive to the cytotoxicity of flavonoids. 3,6-Dihydroxyflavone and 2′-hydroxyflavanone exhibited the most potent cytotoxic effect on all six cells. Flavonoids such as naringenin and hesperetin showed no significant cytotoxic effects on these cancer cells, gossypin and morin promoted some cancer cells viability significantly. The effects of flavonoids on the proliferation of cancer cells were arranged from strong to weak as follow based on IC50: 3,6-dihydroxyflavone > 2'-hydroxyflavanone > fisetin > 3,7-dihydroxyflavone > luteolin > apigenin > quercetin > 6-hydroxyflavone > 7-hydroxyflavone > 4'-hydroxyflavanone > galangin > geraldol > baicalein > daidzein > chrysin > myricetin > genistein > flavone > flavanone > naringenin > hesperetin > morin > gossypin.
     2. In order to confirm the potent cytotoxic effect of 3,6-dihydroxyflavone on cancer cells, we examined the morphological changes of cancer cells after the treatment of 3,6-dihydroxyflavone. Treated with 10μΜ3,6-dihydroxyflavone for 24h, dramatic pro-apoptotic morphological changes in comparison with the control were observed in all these six cancer cells, including cell shrinkage and cytoplasmic condensation. Cells retracted from their neighboring cells, rounded up and eventually floated into the media, which is indicative of apoptosis as well. Morphological changes in cell nuclei were determined by fluorescence microscopy after DAPI staining. After 3,6-dihydroxyflavone treatment, the stained nuclei with apparent apoptotic characteristic of condensed nuclei or nuclear fragmentation increased. The apoptosis analysis by flow cytometric assay confirmed the pro-apoptotic effects of 3,6-dihydroxyflavone in all six cancer cells.
     3. Structure-activity relationship analysis indicated that some structural properties associated with enhanced cytotoxicity, including appropriate hydroxyl numbers (2~4), the presence of the 2,3-double bond in ring C, ring B attached at position 2, 3-OH, 6-OH and ortho-hydroxylation in ring B, these structural elements are key structure-activity elements for anti-cancer activity of flavonoids. On the contrary, redundant or insufficient hydroxyl numbers, the absence of the 2,3-double bond in ring C, ring B attached at position 3 (iso-flavone structure), 5-OH, and mate-hydroxylation in ring B associated with decreased cytotoxicity.
     4. The detection of ROS and apoptosis analysis indicated that the ROS level of HL-60 cells was distinctly higher than that of the normal human lymphocytes, 3,6-dihydroxyflavone, luteolin and geraldol could induce ROS generation and apoptosis. The flavonoids with no significant effect on HL-60 cells viability, hesperetin and naringenin, showed no significant effect on ROS level and apoptosis. Further studies suggested that 3,6-dihydroxyflavone, luteolin and geraldol significantly reduced the GSH level and increased the GSSG level, inducing the elevation of redox potential. Results also indicated that these 3 flavonoids sigcificantly decreased the membrane phospholipids mobility and mitochondria membrane potential of HL-60 cells
     5. The addition of NAC completely prevented the generation of intracellular ROS, the decreasing of GSH, the increasing of redox potential, and the decreasing of the membrane phospholipids mobility and mitochondria membrane potential, partially suppressed apoptosis and cell viability reduction induced by 3,6-dihydroxyflavone, luteolin and geraldol. These finding suggested that ROS accumulation and the increasing of redox potential play an important role in pro-apoptosis effect of 3,6-dihydroxyflavone, luteolin and geraldol on HL-60 cells, apoptosis induction mediated by ROS was an critical mechanism of anti-cancer effect of flavonoids.
     In all, our study evaluated the cytotoxicity of a library of 23 different flavonoids on six different cancer cells, the findings revealed the potent anti-cancer activity of 3,6-dihydroxylflavone, and the structure-activity relationship analysis elucidated the key structure-activity elements, including appropriate hydroxyl numbers (2~4), the presence of the 2,3-double bond in ring C, ring B attached at position 2, 3-OH, 6-OH and ortho-hydroxylation in ring B. The ROS related mechanism of anti-cancer effects indicated that 3,6-dihydroxyflavone, luteolin and geraldol could significantly elevated the ROS level and redox potential, reduced the GSH level, membrane phospholipids mobility and mitochondria membrane potential, inducing apoptosis in HL-60 cells. These findings indicated that apoptosis induction by elevation of ROS and redox potential plays an important role in anti-cancer effect of flavonoids.
引文
1. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 2007, 137(5): 1244-1252.
    2. Song W, Chun K, Chung S. Tea Consumption is a determinant of flavonoid intake among US adults. J Am Diet Assoc 2006, 106(8): A80-83.
    3. Johannot L, Somerset SM. Age related variations in flavonoid intake and sources in the Australian population. Public Health Nutr 2006, 9(8): 1045-1054.
    4. Theodoratou E, Kyle J, Cetnarskyj R, et al. Dietary flavonoids and the risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2007, 16(4): 684-693.
    5. Tavani A, Spertini L, Bosetti C, et al. Intake of specific flavonoids and risk of acute myocardial infarction in Italy. Public Health Nutr. 2006, 9(3): 369-374.
    6. Zhang G, Qin L, Shi Y. Epimedium derived phytoestrogen flavonoids exert beneficial effect on preventing bone loss in late postmenopausal women: a 24 month randomized, double blind and placebo controlled trial. J Bone Miner Res. 2007, 22(7): 1072-1079.
    7. Pham VH, Naofumi M. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem. 2008, 109(2): 325-331.
    8. Matsuda H, Yoshida K, Miyagawa K, et al. Rotenoids and flavonoids with anti invasion of HT1080, anti proliferation of U937, and differentiation inducing activity in HL-60 from Erycibe expansa. Bioorg Med Chem. 2007, 15(3): 1539-1546.
    9. Kook SH, Son YO, Jang YS, et al. Inhibition of c-Jun N terminal kinase sensitizes tumor cells to flavonoid-induced apoptosis through down regulation of JunD. Toxicol Appl Pharm. 2008, 227(3): 468-476.
    10. Gonzalez Gallego J, Sanchez Campos S, Tunon MJ. Anti-inflammatory properties of dietary flavonoids. Nutr Hosp. 2007, 22(3): 287-293.
    11. Ardestani A, Yazdanparast R. Flavonoids as potential therapeutic agents for type1 diabetes. Med Hypotheses. 2007, 69(4): 955-959.
    12. Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro. 2006, 20(2): 187-210.
    13. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancerchemoprevention. J Nutr Biochem. 2007, 18(7): 427-442.
    14. Chen D, Chen MS, Cui QC, Yang H, Dou QP. Structure proteasome inhibitory activity relationships of dietary flavonoids in human cancer cells. Front Biosci. 2007, 12: 1935-1945.
    15. Cortazar TM, Coombs GH, Walker J. Leishmania panamensis: comparative inhibition of nuclear DNA topoisomerase II enzymes from promastigotes and human macrophages reveals anti-parasite selectivity of fluoroquinolones, flavonoids and pentamidine. Exp Parasitol. 2007, 116(4): 475-482.
    16. Li Y, Fang H, Xu W. Recent advance in the research of flavonoids as anticancer agents. Mini Rev Med Chem. 2007, 7(7): 663-678.
    17. Rodriguez PR, Mata JE, Miranda CL, Fan Y, Brown JJ, Buhler DR. Plant polyphenols and multidrug resistance: effects of dietary flavonoids on drug transporters in Caco-2 and MDCKII-MDR1 cell transport models. Xenobiotica. 2006, 36(1): 41-58.
    18. Sim GS, Lee BC, Cho HS, Lee JW. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch Pharm Res. 2007, 30(3): 290-298.
    19. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem. 2007, 15(4): 1749-1770.
    20. Shuzhong Z, Xinning Y, Robert AC, et al. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharm. 2005, 70(4): 627-639.
    21. Lee HY, Boerboom AM, Westphal AH, Berkel WJ, Aarts JM, Rietjens IM. Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem Res Toxicol. 2006, 19(11): 1499-1505.
    22. Shin JK, Kim GN, Jang HD. Antioxidant and pro-oxidant effects of green tea extracts in oxygen radical absorbance capacity assay. J Med Food. 2007, 10(1): 32-40.
    23. Zhou L, Jing Y, Styblo M, Chen Z, Waxman S. Glutathione S transferase pi inhibits As2O3-induced apoptosis in lymphoma cells: involvement of hydrogen peroxide catabolism. Blood. 2005, 105(3): 1198-1203.
    24. Stewart JH, Tran TL, Levi N, Tsai WS, Schrump DS. The essential role of the mitochondria and reactive oxygen species in Cisplatin-mediated enhancement of fas ligand induced apoptosis in malignant pleural mesothelioma. J Surg Res. 2007, 141(1): 120-131.
    25. Matsui Y, Ueda S, Watanabe J, Kuwabara I, Ogawa O. Sensitizing effect of galectin-7 in urothelial cancer to cisplatin through the accumulation of intracellular reactive oxygen species. Cancer Res. 2007, 67(3): 1212-1220.
    26. Subir K, Chowdhury, Adam G, et al. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate dependent ROS production in prostate cancer cell lines. Biochem Biophys Res, 2007, 333(4): 1139-1145.
    27. Biaglow E, Miller A. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther. 2006, 4(1): 6-13.
    28. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65(5): 55–63.
    29. Adam, M, Crepin, C, Israel, L. Sodium phenylacetate induces growth inhibition and Bcl-2 down regulation and apoptosis in MCF-7 ras cells in vitro and in nude mice. Cancer Res. 1995, 55(5): 5156–5160.
    30. Suresh DV, Mahesha HG, Rao AG, Srinivasan K. Binding of bioactive phytochemical piperine with human serum albumin: a spectrofluorometric study. Biopolymers. 2007, 86(4): 265-75.
    31. Ehrman TM, Barlow DJ, Hylands PJ. Phytochemical databases of Chinese herbal constituents and bioactive plant compounds with known target specificities. J Chem Inf Model. 2007, 47(2): 254-263.
    32. Zhao J, Pawar RS, Ali Z, Khan IA. Phytochemical investigation of Turnera diffusa. J Nat Prod. 2007, 70(2): 289-292.
    33. Pendry B, Busia K, Bell CM. Phytochemical evaluation of selected antioxidant containing medicinal plants for use in the preparation of a herbal formula: a preliminary study. Chem Biodivers. 2005, 2(7): 917-922.
    34. Alali FQ, Tawaha K, Shehadeh MB, Telfah S. Phytochemical and biological investigation of Aristolochia maurorum. L Z Naturforsch. 2006, 61(9-10): 685-691.
    35. McCann SE, Ambrosone CB, Moysich KB, Brasure J, Marshall JR, et al. Intakes ofselected nutrients, foods, and phytochemicals and prostate cancer risk in western. New York Nutr Cancer. 2005, 53(1): 33-41.
    36. Galvan MV, Wolff MS, Torres LE, Lopez CM, et al. Assessing phytochemical intake in a group of Mexican women. Salud Publica Mex. 2007, 49(2): 126-131.
    37. Agurs CT, Smoot D, Afful J, Makambi K. Legume intake and reduced colorectal adenoma risk in African. Americans J Natl Black Nurses Assoc. 2006, 17(2): 6-12.
    38. Bibi H, Ali I, Sadozai SK, Atta URn. Phytochemical studies and antibacterial activity of Centaurium pulchellum Druce. Nat Prod Res. 2006, 20(10): 896-901.
    39. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007, 18(7): 427-442.
    40. Rossi M, Garavello W, Talamini R, Negri E, Bosetti C, Dal Maso L. Flavonoids and the risk of oral and pharyngeal cancer: a case control study from Italy. Cancer Epidemiol Biomarkers Prev. 2007, 16(8): 1621-1625.
    41. Bosetti C, Bravi F, Talamini R, Parpinel M, Gnagnarella P, Negri E. Flavonoids and prostate cancer risk: a study in Italy. Nutr Cancer. 2006, 56(2): 123-127.
    42. Sun M, Han J, Duan J, Cui Y, Wang T, Zhang W. Novel antitumor activities of Kushen flavonoids in vitro and in vivo. Phytother Res. 2007, 21(3): 269-277.
    43. Schindler R, Mentlein R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J Nutr. 2006, 136(6): 1477-1482.
    44. Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S. Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol. 2003, 66(9): 1769-1778.
    45. Turner JV, Agatonovic KS, Glass BD. Molecular aspects of phytoestrogen selective binding at estrogen receptors. J Pharm Sci. 2007, 96(8): 1879-1885.
    46. Roelens F, Heldring N, Dhooge W, Bengtsson M, et al. Subtle side chain modifications of the hop phytoestrogen 8 prenylnaringenin result in distinct agonist/antagonist activity profiles for estrogen receptors alpha and beta. J Med Chem. 2006, 49(25): 7357-7365.
    47. Kang JS, Yoon YD, Han MH, Han SB, Lee K, Kang MR. Estrogen receptor-independent inhibition of tumor necrosis factor-alpha gene expression byphytoestrogen equol is mediated by blocking nuclear factor-kappaB activation in mouse macrophages. Biochem Pharmacol. 2005, 71(1-2): 136-143.
    48. Srilatha B, Adaikan PG. Estrogen and phytoestrogen predispose to erectile dysfunction: do ER-alpha and ER-beta in the cavernosum play a role? Urology. 2004, 63(2): 382-386.
    49. El Touny LH, Banerjee PP. Akt-GSK-3 pathway as a target in genistein-induced inhibition of TRAMP prostate cancer progression toward a poorly differentiated phenotype. Carcinogenesis. 2007, 28(8): 1710-1717.
    50. Vijayababu MR, Kanagaraj P, Arunkumar A, Ilangovan R, et al. Quercetin induces p53-independent apoptosis in human prostate cancer cells by modulating Bcl-2 related proteins: a possible mediation by IGFBP-3. Oncol Res. 2006, 16(2): 67-74.
    51. Chiang CT, Way TD, Lin JK. Sensitizing HER2-overexpressing cancer cells to luteolin induced apoptosis through suppressing p21(WAF1/CIP1) expression with rapamycin. Mol Cancer Ther. 2007, 6(7): 2127-2138.
    52. Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007, 6(9): 1102-1114.
    53. Cai H, Boocock DJ, Steward WP, Gescher AJ. Tissue distribution in mice and metabolism in murine and human liver of apigenin and tricin, flavones with putative cancer chemopreventive properties. Cancer Chemother Pharmacol. 2007, 60(2): 257-266.
    54. Shi R, Huang Q, Zhu X, Ong YB, Zhao B, et al. Luteolin sensitizes the anticancer effect of cisplatin via c-Jun NH2-terminal kinase-mediated p53 phosphorylation and stabilization. Mol Cancer Ther. 2007, 6(4): 1338-1347.
    55. Ueda H, Yamazaki C, Yamazaki M. A hydroxyl group of flavonoids affects oral anti- inflammatory activity and inhibition of systemic tumor necrosis factor-alpha production. Biosci Biotechnol Biochem. 2004, 68(1): 119-125.
    56. Sim GS, Lee BC, Cho HS, Lee JW, Kim JH, Lee DH. Structure-activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch Pharm Res. 2007, 30(3): 290-298.
    57. Luk'ianova LD, Germanova EL, Lysko AI. Energotropic, antihypoxic, and antioxidative effects of flavonoids. Vestn Ross Akad Med Nauk. 2007, (2): 55-62.
    58. Khlebnikov AI, Schepetkin IA, Domina NG, Kirpotina LN, Quinn MT. Improved quantitative structure-activity relationship models to predict antioxidant activity of flavonoids in chemical, enzymatic, and cellular systems. Bioorg Med Chem. 2007, 15(4): 1749-1770.
    59. Seyoum A, Asres K, El-Fiky FK. Structure radical scavenging activity relationships of flavonoids. Phytochemistry. 2006, 67(18): 2058-2070.
    60. Takano IY, Goto M, Yamaki K. Structure-activity relations of inhibitory effects of various flavonoids on lipopolysaccharide induced prostaglandin E2 production in rat peritoneal macrophages: comparison between subclasses of flavonoids. Phytomedicine. 2006, 13(5): 310-317.
    61. Sakatani M, Suda I, Oki T, Kobayashi S, Kobayashi S, Takahashi M. Effects of purple sweet potato anthocyanins on development and intracellular redox status of bovine preimplantation embryos exposed to heat shock. J Reprod Dev. 2007, 53(3): 605-614.
    62. Guo S, Wharton W, Moseley P, Shi H. Heat shock protein 70 regulates cellular redox status by modulating glutathione-related enzyme activities. Cell Stress Chaperones. 2007, 12(3): 245-254.
    63. Xing K, Raza A, Lofgren S, Fernando MR, Ho YS, Lou MF. Low molecular weight protein tyrosine phosphatase (LMW-PTP) and its possible physiological functions of redox signaling in the eye lens. Biochim Biophys Acta. 2007, 1774(5): 545-555.
    64. Won JS, Singh I. Sphingolipid signaling and redox regulation. Free Radic Biol Med. 2006, 40(11): 1875-1888.
    65. Tsai TM, Nakamura BN, Luderer U. Induction of apoptosis by 9,10-dimethyl-1,2 benzanthracene in cultured preovulatory rat follicles is preceded by a rise in reactive oxygen species and is prevented by glutathione. Biol Reprod. 2007, 77(3): 442-451.
    66. Sastre J, Serviddio G, Pereda J, Minana JB, Arduini A, et al. Mitochondrial function in liver disease. Front Biosci. 2007, 12: 1200-1209.
    67. Garcia RC, Fernandez CC. Mitochondrial glutathione: hepatocellular survival death switch. J Gastroenterol Hepatol. 2006, 21(3): S3-6.
    68. Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy.J Drug Target. 2007, 15(7-8): 475-486.
    69. Sharma A, Rajappa M, Saxena A. Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br J Biomed Sci. 2007, 64(1): 23-27.
    70. Monari M, Trinchero A, Calabrese C, Cattani O, Serrazanetti GP, et al. Superoxide dismutase in gastric adenocarcinoma: is it a clinical biomarker in the development of cancer? Biomarkers. 2006, 11(6): 574-584.
    71. Batcioglu K, Mehmet N, Ozturk IC, Yilmaz M, Aydogdu N, et al. Lipid peroxidation and antioxidant status in stomach cancer. Cancer Invest. 2006, 24(1): 18-21.
    72. Matthews GM, Howarth GS, Butler RN. Nutrient and antioxidant modulation of apoptosis in gastric and colon cancer cells. Cancer Biol Ther. 2006, 5(6): 569-572.
    73. Lu M, Bi CS, Gong XG, Chen HM, Sheng XH, et al. Anti-proliferative effects of recombinant iron superoxide dismutase on HepG2 cells via a redox dependent PI3k/Akt pathway. Appl Microbiol Biotechnol. 2007, 76(1): 193-201.
    74. Lahouel M, Amedah S, Zellagui A, Touil A, Rhouati S et al. The interaction of new plant flavonoids with rat liver mitochondria: relation between the anti and pro-oxydant effect and flavonoids concentration. Therapie. 2007, 61(4): 347-355.
    75. Matsuo M, Sasaki N, Saga K, Kaneko T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull. 2006, 28(2): 253-259.
    76. Shen D, Dalton TP, Nebert DW, Shertzer HG.. Glutathione redox state regulates mitochondrial reactive oxygen production. J Biol Chem. 2005, 280(27): 25305-25312.
    77. Nakai M, Kageyama N, Nakahara K, Miki W. Phlorotannins as radical scavengers from the extract of Sargassum ringgoldianum. Mar Biotechnol (NY). 2006, 8(4): 409-414.
    78. Weinreb O, Amit T, Youdim MB. A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidant iron chelator green tea polyphenol epigallocatechin-3-gallate. Free Radic Biol Med. 2007, 43(4): 546-556.
    79. Modnicki D, Tokar M, Klimek B. Flavonoids and phenolic acids of Nepeta cataria L. var. citriodora (Becker) Balb. (Lamiaceae). Acta Pol Pharm. 2007, 64(3): 247-252.
    80. Rho KA, Kim MK. Effects of different grape formulations on antioxidative capacity, lipid peroxidation and oxidative DNA damage in aged rats. J Nutr Sci Vitaminol (Tokyo). 2006, 52(1): 33-46.
    81. Stangl V, Lorenz M, Ludwig A, Grimbo N, Guether C, et al. The flavonoid phloretinsuppresses stimulated expression of endothelial adhesion molecules and reduces activation of human platelets. J Nutr. 2005, 135(2): 172-178.
    82. Kim DH, Cho KH, Moon SK, Kim YS, Kim DH, et al. Cytoprotective mechanism of baicalin against endothelial cell damage by peroxynitrite. J Pharm Pharmacol. 2005, 57(12): 1581-1590.
    83. Labieniec M, Gabryelak T. Antioxidative and oxidative changes in the digestive gland cells of freshwater mussels Unio tumidus caused by selected phenolic compounds in the presence of H(2)O(2) or Cu(2+) ions. Toxicol In Vitro. 2007, 21(1): 146-156.
    84. Weisel T, Baum M, Eisenbrand G, Dietrich H, Will F, et al. An anthocyanin/polyphenolic rich fruit juice reduces oxidative DNA damage and increases glutathione level in healthy probands. Biotechnol J. 2006, 1(4): 388-397.
    85. Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci. 2006, 78(18): 2073-2080.
    86. Stangl V, Lorenz M, Stangl K. The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res. 2006, 50(2): 218-228.
    87. Ramos S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J Nutr Biochem. 2007, 18(7): 427-442.
    88. Maiti A, Cuendet M, Croy VL, Endringer DC, Pezzuto JM, et al. Synthesis and biological evaluation of (+/-) abyssinone II and its analogues as aromatase inhibitors for chemoprevention of breast cancer. J Med Chem. 2007, 50(12): 2799-2806.
    89. Kanazawa K, Uehara M, Yanagitani H, Hashimoto T. Bioavailable flavonoids to suppress the formation of 8-OHdG in HepG2 cells. Arch Biochem Biophys. 2006, 455(2): 197-203.
    90. Tokalov SV, Kind B, Wollenweber E, Gutzeit HO. Biological effects of epicuticular flavonoids from Primula denticulata on human leukemia cells. J Agric Food Chem. 2004, 52(2): 239-245.
    91. Dong M, He X, Liu RH. Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities. J Agric Food Chem. 2007, 55(15): 6044-6051.
    92. Souza JG, Tomei RR, Kanashiro A, Kabeya LM, Azzolini AE, et al. Ethanolic crude extract and flavonoids isolated from Alternanthera maritima: neutrophil chemilumi-nescence inhibition and free radical scavenging activity. Z Naturforsch. 2007, 62(5-6): 339-347.
    93. Scheidt HA, Pampel A, Nissler L, Gebhardt R, Huster D. Investigation of the membrane localization and distribution of flavonoids by high resolution magic angle spinning NMR spectroscopy. Biochim Biophys Acta. 2004, 1663(1-2): 97-107.
    94. Lee YY, Boerboom AM, Westphal AH, Berkel WJ, Aarts JM, et al. Pro-oxidant activity of flavonoids induces EpRE-mediated gene expression. Chem Res Toxicol. 2006, 19(11): 1499-1505.
    95. Kachadourian R, Leitner HM, Day BJ. Selected flavonoids potentiate the toxicity of cisplatin in human lung adenocarcinoma cells: a role for glutathione depletion. Int J Oncol. 2007, 31(1): 161-168.
    96. Lahouel M, Amedah S, Zellagui A, Touil A, Rhouati S, et al. The interaction of new plant flavonoids with rat liver mitochondria: relation between the anti and pro-oxydant effect and flavonoids concentration. Therapie. 2006, 61(4): 347-355.
    97. Bestwick CS, Milne L, Pirie L, et al. The effect of short-term kaempferol exposure on reactive oxygen levels and integrity of human (HL-60) leukaemic cells. Biochim Biophys Acta. 2005, 1740(3): 340-349.
    98. Robaszkiewicz A, Balcerczyk A, Bartosz G. Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol Int. 2007, 31(10): 1245-1250.
    99. Pan H, Lai S, Hsu C, et al. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. J Agric Food Chem. 2005, 53(3): 620-630.
    100. Atsumi T, Fujisawa S, Tonosaki K. Relationship between intracellular ROS production and membrane mobility in curcumin and tetrahydrocurcumin treated human gingival fibroblasts and human submandibular gland carcinoma cells. Oral Dis, 2005, 11(4): 236-242.
    101. Aronovitch Y, Godinger D, Israeli A, Krishna MC, Samuni A, et al. Dual activity of nitroxides as pro- and antioxidants: catalysis of copper mediated DNA breakage and H2O2 dismutation. Free Radic Biol Med. 2007, 42(9): 1317-1325.
    102. Rosa RM, Hoch NC, Furtado GV, Saffi J, Henriques JA. DNA damage in tissues and organs of mice treated with diphenyl diselenide. Mutat Res. 2007, 633(1): 35-45.
    103. Kanigur SG, Ozdas SB, Curgunlu A, Tezcan V, Onaran I. Does metformin prevent short term oxidant-induced DNA damage? In vitro study on lymphocytes from aged subjects. J Basic Clin Physiol Pharmacol. 2007, 18(2): 129-140.
    104. Ramoutar RR, Brumaghim JL. Effects of inorganic selenium compounds on oxidative DNA damage. J Inorg Biochem. 2007, 101(7): 1028-1035.
    105. Sandur SK, Ichikawa H, Pandey MK, Kunnumakkara AB, Sung B, et al. Role of pro oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic Biol Med. 2007, 43(4): 568-580.
    106. Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, et al. Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down regulation. J Pharmacol Exp Ther. 2006, 319(3): 1062-1069.
    107. Antherieu S, Ledirac N, Luzy AP, Lenormand P, Caron JC, et al. Endosulfan decreases cell growth and apoptosis in human HaCaT keratinocytes: partial ROS dependent ERK1/2 mechanism. J Cell Physiol. 2007, 213(1): 177-186.
    108. D'Autreaux B, Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007, 8(10): 813-824.
    109. Sandur SK, Pandey MK, Sung B, Ahn KS, et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocur and cuminturmerones differentialy regulate anti inflammatory and anti-proliferative responses through a ROS independent mechanism. Carcinogenesis. 2007, 28(8): 1765-1773.
    110. Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z. The role of hydrogen peroxide in regulation of plant metabolism and cellular signaling in response to environmental stresses. Acta Biochim Pol. 2007, 54(1): 39-50.
    111. Prasanna SJ, Saha B, Nandi D. Involvement of oxidative and nitrosative stress in modulation of gene expression and functional responses by IFNgamma. Int Immunol. 2007, 19(7): 867-879.
    112. Wang CC, Chen F, Kim E, Harrison LE. Thermal sensitization through ROS modulation: a strategy to improve the efficacy of hyperthermic intraperitoneal chemotherapy. Surgery. 2007, 142(3): 384-392.
    113. Dumitru CA, Zhang Y, Li X, Gulbins E. Ceramide: a novel player in reactive oxygenspecies induced signaling? Antioxid Redox Signal. 2007, 9(9): 1535-1540.
    114. Zhang X, Li L, Prabhakaran K, Zhang L, Leavesley HB, et al. Uncoupling protein-2 up regulation and enhanced cyanide toxicity are mediated by PPAR-alpha activation and oxidative stress. Toxicol Appl Pharmacol. 2007, 223(1): 10-9.
    115. Binienda ZK, Ali SF, Virmani A, Amato A, Salem N. Co-regulation of dopamine D1 receptor and uncoupling protein-2 expression in 3 nitropropionic acid induced neurotoxicity: neuroprotective role of L carnitine. Neurosci Lett. 2006, 410(1): 62-65.
    116. Fang J, Nakamura H, Iyer AK. Tumor-targeted induction of oxystress for cancer therapy. J Drug Target. 2007, 15(7-8): 475-486.
    117. Sharma A, Rajappa M, Saxena A. Antioxidant status in advanced cervical cancer patients undergoing neoadjuvant chemoradiation. Br J Biomed Sci. 2007, 64(1): 23-27.
    118. Batcioglu K, Mehmet N, Ozturk IC, Yilmaz M, Aydogdu N, et al. Lipid peroxidation and antioxidant status in stomach cancer. Cancer Invest. 2006, 24(1): 18-21.
    119. Subir K, Chowdhury, Adam G, et al. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate dependent ROS production in prostate cancer cell lines. Biochem Biophys Res. 2005, 333(4): 1139-1145.
    120. Haga N, Fujita N, Tsuruo T. Involvement of mitochondrial aggregation in arsenic trioxide (As2O3)-induced apoptosis in human glioblastoma cells. Cancer Sci. 2005, 96(11): 825-833.
    121. Moll SJ, Jones CJ, Crocker IP, Baker PN. Epidermal growth factor rescues trophoblast apoptosis induced by reactive oxygen species. Apoptosis. 2007, 12(9): 1611 -1622.
    122. Gao F, Yi J, Yuan JQ. The cell cycle related apoptotic susceptibility to arsenic trioxide is associated with the level of reactive oxygen species. Cell Res. 2004, 14(1): 81-85.
    123. Kashiwagi K, Shinkai T, Kajii E, Kashiwagi A. The effects of reactive oxygen species on amphibian aging. Comp Biochem Physiol C Toxicol Pharmacol. 2005, 140(2): 197-205.
    124. Giniatullin AR, Grishin SN, Sharifullina ER, Petrov AM, Zefirov AL, et al. Reactive oxygen species contribute to the presynaptic action of extracellular ATP at the frog neuromuscular junction. J Physiol. 2005, 565(1): 229-242.
    125. Moulin M, Carpentier S, Levade T, Arrigo AP. Potential roles of membrane fluidity and ceramide in hyperthermia and alcohol stimulation of TRAIL apoptosis. Apoptosis.2007, 12(9): 1703-1720.
    126. Martinez MC, Larbret F, Zobairi F, Coulombe J, Debili N, et al. Transfer of differentiation signal by membrane microvesicles harboring hedgehog morphogens. Blood. 2006, 108(9): 3012-3020.
    127. Moore RM, Mansour JM, Redline RW, Mercer BM, Moore JJ. The physiology of fetal membrane rupture: insight gained from the determination of physical properties. Placenta. 2006, 27(11-12): 1037-1051.
    128. Lee SM, Kleiboeker SB. Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology. 2007, 365(2): 419-434.
    129. Domingo GE, Esteban M. Role of mitochondria in apoptosis induced by the 2-5A system and mechanisms involved. Apoptosis. 2006, 11(5): 725-738.
    130. Huang HF, Chen YZ. ZnPcS2P2-based photodynamic therapy induces mitochondria dependent apoptosis in K562 cells. Acta Biochim Biophys Sin. 2005, 37(7): 488-494.
    131. Panee J, Stoytcheva ZR, Liu W, Berry MJ. Selenoprotein H is a redox-sensing high mobility group family DNA-binding protein that up-regulates genes involved in glutathione synthesis and phase II detoxification. J Biol Chem. 2007, 282(33): 23759-65.
    132. Kang ES, Woo IS, Kim HJ, Eun SY, Paek KS, et al. Up-regulation of aldose reductase expression mediated by phosphatidylinositol 3-kinase/Akt and Nrf2 is involved in the protective effect of curcumin against oxidative damage. Free Radic Biol Med. 2007, 43(4): 535-545.
    133. Lin CW, Yang LY, Shen SC, Chen YC. IGF-I plus E2 induces proliferation via activation of ROS dependent ERKs and JNKs in human breast carcinoma cells. J Cell Physiol. 2007, 212(3): 666-674.
    134. Park J, Ha H, Kim MS, Ahn HJ, Huh KH, et al. Carvedilol inhibits platelet derived growth factor-induced extracellular matrix synthesis by inhibiting cellular reactive oxygen species and mitogen activated protein kinase activation. J Heart Lung Transplant. 2006, 25(6): 683-689.
    135. Fiaschi T, Buricchi F, Cozzi G, Matthias S, Parri M, et al. Redox-dependent and ligand independent trans-activation of insulin receptor by globular adiponectin. Hepatology. 2007, 46(1): 130-139.
    136. Taddei ML, Chiarugi P, Cuevas C, Ramponi G, Raugei G. Oxidation and inactivation of low molecular weight protein tyrosine phosphatase by the anticancer drug Aplidin. Int J Cancer. 2006, 118(8): 2082-2088.
    137. Bragado P, Armesilla A, Silva A, Porras A. Apoptosis by cisplatin requires p53 mediated p38alpha MAPK activation through ROS generation. Apoptosis. 2007, 12(9): 1733-1742.
    138. Goel A, Prasad AK, Parmar VS, Ghosh B, Saini N. 7,8-Dihydroxy 4-methylcoumarin induces apoptosis of human lung adenocarcinoma cells by ROS independent mitochondrial pathway through partial inhibition of ERK/MAPK signaling. FEBS Lett. 2007, 581(13): 2447-2454.
    139. Li SY, Sigmon VK, Babcock SA, Ren J. Advanced glycation endproduct induces ROS accumulation, apoptosis, MAPkinase activation and nuclear O-GlcNAcylation in human cardiac myocytes. Life Sci. 2007, 80(11): 1051-1056.
    140. Van LA, Nys K, Van Kelst S, et al. Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK induced mitochondrial apoptosis in UVBirradiated human keratinocytes. Free Radic Biol Med. 2006, 41(9): 1361-1371.
    141. Gutierrez VG, Jimenez EM, Maldonado S. The effect of flavonoids on transduction mechanisms in lipopolysaccharide-treated human gingival fibroblasts. Int Immunophar macol. 2007, 7(9): 1199-1210.
    142. Huang SM, Wu CH. Effects of flavonoids on the expression of the pro-inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Mol Nutr Food Res. 2006, 50(12): 1129-1139.
    143. Gopalakrishnan A, Xu CJ, Nair SS, Chen C, Hebbar V, et al. Modulation of activator protein-1 (AP-1) and MAPK pathway by flavonoids in human prostate cancer PC3 cells. Arch Pharm Res. 2006, 29(8): 633-44.
    144. Rao YK, Fang SH; Tzeng YM. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-alpha and IL-12 in activated macrophages. Biol Pharm Bull. 2005, 28(5): 912-915.
    145. Virgili F, Acconcia F, Ambra R, Rinna A, Totta P, et al. Nutritional flavonoids modulate estrogen receptor alpha signaling. IUBMB Life. 2004, 56(3): 145-151.
    146. Han J, Sun M, Cui Y, Wang T, Zhang W, et al. Kushen flavonoids induce apoptosis intumor cells by inhibition of NF-kappaB activation and multiple receptor tyrosine kinase activities. Phytother Res. 2007, 21(3): 262-268.
    147. Ruiz PA, Haller D. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr. 2006, 136(3): 664-671.
    1. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 2007, 137(5): 1244-1252.
    2. Song W, Chun K, Chung S. Tea Consumption is a determinant of flavonoid intake among US adults. J Am Diet Assoc 2006, 106(8): A80-83.
    3. Johannot L, Somerset SM. Age related variations in flavonoid intake and sources in the Australian population. Public Health Nutr. 2006, 9(8): 1045-1054.
    4. Hu J, Huang Y, Xiong M, Luo S, Chen Y, Li Y. The effects of natural flavonoids on lipoxygenase mediated oxidation of compounds with a benzene ring structure: a new possible mechanism of flavonoid anti-chemical carcinogenesis and other toxicities. Int J Toxicol. 2006, 25(4): 295-301.
    5. Moon YJ, Wang X, Morris ME. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol In Vitro. 2006, 20(2): 187-210.
    6. Tsuji PA, Walle T. Inhibition of benzo[a]pyrene-activating enzymes and DNA binding in human bronchial epithelial BEAS 2B cells by methoxylated flavonoids. Carcinogenesis. 2006 27(8): 1579-1585.
    7. Michels G, Watjen W, Niering P, et al. Pro-apoptotic effects of the flavonoid luteolin in rat H4IIE cells. Toxicology. 2005, 206(3): 337-348.
    8. Chen C, Shen C, Chow M, et al. Flavone inhibition of tumor growth via apoptosis in vitro and in vivo. Int J Oncol. 2004, 25(3): 661-670.
    9. Pan H, Lai S, Hsu C, et al. Acacetin induces apoptosis in human gastric carcinoma cells accompanied by activation of caspase cascades and production of reactive oxygen species. J Agric Food Chem. 2005, 53(3): 620-630.
    10. Bestwick C S, Milne L, Pirie L, et al. The effect of short-term kaempferol exposure on reactive oxygen levels and integrity of human (HL-60) leukaemic cells. Biochim Biophys Acta. 2005, 1740(3): 340-349.
    11. Subir K, Chowdhury, Adam G, et al. High activity of mitochondrial glycerophosphate dehydrogenase and glycerophosphate dependent ROS production in prostate cancer cell lines. Biochem Biophys Res. 2005, 333(4): 1139-1145.
    12. Erlejman G, Verstraeten V, Fraga G, et al. The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free Radic Res. 2004, 38(12): 1311-1320.
    13. Oteiza I, Erlejman G, Verstraeten V, et al. Flavonoid membrane interactions: a protective role of flavonoids at the membrane surface. Clin Dev Immunol. 2005, 12(1): 19-25.
    14. Montero M, Lobaton D, Hernandez E, et al. Direct activation of the mitochondrial calcium uniporter by natural plant flavonoids. Biochem J. 2004, 384(1): 19-24.
    15. Dorta J, Pigoso A, Mingatto E, et al. The interaction of flavonoids with mitochondria: effects on energetic processes. Chem Biol Interact. 2005, 152(2-3): 67-78.
    16. Chen D, Kenyon G, Daniel G, et al.Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol. 2005, 69(10): 1421- 1432.
    17. Michael D, Shiva P. Trapping of growth factors by catechins: a possible therapeutical target for prevention of proliferative diseases. J Nutr Biochem. 2005, 16(5): 259-266.
    18. Weldon B, McKee A, CollinsBurow M, et al. PKC mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling. Int J Oncol. 2005, 26(3): 763-768.
    19.Martinez S, Gutierrez B, Sanchez S, et al. Quercetin attenuates nuclear factor-kappaB activation and nitric oxide production in interleukin-1beta activated rat hepatocytes. J Nutr. 2005, 135(6): 1359-1365.
    20. Kang Y, Kim H, Cho D, et al. Inhibition of interleukin-12 production in mouse macrophages via decreased nuclear factor-kappaB DNA binding activity by myricetin, a naturally occurring flavonoid. Arch Pharm Res. 2005, 28(3): 274-279.
    21. Nishimura T, Wang Y, Kusano K, et al. Flavonoids that mimic human ligands from the whole plants of Euphorbia lunulata. Chem Pharm Bull (Tokyo). 2005, 53(3): 305-308.
    22. Virgili F, Acconcia F, Ambra R, et al. Nutritional flavonoids modulate estrogen receptor alpha signaling. IUBMB Life. 2004, 56(3): 145-151.
    23. Herzog A, Kindermann B, Doring F, et al. Pleiotropic molecular effects of the pro- apoptotic dietary constituent flavone in human colon cancer cells identified by protein and mRNA expression profiling. Proteomics. 2004, 4(8): 2455-2464.
    24. Kawabata K, Murakami A, Ohigashi H. Nobiletin, a citrus flavonoid, down-regulates matrix metalloproteinase 7-(matrilysin) expression in HT-29 human colorectal cancer cells. Biosci Biotechnol Biochem. 2005, 69(2): 307-314.
    25. Zhao SZ, Yao XN, Robert C, et al. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol. 2005, 70(4): 627-639.
    1. Kühnau J. The flavonoids, a class of semi essential food components: their role in human nutrition. World Rev Nutr Diet. 1976, 24(4): 117-120.
    2. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr. 2003, 130(8): 2073–2085.
    3. Sampson L, Rimm E, Hollman PC, Vries JH, Katan MB. Flavonol and flavone intakes in US health professionals. J Am Diet Assoc. 2002, 102(10): 1414-1420.
    4. Hertog D. Kromhout C. Aravanis et al. Flavonoid intake and long term risk of coronary heart disease and cancer in the Seven Countries Study. Arch Intern Med. 1995, 155(2): 381-385.
    5. DeVries K, Janssen PC, Hollman WA. Consumption of quercetin and kaempferol in free living subjects eating a variety of diets. Cancer Lett. 1997, 114(8): 141-144.
    6. Arai Y, Watanabe S, Kimira M, Shimoi K. Dietary intakes of flavonoids, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2004, 130(6): 2243–2250.
    7. Hertog MG., Hollman PC, Katan MB. Estimation of daily intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer. 2006, 20(9): 21–29.
    8. Commenges D, Scotet V, Renaud S, Jacqmin GH. Intake of flavonoids and risk of dementia. Eur J Epidemiol. 2006, 16(6): 357–363.
    9. Garcia CR, Gonzalez CA, Agudo A. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes Control. 2006, 10(3): 71–75.
    10. Hertog M, Hollman PC, Katan MB. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands. Nutr Cancer. 1993, 20(8): 21-25.
    11. Justesen U, Knuthsen P, Leth T. Determination of plant polyphenols in Danish foodstuffs by HPLC-UV and LC-MS detection. Cancer Lett. 1997, 114(5): 165-169.
    12. Rimm MB, Katan A. Relation between intake of flavonoids and risk for coronary heart disease in male health professionals. Ann Intern Med. 1996, 12(7): 384-387.
    13. Trichopoulou A, Vasilpoulou E, Hollman P, et al. Nutritional composition and flavonoid content of edible wild greens and green pies: a potential rich source of antioxidant nutrients in the Mediterranean diet. Food Chem. 2000, 70(5): 319-322.
    14. S. Karakaya S, Nehir E. Quercetin, luteolin, apigenin and kaempferol contents of some foods. Food Chem. 1999, 66(4): 289-291.
    15. Pietta P, Simonetti P, Roggi C, et al. Dietary flavonoids and oxidative stress: natural antioxidants and food quality in atherosclerosis and cancer prevention, Royal Society of Chemistry. 1996(5): 249-252.
    16. Song W, Chun K, Chung S. Tea Consumption is a determinant of flavonoid intake among US adults. J Am Diet Assoc 2006, 106(8): A80-83.
    17. Hollman PC, deVries JH, vanLeewen SD. Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am J Clin Nutr. 1995, 62(5): 1276-1279
    18. Walle T, Otake Y, Walle UK. Quercetin glucosides are completely hydrolyzed in ileostomy patients before absorption. J Nutr. 2000, 130(2): 2658-2661.
    19. Wen X, Walle T. Methylated flavonoids have greatly improved intestinal absorption and metabolic stability. Drug Metab Dispos. 2006, 34(10): 1786-1792.
    20. Nemeth K, Piskula MK. Food content, processing, absorption and metabolism of onion flavonoids. Crit Rev Food Sci Nutr. 2007, 47(4): 397-409.
    21. Buisson D, Quintin J, Lewin G. Biotransformation of polymethoxylated flavonoids: access to their 4'-O-demethylated metabolites. J Nat Prod. 2007, 70(6): 1035-1038.
    22. Niculescu MD, Pop EA, Fischer LM, Zeisel SH. Dietary isoflavones differentially induce gene expression changes in lymphocytes from postmenopausal women who form equol as compared with those who do not. J Nutr Biochem. 2007, 18(6): 380-390.
    23. Ritchie MR, Cummings JH, Morton MS, Michael SC. A newly constructed and validated isoflavone database for the assessment of total genistein and daidzein intake. Br J Nutr. 2006, 95(1): 204-213.
    24. Kannan R, Zhang N, Sreekumar PG, Spee CK, Rodriguez A, et al. Stimulation of apical and basolateral VEGF-A and VEGF-C secretion by oxidative stress in polarized retinal pigment epithelial cells. Mol Vis. 2006, 12(3): 1649-1659.
    25. Gonzalez FR, Deudero JJ, Castellanos MC, Castilla MA, et al. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol. 2006, 291(3): H1395-1401.
    26. Song F, Jia W, Yao Y, Hu Y, Sun X, Liu L. Oxidative stress, antioxidant status and DNA damage in patients with impaired glucose regulation and newly diagnosed Type-2 diabetes. Clin Sci (Lond). 2007, 112(12): 599-606.
    27. Sharma V, Mishra M, Ghosh S, Tewari R, Basu A. Modulation of interleukin-1beta mediated inflammatory response in human astrocytes by flavonoids: implications in neuroprotection. Brain Res Bull. 2007, 73(1-3): 55-63.
    28. Sarwar AM, Kaur G, Jabbar Z, Javed K, Athar M. Eruca sativa seeds possess antioxidant activity and exert a protective effect on mercuric chloride induced renal toxicity. Food Chem Toxicol. 2007, 45(6): 910-920.
    29. Kostyuk VA, Potapovich AI, Kostyuk TV, Cherian MG. Metal complexes of dietary flavonoids: evaluation of radical scavenger properties and protective activity against oxidative stress in vivo. Cell Mol Biol (Noisy-le-grand). 2007, 53(1): 62-69.
    30. Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets. 2007, 7(2): 135-144.
    31. Ruiz PA, Braune A, Holzlwimmer G, Quintanilla FL, Haller D. Quercetin inhibits TNF induced NF-kappaB transcription factor recruitment to proinflammatory gene promoters in murine intestinal epithelial cells. J Nutr. 2007, 137(5): 1208-1215
    32. Martinez FS, Gutierrez FB, Sanchez CS, Gonzalez GJ, Tunon MJ. Quercetin attenuates nuclear factor-kappaB activation and nitric oxide production in interleukin-1beta activated rat hepatocytes. J Nutr. 2005, 135(6): 1359-1365.
    33. Kumazawa Y, Kawaguchi K, Takimoto H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Curr Pharm Des. 2006, 12(32): 4271-4279.
    34. Chen D, Chen MS, Cui QC. Structure-proteasome-inhibitory activity relationships of dietary flavonoids in human cancer cells. Front Biosci. 2007,12: 1935-1945.
    35. Daniel KG, Landis PR, Chen D, Wan SB, Chan TH. Methylation of green tea polyphenols affects their binding to and inhibitory poses of the proteasome beta5 subunit. Int J Mol Med. 2006, 18(4): 625-632.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700