地塞米松拮抗声损伤及庆大霉素耳毒性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噪声性聋及药物性聋是常见的感音神经性聋,严重影响人们的生活质量。长期以来,对声损伤和庆大霉素耳毒性的防治一直是广大耳科工作者致力研究的课题。地塞米松作为合成的糖皮质激素,具有多种生理功能。已有研究发现,地塞米松能减小噪声及氨基甙类药物的耳毒性,但对这一现象机制的研究少有报道。
     地塞米松作为糖皮质激素,通过基因组途径及非基因组途径发挥作用。在基因组途径中,地塞米松通过与位于胞浆的糖皮质激素受体(Glucocorticoidreceptor,GR)结合,进而影响某些基因的转录与表达,因此了解GR在耳蜗的的分布很有必要。既往的研究应用酶联免疫吸附试验(ELISA)、原位杂交、免疫组织化学方法研究糖皮质激素在内耳的分布,而应用直观的免疫荧光技术分析GR在耳蜗的分布及声损伤对GR表达的影响还未见报道。
     Notch信号系统几乎涉及所有细胞的增殖、分化活动,Hes1(hairy andenhancer of split 1)为Notch的基本效应因子。Hes1 mRNA表达水平增高提示Notch信号活化,导致CDK(Cyclin-dependent kinases,周期性蛋白依赖激酶)抑制物p21~(Wafl/ Cip)的聚集,而后者与细胞凋亡密切相关。噪声、地塞米松与hes1mRNA表达的关系可能是地塞米松拮抗声损伤的机制之一,对这一现象未见相关报道。
     地塞米松拮抗氨基甙类抗生素耳毒性的在体研究已有报道,离体实验避免了全身因素的干扰和影响,使研究途径更加便捷可靠。观察地塞米松是否拮抗庆大霉素对体外培养的Corti器的耳毒性,尚未见报道。
     抑制外毛细胞Ca~(2+)敏感的外向K~+电流可能是氨基甙类抗生素耳毒性的机制之一,地塞米松是否通过非基因组途径影响该电流,从而拮抗庆大霉素耳毒性,尚未见报道。
     因此,本研究的主要目的是探讨地塞米松对声损伤及庆大霉素耳毒性的影响及相关机制。以免疫荧光技术定位,荧光强度半定量分析为指标,探讨了糖皮质激素受体在豚鼠耳蜗的分布,声损伤后对其分布及各区域表达强度的影响。以听觉脑干诱发电位(ABR),耳蜗形态学为指标探讨地塞米松减轻耳蜗声损伤的作用;用RT-PCR及荧光实时定量PCR技术,探讨噪声及地塞米松对豚鼠耳蜗hes1mRNA表达水平的影响。以免疫荧光技术定位,耳蜗形态学毛细胞计数为指标,探讨地塞米松减轻庆大霉素对离体培养的耳蜗Corti器的毒性作用。以听觉脑干诱发电位(ABR)为指标探讨地塞米松减轻庆大霉素耳毒性的作用;应用全细胞膜片钳记录技术探讨庆大霉素耳毒性及地塞米松拮抗庆大霉素耳毒性的离子通道机制。
     第一部分地塞米松拮抗内耳声损伤的实验研究
     一、糖皮质激素受体在豚鼠耳蜗的分布及声损伤对其表达的影响
     目的:研究GR在豚鼠耳蜗的分布及声损伤对豚鼠耳蜗GR表达的影响。
     方法:豚鼠随机分为二组:实验组予噪声暴露,噪声为白噪声,强度115dBSPL,暴露时间3h。暴露结束后2h断头剥取耳蜗。正常对照组不做处理,与实验组同时剥取耳蜗。制备耳蜗冰冻切片,免疫荧光技术观察豚鼠耳蜗GR表达情况,并进行荧光强度半定量分析。
     结果:(1)豚鼠耳蜗GR主要的阳性部位在螺旋韧带、血管纹、骨螺旋唇、Corti器以及螺旋神经节。螺旋韧带、血管纹、骨螺旋唇以及螺旋神经节等区域GR荧光强度无明显统计学意义(P>0.05),而上述各区域与Corti器的GR荧光强度相比,差异有显著意义(P<0.05)。(2)声损伤后豚鼠耳蜗GR荧光强度在骨螺旋唇、corti器以及螺旋神经节较正常对照组无统计学意义(P>0.05),而螺旋韧带、血管纹区域荧光强度较正常对照组明显减低,有显著统计学意义(P<0.01)。
     结论:GR在豚鼠耳蜗分布于螺旋韧带、血管纹、corti器和螺旋神经节,其中螺旋韧带、血管纹区域表达最强,corti器区域表达最弱;声损伤降低耳蜗各区域GR的表达,以血管纹、螺旋韧带最显著。
     二、地塞米松拮抗耳蜗声损伤及对豚鼠耳蜗hes1表达水平的影响
     目的:探讨地塞米松拮抗声损伤及与耳蜗hes1 mRNA的表达的关系。
     方法:在预实验的基础上,豚鼠随机分为5组,空白对照组,NS ip qd+植物油im qd;噪声组(N),NS ip qd+植物油im qd+噪声暴露;地塞米松+噪声组(Dex+N),Dex ip qd+植物油im qd+噪声暴露;RU486+噪声组(RU+N),NS ip qd+RU486 im qd+噪声暴露;地塞米松+RU486+噪声组(Dex+RU+N),Dex ip qd+RU486 im qd+噪声暴露。其中地塞米松剂量1mg/kg,浓度0.5mg/ml;RU486剂量20mg/kg,浓度25mg/ml。药物作用时间均为5d。噪声暴露于白噪声3小时,强度115dB SPL。噪声暴露结束即刻处死。取下颞骨,冰盒中取出耳蜗,用荧光实时定量PCR(real-time-PCR)检测耳蜗组织hes1 mRNA的表达。同样分组条件下,在噪声暴露前、噪声暴露结束后24小时测定Click和短纯音(2、4、6、8kHz)ABR反应阈值,空白对照组在实验开始和结束各测定一次ABR。各组动物进行耳蜗NBT染色及基底膜铺片。
     结果:(1)白噪声115dB SPL,暴露3h,促进豚鼠hes1 mRNA表达增加约3倍;地塞米松预处理5d,可以使hes1 mRNA表达水平接近于对照组。Dex-RU486-noise组hes1 mRNA表达水平接近于noise组,说明RU486基本上阻断了地塞米松下调豚鼠耳蜗hes1 mRNA表达水平的作用。(2)各组ABR平均阈移:空白对照组阈移为0.5~1.40dB;噪声组click阈移为29.56dB,短纯音(2、4、6、8kHz)阈移为32.75~34.78dB;地塞米松+噪声组click阈移为11.46dB,短纯音(2、4、6、8kHz)阈移为12.75~15.85dB;RU486+噪声组click阈移为26.93dB,短纯音(2、4、6、8kHz)阈移为30.15~33.26dB;地塞米松+RU486+噪声组click平均阈移为27.38dB,短纯音2、4、6、8kHz阈移为30.26~33.52dB。噪声组、地塞米松+RU486+噪声组分别与地塞米松+噪声组相比,全频的ABR阈移均有显著性差异(p<0.05)。(3)耳蜗基底膜NBT染色显示噪声组底回损伤较重,地塞米松+噪声组损伤轻微。
     结论:地塞米松对耳蜗声损伤具有拮抗作用;下调耳蜗hes1 mRNA的表达水平,减少细胞凋亡,可能是地塞米松对声损伤发挥保护作用的机制之一。
     第二部分地塞米松拮抗庆大霉素耳毒性的实验研究
     一、地塞米松拮抗庆大霉素耳毒性作用的离体实验研究
     目的:采用Corti器体外培养的方法,观察地塞米松是否对庆大霉素的耳蜗毒性具有拮抗作用。
     方法:成功建立耳蜗Corti器体外培养系统后,选取出生3d的SD大鼠,随机分为3组,正常对照(Control)组,进行Corti器体外培养,72h后中止培养;庆大霉素(GM)组,培养48h后加入庆大霉素液(浓度0.5mmol/L),作用24h后中止培养;地塞米松+庆大霉素(Dex+GM)组,培养24h后加入地塞米松溶液(浓度100ng/mL),培养48h后加入庆大霉素液(浓度0.5mmol/L),培养72h后中止培养。各组中止培养后,Rhodamine-phalloidin染色,免疫荧光技术观察Corti器毛细胞生长状况。
     结果:正常对照(Control)组毛细胞无明显缺失;庆大霉素(GM)组外毛细胞有明显缺失,而内毛细胞基本无明显改变,三排外毛细胞中以内两排损害较重;地塞米松+庆大霉素(Dex+GM)组可见外毛细胞的缺失程度明显减轻,内毛细胞基本无明显改变。
     结论:地塞米松预处理对离体耳蜗Corti器的庆大霉素耳毒性具有拮抗作用。
     二、地塞米松拮抗庆大霉素耳毒性作用的电生理学研究
     目的:探讨地塞米松拮抗庆大霉素耳毒性的离子通道机制。
     方法:(1)豚鼠随机分为6组,生理盐水(control)组,生理盐水0.5ml,ip;庆大霉素(GM)组,庆大霉素80mg/kg,im;地塞米松低浓度(Dex-1)组,地塞米松0.2mg/kg ip;地塞米松高浓度(Dex-h)组,地塞米松1mg/kg ip;地塞米松低浓度+庆大霉素(Dex-1+GM)组,地塞米松0.2mg/kg ip,庆大霉素80mg/kg,im;地塞米松高浓度+庆大霉素(Dex-h+GM)组,地塞米松1mg/kg ip,庆大霉素80mg/kg,im。给药前及给药结束后,测定ABR反应阈,计算ABR阈移。(2)全细胞膜片钳技术记录单离外毛细胞钙敏感外向钾电流。分别观察0.1、1、10、100、1000umol/L庆大霉素对钙敏感外向钾电流的影响;全细胞膜片钳技术记录单离外毛细胞钙敏感外向钾电流。分别观察0.1、1、10、100、1000umol/L地塞米松对钙敏感外向钾电流的影响。
     结果:(1)生理盐水(control)组、Dex-1组和Dex-h的ABR平均阈移很小,为1.0~1.6dB;GM组click平均阈移为10.6dB,短纯音在5.0~21.0dB之间,并以6kHz及8kHz的阈移最为明显;Dex-1+GM组Dex-h+GM组click平均阈移为5.8~7.2dB,短纯音在2.5~5.2dB之间,与GM组相比有显著性差异(p<0.05)。(2)庆大霉素以浓度依赖性方式抑制外毛细胞Ca~(2+)敏感的外向K~+电流;地塞米松以浓度依赖方式增大外毛细胞Ca~(2+)敏感的外向K~+电流。
     结论:地塞米松能够显著降低庆大霉素对豚鼠的耳毒性,并且对豚鼠听功能没有明显影响;庆大霉素抑制外毛细胞Ca~(2+)敏感的外向K~+电流,可能是急性耳中毒的机制之一;地塞米松拮抗庆大霉素耳毒性的作用可能是通过激活外毛细胞Ca~(2+)敏感的外向K~+通道的非基因组效应实现的。
Noise and drugs induced heating loss as neurosensory deafness influence our quality of life severely.It is a long-term topic for many otologists to devote themrselves to investigate the prevention and cure of acoustic trauma and ototoxicity of gentamicin.Dexamethasone,as a synthetical glucocorticoid,has lots of physiological functions.It is reported that dexamethasone attenuates ototoxicity of noise and aminoglycosides drugs,however,its mechanisms are known little.
     Dexamethasone,as a kind of glucocorticoid,produces a marked effect through binding with glucocorticoid receptors located in the kytoplasm.It is essential to comprehend the distribution of glucocorticoid receptor(GR) in cochlea.Investigative methods including ELISA,in-situ hybridization,immunohistochernistry in previous studies.Few literatures can be fiound on the distribution of GR in cochlea and effects due to the acoustic trauma.
     Notch signaling is involved in proliferation differentiation of almost all cells.Hes1(hairy and enhancer of split 1) is its effective agent.The elevation of Hes1 mRNA level suggests the activation of Notch signaling,leading to gathering of CDKI p21~(Wafl/Cip),which is closely related to the cell apoptosis.The relationship among the acoustic trauma,dexamethasone and Hes1 mRNA level can be one of mechanisms of dexamethasone antagonizing the acoustic trauma.However,little is known about it.
     It is reported dexamethasone antagonizes AmAn ototoxicity in vivo.Experiments in vitro avoid the systemic interferences,which make the investigative route more convenient and reliable.However,few literatures can be found on whether dexamethasone antagonizes ototoxicity of gentamicin in vitro.
     One of possible mechanisms for AmAn ototoxicity is the inhibition of calcium-sensitive outward potassium current of the outer hair cells.Few literatures can be found on whether the ion channel mechanism is involved in dexamethasone antagoning ototoxicity of gentamicin.
     The present study is designsd to explore the effects of dexamethasone on the acoustic trauma and the ototoxicity of gentamicin,and the possible underlying mechanisms.Immunofluorescent technique fixing,and fluorescence intensity semiquantitative analysis are detected for studying the distribution of GR in cochlea of guinea pig and the effects due to the acoustic trauma.Auditory brainstem response(ABR) and changes in cochlear morphology are detected for studying the effect of dexamethasone attenuate the acoustic trauma in cochlea.RT-PCR and real time PCR technique are used to discuss the effects of the acoustic trauma and dexamethasone on hes1 mRNA level in cochlea of guinea pig.Immunofluorescent technique fixing and changes in cochlear morphology are detected for studying the effect of dexamethasone attenuates the ototoxicity of gentamicin in vitro.Auditory brainstem response(ABR) is detected for studying the effect of dexamethasone attenuating the ototoxicity of gentamicin in vivo.The Whole cell patch clamp technique is utilized to investigate ion channel mechanism of ototoxicity of gentamicin and dexamethasone antagoning it.
     PartⅠThe Experimental Investigation on Dexamethasone Antagonizes the Acoustic Trauma
     1.The distribution of GR in cochlea of guinea pig and effects due to the acoustic trauma.
     Purpose To explore the distribution of GR in cochlea of guinea pig and effects due to the acoustic trauma.
     Methods White guinea pigs are randomly divided into 2 groups:experimental group and control group.Noise exposure(white noise,115dB SPL,3h) is exerted in experimental group.Decapitation and cochlear separation are done after 2h from the noise exposure termination.Empty treatments are done in the control group. Then,frozen sections are prepare.Immunofluorescent technique fixing,and fluorescence intensity semiquantitative analysis are detected for studying the distribution of GR in cochlea of guinea pig and the effects due to the acoustic trauma.
     Results(1) The fundamental positive positions of GR are located in spiral ligament,stria vascularis,spiral limbus,organ of Corti and spiral ganglions.For fluorescence intensity of GR,there are no significant difference in spiral ligament, stria vascularis,spiral limbus iand spiral ganglions(P>0.05).Hower,there are significant difference between these positions and organ of Corti(P<0.05).(2) The fluorescence intensities of GR located in spiral limbus,organ of Corti and spiral ganglions are similar in noise exposure group and control group(P>0.05).The fluorescence intensities of GR in spiral ligament,stria vascularis are much lower in noise exposure group(P<0.01).
     Conclusion The distribution of GR in cochlea of guinea pig are located in spiral ligament,stria vascularis,spiral limbus,organ of Corti and spiral ganglions.The highest and least position are lateral wall and organ of Corti,respectively.Acoustic trauma can decrease GR expression in all positions of cochlea,particularly in spiral ligament and stria vascularis.
     2.Dexamethasone attenuates the acoustic trauma via down-regulating cochlear hes1 mRNA level
     Purpose To explore that dexamethasone attenuates the acoustic trauma and the relationship with hes1 mRNA level in cochlea.
     Methods Based on the preliminary experiment,guinea pigs are randomly divided into 5 groups:control group(NS ip qd,vegetable oil im qd),noise group(NS ip qd,vegetable oil im qd and noise exposure),dex+noise group(Dex ip qd,vegetable oil im qd and noise exposure),RU486+noise group(NS ip qd,RU486 im qd and noise exposure),dex+RU486+noise group(Dex ip qd,RU486 im qd and noise exposure). The dose and concentration of dexamethasone are 1mg/kg,0.5mg/ml,and that of RU486 are 20mg/kg,25mg/ml.All drugs are administered once a day for consecutive 5d.Animals are exposed to white noise(115dB SPL,3h).Immediately after the animals are sactificed,the cochlea are removed and made into tissue homogenate.The hes1 mRNA expression in cochlea is determined by quantitive realtime-PCR.Hearing thresholds of auditory brainstem responses(ABR_S) of experimental animals are measured before and 24h after noise exposure.For control group,ABR_s are measured in initiation and end of experiment.The NBT staining and basal membrane stretched preparation are practiced in all groups.
     Results(1) White noise(115dB SPL,3h) makes the cochlear hes1 mRNA level to 3 times compared with the control group.Dexamethasone pretreatment for 5d makes the cochlear hes1 mRNA level close to that of control group.The cochlear hes1 mRNA level of dex+RU486+noise group is similar with that of noise group,which suggest that RU486 almost blocks the effect that dexamethasone down-regulates cochlear hes1 mRNA level.(2) The mean threshold shifts of ABR of control group,noise group,dex+noise group,RU486+noise group and dex+RU486+noise group are 0.5 dB,29.56dB,11.46dB,26.93 dB,27.38dB after click and 0.5~1.40dB,32.75~34.78dB,12.75~15.85dB,30.15~33.26dB 30.26~33.52dB after short tone,respectively.There are significant differences for the mean threshold shifts of ABR in noise group,dex+RU486+noise group compared with those of dex+noise group(p<0.05).(3) The cochlear surface preparation showed that the damage in noise group is severe but very slight in dex+noise group.
     Conclusion Dexamethasone has a potential protective role against the acoustic trauma possibly by down-regulating cochlear hes1 mRNA level.
     PartⅡThe Experimental Investigation on Dexamethasone Antagonizes the Ototoxicity of Gentamicin
     1.Dexamethasone attenuates the gentamycin-induced ototoxicity in vitro
     Purpose To explore whether dexamethasone attenuates the gentamycin-induced ototoxicity in vitro.
     Methods Based on successful establishment of organ Corti's organ cultural system,the p3 SD rat are randomly divided into 3 groups:Control group,GM group and Dex+GM group.Corti's organs are cultured for 72h.Rhodamine-phalloidin staining and immunofluorescent technique are used for observing growing status of Corti's organs.
     Results No significant hair calls deletion is found in control group.Significant OHC deletion is found in GM group,while no obvious change in IHC.OHC deletion degree is better in Dex+GM group,while no obvious change in IHC.
     Conclusion Pretreatment of dexamethasone attenuates the gentamycin-induced ototoxicity in vitro.
     2.Electrophysiologic studies for flexamethasone attenuates the gentamycin-induced ototoxicity
     Purpose To explore ion channel mechanism of dexamethasone attenuates the gentamycin-induced ototoxicity.
     Methods(1)Guinea pigs are randomly divided into 6 groups:control group(NS 0.5ml,ip),GM group(GM 80mg/kg,im),Dex-1 group(Dex 0.2mg/kg ip),Dex-h group(Dex 1mg/kg ip),Dex-l+GM group(Dex 0.2mg/kg ip,GM 80mg/kg,im) and Dex-h+GM group(Dex 1mg/kg ip,GM 80mg/kg,im).Before and after all drugs are adminietersd,ABRs is measured,and the threshold shifts are calculated afterward.(2) The whole-cell patch clamp techniques are used to study the effects of gentamycin(0.1,1,10,100,1000umol/L) and dexamethasone(0.1,1,10,100, 1000umol/L) on calcium-sensitive outward potassium currents in the isolated outer hair cells of guinea pig cochlea.
     Results(1)The mean threshold shifts of ABR are 1.0-1.6dB in control group,Dex-l group and Dex-h group,10.6dB of click and 5.0-21.0dB of tone in GM group with the most prominent at 6,8KHz stimuli.For Dex-l+GM and Dex-h+GM groups,the mean threshold shifts are 5.8-7.2dB after click,2.5-5.2dB after short tone with the values of click and 6、8KHz significantly lower than those in GM group (p<0.05).(2) Gentamycin reduces calcium-sensitive outward potassium currents in a concentration dependent manner,while dexamethasone increases it as same manner as gentamycin.
     Conclusion Dexamethasone can remarkably attenuates the gentamycin-induced ototoxicity,and has no obvious effect on auditory function.Gentamycin reduces calcium-sensitive outward potassium currents in OHC,which suggests that is one of the mechanisms of acute ototoxicity.The possible mechanism of Dexamethasone antagonizing the ototoxicity of gentamicin is increased calcium-sensitive outward potassium currents in OHC.
引文
[1]Aran JM,Erre JP,Lima da Costa D,et al.Acute and chronic effects of aminoglycosides on cochlear hair cells[J].Ann N Y Acad Sci,1999,884(11):60-68.
    [2]Arslan E,Orzan E,Santarelli R.Global problem of drug-induced hearing loss[J].Ann N Y Acad Sci,1999,884(11):1-14.
    [3]Art JJ,Wu YC,Fettiplace R.The calcium-activated potassium channels of turtle hair cells[J].J Gen Physiol,1995,105(1):49-72
    [4]Artavanis-Tsakonas S,Rand MD,Lake RJ.Notch signaling:cell fate control and signal integration in development[J].Science,1999,284(5415):770-776.
    [5]Barnes PJ,Adcock I.Anti-inflammatory actions of steroids:molecular mechanisms[J].Trends Pharmacol Sci,1993,14(12):436-441.
    [6]Basile AS,Huang JM,Xie C,et al.N-methyl-D-aspartate antagonists limit aminoglycoside antibiotic-induced hearing loss[J].Nat Med,1996,2(12):1338-1343.
    [7]Baxter JD,Rousseau GG.Glucocorticoid hormone action:an overview[J].Monogr Endocrinol.1979,12(1):1-24.
    [8]Blanchet,C.,Erostegui,C.,Sugasawa,M.et al.Gentamicin blocks ACh-evoked K+current in guinea-pig outer hair cells by impairing Ca2+ entry at the cholinergic receptor[J].J Physiol,2000,525(Pt 3),641-654.
    [9]Cassandro E,Sequino L,Mondola P,et al.Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs—electrophysiological and biochemical study[J].Acta Otolaryngol,2003,123(7):802-807.
    [10]Chen Z,Ulfendahl M,Ruan R,et al.Acute treatment of noise trauma with local caroverine application in the guinea pig[J].Acta Otolaryngol,2003,123(8):905-909.
    [11]Chen YS,Tseng FY,Liu TC,et al.Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs[J].Hear Res,2005,203(1-2):94-100.
    [12]Chertoff ME,Yi X,Lichtenhan JT.Influence of hearing sensitivity on mechano-electric transduction[J].J Acoust Soc Am,2003,114(6 Pt 1):3251-3263.
    [13]Chinopoulos C,Adam-Vizi V.Calcium,mitochondria and oxidative stress in neuronal pathology.Novel aspects of an enduring theme[J].FEBS J,2006,273(3):433-450.
    [14]Chiodo AA,Alberti PW.Experimental,clinical and preventive aspects of ototoxicity[J].Eur Arch Otorhinolaryngol,1994,251(7):375-392.
    [15]Curtis LM,ten Cate WJ,Rarey KE.Dynamics of Na,K-ATPase sites in lateral cochlear wall tissues of the rat[J].Eur Arch Otorhinolaryngol,1993,250(5):265-270.
    [16]Dallos P.The active cochlea[J].J Neurosci,1992,12(12):4575-4585.
    [17]Dehne N,Rauen U,de Groot H,et al.Involvement of the mitochondrial permeability transition in gentamicin ototoxicity[J].Hear Res,2002,169(1-2):47-55.
    [18]Ding D,Stracher A,Salvi RJ.Leupeptin protects cochlear and vestibular hair cells from gentamicin ototoxicity[J].Hear Res,2002,164(1-2):115-126.
    [19]Duan M,Agerman K,Emfors P,et al.Complementary roles of neurotrophin 3 and a N-methyl-D-aspartate antagonist in the protection of noise and aminoglycoside-induced ototoxicity[J].Proc Natl Acad Sci U S A,2000,97(13):7597-7602.
    [20]Ernst A,Reuter G,Zimmermann U,et al.Acute gentamicin ototoxicity in cochlear outer hair cells of the guinea pig[J].Brain Res,1994,636(1):153-156.
    [21]Evans P,Halliwell B.Free radicals and hearing.Cause,consequence,and criteria[J].Ann N Y Acad Sci,1999,884(11):19-40.
    [22]Feder JN,Jan LY,Jan YN.A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation[J].Mol Cell Biol,1993,13(1):105-113.
    [23]Fischel-Ghodsian N,Prezant TR,Foumier P,et al.Mitochondrial mutation associated with nonsyndromic deafness[J].Am J Otolaryngol,1995,16(6):403-408.
    [24]Forge A,Schacht J.Aminoglycoside antibiotics[J].Audiol Neurootol,2000,5(1):3-22.
    [25]Grbavec D,Stifani S.Molecular interaction between TLE1 and the carboxyl-terminal domain of HES-1 containing the WRPW motif[J].Biochem Biophys Res Commun,1996,223(3):701-705.
    [26]Griefahn B.Noise effects not only the ears.But can damage to health be objectively evaluated[J]? MMW Fortschr Meal,2000,142(14):26-29.
    [27]Harvey SC,Skolnick P.Polyamine-like actions of aminoglycosides at recombinant N-methyl-D-aspartate receptors[J].J Pharmacol Exp Ther,1999,291(1):285-291.
    [28]Haynes BE Pikus A,Kaiser-Kupfer M,et al.Successful treatmem of sudden hearing loss in Cogan's syndrome with corticosteroids[J].Arthritis Rheum,1981,24(3):501-503.
    [29]Himeno C,Komeda M,Izumikawa M,et al.Intra-cochlear administration of dexamethasone attenuates aminoglycoside ototoxicity in the guinea pig[J].Hear Res,2002,167(1-2):61-70.
    [30]Hsu CJ,Shau WY,Chen YS,et al.Activities of Na(+),K(+)-ATPase and Ca(2+)-ATPase in cochlear lateral wall after acoustic trauma[J].Hear Res,2000,142(1-2):203-211.
    [31]Hu BH,Henderson D,Nicotera TM.Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise[J].Hear Res,2002,166(1-2):62-71.
    [32]Huang MH,So EC,Liu YC,et al.Glucocorticoids stimulate the activity of large-conductance Ca2+-activated K+ channels in pituitary GH3 and ART-20cells via a non-genomic mechanism[j].Steroids,2006,71(2):129-140.
    [33]Husain K,Scott B,Whitworth C,et al.Time response of carboplatin-induced hearing loss in rat[J].Hear Res,2004,191(1-2):110-118
    [34]Ichimiya I,Adams JC,Kimura RS.Immunolocalization ofNa+,K(+)-ATPase,Ca(++)-ATPase,calcium-binding proteins,and carbonic anhydrase in the guinea pig inner ear[J].Acta Otolaryngol,1994,114(2):167-176
    [35]Ikeda K,Kusakari J,Takasaka T.Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury[J].Hear Res,1988,32(2-3):103-110.
    [36]Jagger DJ,Ashmore JF.Regulation of ionic currents by protein kinase A and intracellular calcium in outer hair cells isolated from the guinea-pig cochlea[J].Pflugers Arch,1999,437(3):409-416.
    [37]Kaneta M,Osawa M,Sudo K,et al.A role for pref-1 and HES-1 in thymoeyte development[J].J Immunol,2000,164(1):256-264.
    [38]Kanzaki J,O-uchi T,Ysuchihashi N.Steroid-responsive sensorineural hearing loss:combination therapy with prednisolone and Sairei-to[J].ORL J Otorhinolaryngol Relat Spec,1993,55(1):24-29.
    [39]Kikuchi T,Adams JC,Paul DL,et al.Gap junction systems in the rat vestibular labyrinth:immunohistochemical and ultrastructural analysis[J].Acta Otolaryngol,1994,114(5):520-528.
    [40]Kopke RD,Weisskopf PA,Boone JL,et al.Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla[J].Hear Res,2000,149(1-2):138-146.
    [41]Kojika S,Griffin JD.Notch receptors and hematopoiesis[J].Exp Hematol,2001,29(9):1041-1052.
    [42]Kolls J,Xie J,LeBlanc R,et al.Rapid induction of messenger RNA for nitric oxide synthase Ⅱ in rat neutrophils in vivo by endotoxin and its suppression by prednisolone[J].Proc Soc Exp Biol Med,1994,205(3):220-229.
    [43]Kopke R,Allen KA,Henderson D,et al.A radical demise.Toxins and trauma share common pathways in hair cell death[J].Ann N Y Acad Sci,1999,28(884):171-191.
    [44]Kotarbinska E.Hearing protectors in prevention of occupational hearing loss[J].Med Pr,2000,51(2):185-196.,
    [45]Lamm K,Arnold W.The effect ofprednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear[J].Hear Res,1998,115(1-2):149-161
    [46]Li CH,Yzeng SL,Cheng YW,et al.Chloramphenicol-induced mitochondrial stress increases p21 expression and prevents cell apoptosis through a p21-dependent pathway[J].J Biol Chern,2005,280(28):26193-26199.
    [47]Luttge WG.Molecular mechanisms of steroid hormone actions in the brain[M].New York:Plenum Press,1983,247-312
    [48]Morizane I,Hakuba N,Hyodo J,et al.Ischemic damage increases nitric oxide production via inducible nitric oxide synthase in the cochlea[J].Neurosci Lett,2005,391(1-2):62-67.
    [49]Nagura M,Iwasaki S,Wu R,et al.Effects of corticosteroid,contrast medium and ATP on focal microcirculatory disorders of the cochlea[J].Eur J Pharmacol,1999,366(1):47-53.
    [50]Nenov AP,Norris C,Bobbin RP.Acetylcholine response in guinea pig outer hair cells.Ⅱ.Activation of a small conductance Ca(2+)-activated K+ channel[J].Hear Res,1996,101(1-2):149-172.
    [51]Nomura K,Naruse K,Watanabe K,et al.Aminoglycoside blockade of Ca2(+)-activated K+ channel from rat brain synaptosomal membranes incorporated into planar bilayers[J].J Membr Biol,1990,115(3):241-251.
    [52]Oakley RH,Jewell CM,Yudt MR,et al.The dominant negative activity of the human glucocorticoid receptor beta isoform.Specificity and mechanisms of action[J].J Biol Chem,1999,274(39):27857-27866.
    [53]Offner FF,Dallos P,Cheatham MA.Positive endocochlear potential:mechanism of production by marginal cells of stria vascularis[J].Hear Res,1987,29(2-3):117-124.
    [54]Ohinata Y,Miller JM,Schacht J.Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea[J].Brain Res,2003,966(2):265-273.
    [55]Ohinata Y,Yamasoba T,Schacht J,et al.Glutathione limits noise-induced hearing loss[J].Hear Res,2000,146(1-2):28-34.
    [56]Ohtsuka T,Ishibashi M,Gradwohl G,et al.Hesl and Hes5 as notch effectors in mammalian neuronal differentiation[J].EMBO J,1999,18(8):2196-2207.
    [57]Ou HC,Bohne BA,Harding GW.Noise damage in the C57BL/CBA mouse cochlea[J].Hear Res,2000,145(1-2):111-122.
    [58]Prezant TR,Agapian JV,Bohlman MC,et al.Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness[y].Nat Gene,1993,4(3):289-294.
    [59]Pujol R,Puel JL.Excitotoxicity,synaptic repair,and functional recovery in the mammalian cochlea:a review of recent findings[J].Ann N Y Acad Sci,1999,884(11):249-254.
    [60]Raphael Y,Altschuler RA.Structure and innervation of the cochlea[J].Brain Res Bull,2003,60(5-6):397-422.
    [61]Rarey KE,Curtis LM,ten Care WJ.Tissue specific levels of glucocorticoid receptor within the rat inner ear[J].Hear Res,1993,64(2):205-210.
    [62]Rarey KE,Curtis LM.Receptors for glucocorticoids in the human inner ear[J].Otolaryngol Head Neck Surg,1996,115(1):38-41.
    [63]Rarey KE,Gerhardt KJ,Curtis LM,et al.Effect of stress on cochlear glucocorticoid protein:acoustic stress[J].Hear Res,1995,82(2):135-138.
    [64]Rosewicz S,McDonald AR,Maddux BA,et al.Mechanism of glucocorticoid receptor down-regulation by glucocorticoids[J].J Biol Chem,1988,263(6):2581-2584.
    [65]Rothwell NJ.Sixteenth Gaddum Memorial Lecture December 1996.Neuroimmune interactions:the role of cytokines[J].Br J Pharmacol,1997,121(5):841-847.
    [66]Rybak LP,Whitworth CA.Ototoxicity:therapeutic opportunities[J].Drug Discov Today,2005,10(19):1313-1321.
    [67]Schacht J.Aminoglycoside ototoxicity:prevention in sight[J]?Otolaryngol Head Neck Surg,1998,118(5):674-677.
    [68]Seidman M,Babu S,Tang W,et al.Effects ofresveratrol on acoustic trauma[y].Otolaryngol Head Neck Surg,2003,129(5):463-470.
    [69]Shea JJ Jr,Ge X.Dexamethasone perfusion of the labyrinth plus intravenous dexamethasone for Meniere's disease[J].Otolaryngol Clin North Am,1996,29(2):353-358.
    [70]Shi LJ,He HY,Liu LA,et al.Rapid nongenomic effect of corticosterone on neuronal nicotinic acetylcholine receptor in PC12 cells[J].Arch Biochem Biophys,2001,394(2):145-150.
    [71]Shimazaki T,Ichimiya I,Suzuki M,et al.Localization of glucocorticoid receptors in the murine inner ear[J].Ann Otol Rhinol Laryngol,2002,111(12 Pt 1):1133-1138.
    [72]Shirwany NA,Seidman MD,Tang W.Effect of transtympanic injection of steroids on cochlear blood flow,auditory sensitivity,and histology in the guinea pig[J].Am J Otol,1998,19(2):230-235.
    [73]Silverstein H,Choo D,Rosenberg SI,et al.Intratympanic steroid treatment of inner ear disease and tinnitus(preliminary report)[J].Ear Nose Throat J,1996,75(8):468-471.
    [74]Spicer SS,Schulte BA.The free structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency[J].Hear Res,1996,100(1-2):80-100.
    [75]Song BB,Anderson D J,Schacht J.Protection from gentamicin ototoxicity by iron chelators in guinea pig in vivo[J].J Pharmacol Exp Ther,1997,282(1):369-377.
    [76]Struhl G,Greenwald I.Presenilin is required for activity and nuclear access of Notch in Drosophila[J].Nature,1999,398(6727):522-525.
    [77]Syka J,Rybalko N.Threshold shifts and enhancement of cortical evoked responses after noise exposure in rats[J].Hear Res,2000,139(1-2):59-68.
    [78]Takemura K,Komeda M,Yagi M,et al.Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig[J].Hear Res,2004,196(1-2):58-68.
    [79]Takumida M,Anniko M,Popa R.Possible involvement of free radicals in lipopolysaccharide-induced labyrinthitis in the guinea pig:a morphological and functional investigation[J].ORL J Otorhinolaryngol Relat Spec,1998,60(5):246-253.
    [80]Takumida M,Anniko M,Popa R,et al.Pharmacological models for inner ear therapy with emphasis on nitric oxide[J].Acta Otolaryngol,2001,121(1):16-20.
    [81]Tan CT,Lee SY,Yao CJ,et al.Effects of gentamicin and pH on[Ca2+]i in apical and basal outer hair cells from guinea pigs[J].Hear Res,2001,154(1-2):81-87.
    [82]ten Cate WJ,Curtis LM,Small GM,et al.Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea[J].Laryngoscope,1993,103(8):865-871.
    [83]Terunuma T,Hara A,Senarita M,et al.Effect of acoustic overstimulation on regulation of glucocorticoid receptor mRNA in the cochlea of the guinea pig[y].Hear Res,2001,151(1-2):121-124.
    [84]Turner BB.Tissue differences in the up-regulation of glucocorticoid-binding proteins in the rat[J].Endocrinology,1986,118(3):1211-1216.
    [85]Tuor UI,Simone CS,Arellano R,et al.Glucocorticoid prevention of neonatal hypoxic-ischemic damage:role of hyperglycemia and antioxidant enzymes[J].Brain Res,1993,604(1-2):165-172.
    [86]Takumida M,Popa R,Anniko M.Free radicals in the guinea pig inner ear following gentamicin exposure[J].ORL J Otorhinolaryngol Relat Spec,1999,61(2):63-70.
    [87]van Den Abbeele T,Teulon J,Huy PT.Two types of voltage-dependent potassium channels in outer hair cells from the guinea pig cochlea[J].Am J Physiol,1999,277(5 Pt 1):C913-925.
    [88]Van Voorhis B J,Anderson DJ,Hill JA.The effects of RU 486 on immune function and steroid-induced immunosuppression in vitro[J].J Clin Endocrinol Metab,1989,69(6):1195-1199.
    [89]Verrey F.Early aldosterone effects[J].Exp Nephrol,1998,6(4):294-301.
    [90]Wangemann P.Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells[J].Hear Res,1995,90(1-2):149-157.
    [91]Wangemann P.K+ cycling and the endocochlear potential[J].Hear Res,2002,165(1-2):1-9.
    [92]Watanabe K,Hess A,Bloch W,et al.Expression of inducible nitric oxide synthase (iNOS/NOS Ⅱ) in the vestibule of guinea pigs after the application of cisplatin[J].Anticancer Drugs,200,11(1):29-32.
    [93]Wu WJ,Sha SH,Schacht J.Recent advances in understanding aminoglycoside ototoxicity and its prevention[J].Audiol Neurootol,2002,7(3):171-174.
    [94]Yagi M,Magal E,Sheng Z,et al.Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor[J].Hum Gene Ther,1999,10(5):813-823.
    [95]Zheng JL,Shou J,Guillemot F,et al.Hesl is a negative regulator of inner ear hair cell differentiation[J].Development,2000,127(21):4551-4560.
    [96]Zuo J,Curtis LM,Yao X,et al.Glucocorticoid receptor expression in the postnatal rat cochlea[J].Hear Res,1995,87(1-2):220-227.
    [97]崔桂英,汤浩,李煜兴等.链霉素对豚鼠耳蜗外毛细胞钙敏感外向钾电流的影响[J].中国医科大学学报,2000,29(6):408-409
    [98]高文元,迟放鲁,贺秉坤.临床听觉生理学[M].北京:人民军医出版社,2004:53-55
    [99]顾凤明,孔维佳.链霉素对豚鼠耳蜗外毛细胞离子电流的影响[J].临床耳鼻喉科杂志,1997,11(5):195-197.
    [100]刘军,于宁.钙泵间接激活剂对噪声性聋的保护作用[J].中华耳鼻咽喉科杂志,2002,37(6):425-427.
    [1]Akkuzu B,Ozgirgin N,Ozluoglu LN.Intratympanic treatment in Meniere's disease:the effect of gentamicin and dexamethasone on vertigo control and hearing[J].Kulak Burun Bogaz Ihtis Derg,2006,16(5):193-199.
    [2]Borski RJ.Nongenomic membrane actions of glucocorticoids in vertebrates[J].Trends Endocrinol Metab,2000,11(10):427-436.
    [3]Choung YH,Park K,Shin YR,et al.Intratympanic dexamethasone injection for refractory sudden sensorineural hearing loss[J].Laryngoscope,2006,116(5):747-752
    [4]Daldal A,Odabasi O,Serbetcioglu B.The protective effect of intratympanic dexamethasone on cisplatin-induced ototoxicity in guinea pigs[J].Otolaryngol Head Neck Surg,2007,137(5):747-752.
    [5]Dallan I,Bruschini L,Nacci A,et al.Transtympanic steroids as a salvage therapy in sudden hearing loss:preliminary results[J].ORL J Otorhinolaryngol Relat Spec,2006,68(5):247-252.
    [6]De Bosscher K,Vanden Berghe W,Vermeulen L,et al.Glucocorticoids repress NF-kappaB-driven genes by disturbing the interaction of p65 with the basal transcription machinery,irrespective of coactivator levels in the cell[J].Proc Natl Acad Sci U S A,2000,97(8):3919-3924.
    [7]Diem R,Hobom M,Maier K,et al.Methylprednisolone increases neuronal apoptosis during autoimmune CNS inflammation by inhibition of an endogenous neuroprotective pathway[J].J Neurosc,2003,23(18):6993-7000.
    [8]Eshraghi AA,Adil E,He J,et al.Local dexamethasone therapy conserves hearing in an animal model of electrode insertion trauma-induced hearing loss[J].Otol Neurotol,2007,28(6):842-849.
    [9]Fitzgerald DC,McGuire JF.Intratympanic steroids for idiopathic sudden sensorineural hearing loss[J].Ann Otol Rhinol Laryngol,2007,116(4):253-256.
    [10]Fu ES,Saporta S.Methylprednisolone inhibits production of interleukin-1 beta and interleukin-6 in the spinal cord following compression injury in rats[J].J Neurosurg Anesthesiol,2005,17(2):82-85.
    [11]Fujioka M,Kanzaki S,Okano HJ,et al.Proinflammatory cytokines expression in noise-induced damaged cochlea[J].J Neurosci Res,2006,83(4):575-583.
    [12]Garduno-Anaya MA,Couthino De Toledo H,Hinojosa-Gonzalez R,et al.Dexamethasone inner ear perfusion by intratympanic injection in unilateral Meniere's disease:a two-year prospective,placebo-controlled,double-blind,randomized trial[J].Otolaryngol Head Neck Surg,2005,133(2):285-294.
    [13]Herr I,Ucur E,Herzer K,et al.Glucocorticoid cotreatment induces apoptosis resistance toward cancer therapy in carcinomas[J].Cancer Res,2003,63(12):3112-3120.
    [14]Himeno C,Komeda M,Izumikawa M,et al.Intra-cochlear administration of dexamethasone attenuates aminoglycoside ototoxicity in the guinea pig[J].Hear Res,2002,167(1-2):61-70.
    [15]Hirose Y,Tabuchi K,Oikawa K,et al.The effects of the glucocorticoid receptor antagonist RU486 and phospholipase A2 inhibitor quinacrine on acoustic injury of the mouse cochlea[J].Neurosci Lett,2007,413(1):63-67.
    [16]Jang CH,Cho YB,Choi CH,et al.Effect of topical dexamethasone on sensorineural hearing loss in endotoxin-induced otitis media[J].In Vivo,2007,21(6):1043-1047.
    [17]Kiliq R,Safak MA,Oguz H,et al.Intratympanic methylprednisolone for sudden sensorineural hearing loss[J].Otol Neurotol,2007,28(3):312-316.
    [18]Kolls J,Xie J,LeBlanc R,et al.Rapid induction of messenger RNA for nitric oxide synthase Ⅱ in rat neutrophils in vivo by endotoxin and its suppression by prednisolone[J].Proc Soc Exp Biol Med,1994,205(3):220-229.
    [19]Lamm K,Arnold W.The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear[J].Hear Res,1998,115(1-2):149-161.
    [20]Loveman DM,de Comarmond C,Cepero R,et al.Autoimmune sensorineural heating loss:clinical course and treatment outcome[J].Semin Arthritis Rheum,2004,34(2):538-543.
    [21]Lu Y,Ren J,Wu W,et al.Intratympanic dexamethasone injections for intractable Meniere's disease[J].Lin Chuang Er Bi Yah Hou Ke Za Zhi,2004,18(7):385-387.
    [22]Makara GB,Hailer J.Non-genomic effects of glucocorticoids in the neural system.Evidence,mechanisms and implications[J].Prog Neurobiol,2001,65(4):367-390.
    [23]Nagashima R,Sugiyama C,Yoneyama M,et al.Transcriptional factors in the cochlea within the inner ear[J].J Pharmacol Sci,2005,99(4):301-306.
    [24]Narozny W.The influence of glucocorticoids on the view of chicken's inner ear damage after exposure to wide-band-noise[J].Otolaryngol Pol,2006,60(4):587-592.
    [25]Ohinata Y,Yamasoba T,Schacht J,et al.Glutathione limits noise-induced heating loss[J].Hear Res,2000,146(1-2):28-34.
    [26]Park SK,Choi D,Russell P,et al.Protective effect of corticosteroid against the cytotoxicity of aminoglycoside otic drops on isolated cochlear outer hair cells[J].Laryngoscope,2004,114(4):768-771.
    [27]Plaza G,Herraiz C.Intratympanic steroids for treatment of sudden hearing loss after failure of intravenous therapy[J].Otolaryngol Head Neck Surg,2007,137(1):74-78.
    [28]Rarey KE,Curtis LM,ten Care WJ.Tissue specific levels of glucocorticoid receptor within the rat inner ear[J].Hear Res,1993,64(2):205-210.
    [29]Sha SH,Taylor R,Forge A,et al.Differential vulnerability,of basal and apical hair cells is based on intrinsic susceptibility to free radicals[J].Hear Res,2001,155(1-2):1-8.
    [30]Shi X,Ren T,Nuttall AL.The electrochemical and fluorescence detection of nitric oxide in the cochlea and its increase following loud sound[J].Hear Res,2002,164(1-2):49-58.
    [31]Shimazaki T,Ichimiya I,Suzuki M,et al.Localization of glucocorticoid receptors in the murine inner ear[J].Ann Otol Rhinol Laryngol,2002,111(12 Pt 1):1133-1138.
    [32]Shirwany NA,Seidman MD,Tang W.Effect of transtympanic injection of steroids on cochlear blood flow,auditory sensitivity,and histology in the guinea pig[J].Am J Oto,1998,19(2):230-235.
    [33]Silverstein H,Choo D,Rosenberg SI,et al.Intratympanic steroid treatment of inner ear disease and tinnitus(preliminary report)[J].Ear Nose Throat J,1996,75(8):468-471
    [34]Sendowski I,Abaamrane L,Raffin F,et al.Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs[J].Hear Res,2006,221(1-2):119-127.
    [35]Tabuchi K,Oikawa K,Uemaetomari I,et al.Glucocorticoids and dehydroepiandrosterone sulfate ameliorate ischemia-induced injury of the cochlea[J].Hear Res,2003,180(1-2):51-56.
    [36]Tahera Y,Meltser I,Johansson P,et al.NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma[J].J Neurosci Res,2006,83(6):1066-1076.
    [37]Takemura K,Komeda M,Yagi M,et al.Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig[J].Hear Res,2004,196(1-2):58-68.
    [38]ten Cate W J,Curtis LM,Small GM,et al.Localization of glucocorticoid receptors and glucocorticoid receptor mRNAs in the rat cochlea[J].Laryngoscope,1993,103(8):865-871.
    [39]Trune DR,Wobig RJ,Kempton JB,et al.Steroid treatment improves cochlear function in the MRL.MpJ-Fas(lpr) autoimmune mouse[J].Hear Res,1999,137(1-2):160-166.
    [40]Trune DR,Wobig RJ,Kempton JB,et al.Steroid treatment in young MRL.MpJ-Fas(lpr) autoimmune mice prevents cochlear dysfunction[J].Hear Res,1999,137(1-2):167-173.
    [41]Wobig RJ,Kempton J,Trune DR.Steroid-responsive cochlear dysfunction in the MRL/Ipr autoimmune mouse[J].Otolaryngol Head Neck Surg,1999,121(4):344-347.
    [42]Wu W,Chaudhuri S,Brickley DR,et al.Microarray analysis reveals glucocorticoid-regulated survival genes that are associated with inhibition of apoptosis in breast epithelial cells[J].Cancer Res,2004,64(5):1757-1764.
    [43]Xenellis J,Papadimitriou N,Nikolopoulos T,et al.Intratympanic steroid treatment in idiopathic sudden sensorineural hearing loss:a control study[J].otolaryngol Head Neck Surg,2006,134(6):940-945.
    [44]Yamane H,Nakai Y,Takayama M,et al.Appearance of free radicals in the guinea pig inner ear after noise-induced acoustic trauma[J].Eur Arch Otorhinolaryngol,1995,252(8):504-508.
    [45]Ye Q,Tillein J,Hartmann R,et al.Application of a corticosteroid(Triamcinolon)protects inner ear function after surgical intervention[J].Ear Hear,2007,28(3):361-369.
    [46]Yildirim E,Ozisik K,Ozisik P,et al.Apoptosis-related gene bcl-2 in lung tissue after experimental traumatic brain injury in rats[J].Heart Lung Circ,2006,15(2):124-129.
    [47]Zhang C,Kolb A,Buchler P,et al.Corticosteroid co-treatment induces resistance to chemotherapy in surgical resections,xenografts and established cell lines of pancreatic cancer[J].BMC Cance,2006,15;6:61.
    [48]卢建.糖皮质激素及其受体对细胞数量稳态调节的作用[J].基础医学与临床,2007,27(2):217-223.
    [1]Abdouh A,Despres G,Romand R.Hair cell overproduction in the developing mammalian cochlea in culture[J].NeuroReport,1993,5(1):33-36
    [2]Bermingham-McDonogh O,Rubel EW.Hair cell regeneration:winging our way towards a sound future[J].Curr Opin Neurobiol.2003,13(1):119-126
    [3]Chen P,Johnson JE,Zoghbi HY,et al.The role of Mathl in inner ear development:Uncoupling the establishment of the sensory primordium from hair cell fate determination[J].Development,2002,129(10):2495-2505
    [4]Daudet N,Ripoll C,Lenoir M.Transforming growth factor-alpha-induced cellular changes in orgaotypic cultures of juvenile,amikacin-treated rat organ of Corti[J].J Comp Neurol,2002,442(1):6-22.
    [5]Doetzlhofer A,White PM,Johnson JE,et al.In vitro growth and differentiation of mammalian sensory hair cell progenitors:a requirement for EGF and periotic mesenchyme[J].Dev Biol.,2004,272(2):432-447.
    [6]Forge A,Lin Li,Corwin J T,et al.Ultrastructural evidence for hair cell regeneration in the mammalian inner ear[J].Science,1993,259(5101):1616-1619.
    [7]Izumikawa M,Minoda R,Kawamoto K.,et al.Auditory hair cell replacement and hearing improvement by Atoh1 gene therapy in deaf mammals[J].Nat.Med,2005,11(3):271-276
    [8]Kawamoto K,Ishimoto S,Minoda R,et al.Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo[J].J Neurosci.,2003,23(11):4395-4400
    [9]Kelley MW,Xu XM,Wagner Ma et al.The developing organ of Corti contains retinoic acid and forms supernumerary hair cells in response to exogenous retinoic acid in culture[J].Development,1993,119(4):1041-1053
    [10]Kopke,RD,Jackson RL,Li G et al Growth factor treatment enhances vestibular hair cell renewal and results in a recovery of function[J].Proc Nail Acad Sci USA,2001,98(10):5886-5891.
    [11]Lanford PJ,Lan Y.,Jiang R,et al.Notch signalling pathway mediates hair cell development in mammalian cochlea[J].Nat.Genet,1999,21(3):289-292
    [12]Li H,Liu H,Heller S.Pluripotent stem cells from the adult mouse inner ear[J].Nat Meal.2003,9(10):1293-1299
    [13]Malgrange B.,Belachew S.,Thiry M,et al.Protiferative generation of mammalian auditory hair cells in culture[J].Mechanisms of Development,2002,112(1-2):79-88.
    [14]Minoda R,Kawamoto K,Izumikawa M,et al.Skp2 increases the number of new hair cells generated by mathl in vivo[J].Otolaryngol Head Neck Surg.,2004,131(2):152
    [15]Oesterle EC,Cunningham DE,Westrum LE,et al.Ultrastructural analysis of [3H]thymidine-labeled cells in the rat utricular macula[J].J Comp Neurol.2003,463(2):177-195
    [16]O'Halloran EK,Oesterle EC.Characterization of leukocyte subtypes in chicken inner ear sensory epithelia[J].J Comp Neurol.,2004,475(3):340-360.
    [17]Parker MA,Anderson JK,Corliss DA,et al.Expression profile of an operationally-defined neural stem cell clone[J].Exp.Neurol.,2005,194(2):320-332.
    [18]Praetorius M,Baker K,Weich CM,et al.Hearing preservation after inner ear gene therapy:the effect of vector and surgical approach[J].ORL J Otorhinolaryngol Relat Spec.,2003,65(4):211-214.
    [19]Raff M.Adult stem cell plasticity:fact or artifact?[J]Annu Rev Cell Dev Biol.,2003,19:1-22.
    [20]Sage,C.,Huang,M.,Karimi,K.,et al.Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein[J]. Science,2005,307(5712):1114-1118.
    [21]Tateya I,Nakagawa T,Iguchi F,et al.Fate of neural stem cells grafted into injured inner ears of mice[J].Neuroreport.,2003,14(13):1677-1681.
    [22]Tiainen M,Spitkovsky D,Jansen-Durr P,et al.Expression of ElA in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms[J].Mol Cell Biol,1996,16(10):5302-5312
    [23]Woolley SM,Rubel EW.Vocal memory and learning in adult Bengalese Finches with regenerated hair cells[J].J Neurosci.2002,22(17):7774-7787.
    [24]Warchol ME,Goldstein BJ,Forge A,et al.Regenerative proliferation in inner ear sensory epithelia from adult guinea pigs and humans[J].Science,1993,259(5101):1619-1622.
    [25]Zhang W.,Bergamaschi D.,Jin B.,et al.Posttranslational modifications of p27kip1 determine its binding specificity to different cyclins and cyclin-dependent kinases in vivo[J].Blood,2005,105(9):3691-3698
    [26]Zheng JL,Keller G,Gao WQ.Immunocytochemical and morphological evidence for intracellular self-repair as an important contributor to mammalian hair cell recovery[J].J Neurosci,1999,19(6):2161-2170.
    [27]Zheng JL,Gao WQ.Overexpression of Mathl induces robust production of extra hair cells in postnatal rat inner ears[J].Nat Neurosci.2000,3(6):580-586
    [28]高文元,迟放鲁,贺秉坤.临床听觉生理学[M].北京:人民军医出版社,2004.60-62
    [29]李华伟,汪吉宝.内耳毛细胞的再生前体细胞的来源、激活及调节因素[J].听力学及言语疾病杂志,1998,6(1):51-54.
    [30]王德辉,步星耀,王正敏.豚鼠内耳前庭毛细胞自发再生[J].中国耳鼻咽喉颅底外科杂志,1996,2(3):132-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700