复合材料土钉支护性能试验分析与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土钉支护技术广泛应用于深基坑支护工程中,用钢筋作为土钉支护材料,其高强度的优势没有完全发挥。对于基坑和有些岩土加固属于临时工程,在其使用寿命结束后,每年有数百万吨的钢筋材料被永久埋于地下,造成建材资源大量浪费,侵占、影响地下空间的后续利用,更重要的是会产生锈蚀污染,对土壤与地下水环境造成长远影响。本文结合住房和城乡建设部“十一五”科技支撑计划“地下开挖工程岩土加固关键技术”之子课题“复合材料土钉支护技术研究与示范”,选用轻质高强玻璃纤维复合材料(GFP)土钉与可拆卸木塑复合材料(WPC)面板代替传统的钢筋土钉与网喷混凝土面层,通过室内试验对GFP材料进行了力学性能分析与研究,对WPC面板进行了可拆卸设计,并根据土钉与面板的锚固特点进行了力学分析与验算公式的推导,最后利用FLAC 3D软件对所提出的复合材料支护结构进行了仿真分析比较,验证了复合材料土钉支护的可行性。主要研究结论如下:
     (1)研究了构成复合材料的增强体、基体等的性质,采用了应用于土钉的复合材料—玻璃纤维复合材料(GFP),分析了土钉支护技术的特点,对传统的土钉材料钢筋和玻璃纤维材料进行了简单比较,纤维复合材料土钉具有抗腐蚀、高强度等钢筋无法比拟的优越特性,而价格方面玻璃纤维和钢筋相差不大,提出玻璃纤维复合材料替代钢筋是合理的,具有较理想的发展前景。
     (2)选用螺纹表面直径18mm和25mm的GFP杆体进行室内拉伸性能表明:螺纹GFP杆体初期的强度由基体承担,而后期的强度全部由玻璃纤维体承担。承载力会随直径增大而增大,强度随直径增大而减小。对GFP杆体拉伸强度计算公式的修正系数K进行了取值选定,推荐K取0.75是较合理的。
     (3)对GFP杆体面内剪切强度进行了理论分析和试验,得到直径18mm和直径25mm的GFP杆体面内剪切强度基本相等。进一步论证了按照混合定律确定的理论公式不适用于该GFP材料。本文提出GFP杆体面内剪切强度需要考虑基体和纤维体的粘结力、基体的抗剪强度两部分。对以上杆体进行了抗弯试验,得到弯曲强度变化规律:杆体的直径越小,杆体所能承受的载荷越小。杆体的弯曲强度与直径大小成反比,随着直径增大,弯曲强度却减少,而且减少较快,从性能分析可知导致杆体破坏的并不是拉应力,而是在杆体中性轴以上产生的压应力。同时研究论证了GFP杆体具有较强的耐酸、耐碱、耐盐及耐冻融等抗腐蚀性能。
     (4)通过试验确定砂浆配比(水泥:砂:水)1:1.5:0.4最适合灌浆,直径18mm的GFP杆体拉拔承载力随着砂浆强度等级提高而提高;直径大小对粘结强度的影响不太明显;当粘结长度达到或超过临界粘结长度时,随着粘结长度的增加,平均粘结应力下降。
     (5)比较了光面杆体和螺纹杆体的变形、与砂浆体的粘结应力等规律。表明螺纹杆体在受力过程中化学胶着力先发挥作用,然后是摩擦力发挥较大作用,最后是GFP杆体的螺纹与砂浆体之间的机械咬合力发挥作用,其中机械咬合力起主要作用。要切实反映螺纹GFP杆体与砂浆之间的粘结力,需要考虑三类力,因此粘结力理论计算式中需要有分别表示三类力的表达式。
     (6)提出选用木塑复合材料代替传统网喷混凝土。研发了新型拼接式木塑复合材料土钉墙坡面防护面板,能方便地拼装形成整齐、可密封的面板支护界面,在临时支护工程完工之后能方便地拆卸下来,回收重复使用。并研发了土钉杆体与面板的锚固方式。提出了GFP土钉与WPC面板设计计算的各项指标及公式。
     (7)应用FLAC 3D对钢筋土钉与GFP土钉进行了施工过程的仿真计算,计算表明GFP土钉所受到的力较钢筋土钉要小且分布更均匀,变化规律有一定的区别。GFP土钉产生的位移要大得多,但都在规定范围之内,符合要求;塑性区基本相同。验证了GFP土钉支护是可行的,在GFP土钉支护施工中需要控制好位移。
Soil nailing supporting technology is applied widely in deep foundation pit support engineering, when the reinforcement is used as soil nailing, its advantage of high strength is not fully played. When the foundation pit and some geotechnical reinforcement which used as temporary works reach the end of their useful lives, millions of tons of reinforcement materials are buried permanently under the ground each year, and they cause a large waste of building materials resources, invade and affect the using of the underground space.More important, they will produce rust pollution and cause long-term effect on soil and groundwater environment. According to "Research and demonstration on composite material soil nailing support technology" of "Key technology of rock and soil reinforcement in underground excavation". This paper put forward that glass fiber polymer (GFP) soil nailing with light weight and high strength and removable wood plastic composite (WPC) panel could be used to instead of traditional reinforcement soil nailing and concrete surface layer. GFP rod mechanical properties were tested in door and WPC panel was designed about its disassembly property. Mechanical analysis and the derivation of the formula were done by anchoring features of soil nailing and the panel. At last, the feasibility of GFP soil nailing was verified by the FLAC 3D simulation. The main conclusions are drawn as following:
     (1) The properties of enhanced body and matrix in composite material were studied, and the soil nailing composite material in application-glass fiber polymer (GFP) was put forward, the features of soil nailing support technology were analyzed. Traditional soil nailing material-reinforcement was simply compared with glass fiber polymer, and the latter had superior properties such as anti-corrosion and high strength, and both of them had little difference on the price. The research proved reasonable that glass fiber polymer instead of the reinforcement, and it will have more broad development prospect.
     (2) The tensile properties of indoor test on GFP threaded rod with the diameter of 18 mm and 25 mm showed:initial strength of GFP threaded rod is carried by the matrix, and then late strength is carried entirely by glass fiber body. Carrying capacity increases and the strength decreases with the diameter increasing.For the coefficient k,0.75 is recommended in the formula of GFP rod tensile.
     (3) GFP rod in-plane shear strength was studied and tested, some conclusions were drawn:in-plane shear strength of GFP rod with the diameter of 18 mm and 25 mm are almost equal. In further, theoretical formula from the mixed laws can not be applied to GFP rod. The paper put forward that in-plane shear strength of GFP rod should include two parts:the matrix and fiber adhesion strength, shear strength of the matrix. Bending test was done to the above rods, and the change law of bending strength as follows:GFP rod is smaller in the diameter, bending carrying capacity is smaller. Bending strength is inversely proportional to the diameter size of the GFP rod, bending strength reduces more quickly with the diameter increasing. By properties analysis, the conclusion can be drawn that the failure cause of GFP rod is not tensile stress, but compressive stress. At the same time, the research on corrosion resistance shows that GFP rod has strong acid resistance, alkali resistance, salt resistance and freeze-thaw resistance.
     (4) Mortar's mix proportion (cement:sand:water) 1:1.5:0.4 is most suitable for grouting through the test, the carrying capacity of GFP rod with 18 mm in diameter improves with the mortar strength grade increasing; the diameter size affect on bond strength less obviously; when bond length reaches or exceeds critical bond length, average bond stress drops as the bond length increases.
     (5) The law of the deformation and mortar bond stress between the smooth rod and the threaded rod were compared. It indicated that the progress of the threaded rod carried the force:chemical adhesive plays a prior role ahead of the friction, then the friction plays a larger role, chemical adhesive disappeared,at last the mechanical bite force between GFP threaded rod and the mortar begins to carry the main load, and it is primary role.Three types of force should be considered to reflect effectively bond strength between GFP threaded rod and the mortar, so bond strength theory formulas should include the formula of each force.
     (6) Wood plastic composite material was put forward to instead of traditional network concrete surface layer. A new type of stitching wood plastic composite panel in soil nailing support for slope protection can be pieced together to form neat and sealable support interface and dismounted, recovered and reused after temporary support has completed.The anchorage of soil nailing and the panel was studied out.The indexes and formulas of GFP soil nailing and WPC panel in design and calculation were put forward.
     (7) FLAC 3D was used to simulated reinforcement soil nailing and GFP soil nailing construction. The calculation shows that GFP soil nailing carrying load are less and more evenly, and change law has a certain distinction comparing with reinforcement soil nailing. GFP soil nailing has much greater displacement that is within the specified range and meet the requirements. Both is basically the same in plastic zone. GFP soil nailing support is available; the displacement should be controlled in the construction of GFP soil nailing support.
引文
[1]程良奎,杨志银.喷射混凝土与土钉墙[M].北京:中国建筑工业出版社,1998.347-348.
    [2]程良奎,范景伦,韩军等.岩土锚固[M].第1版.北京:中国建筑工业出版社,2003.3-5.
    [3]陈肇元,张明聚.土钉支护在基坑工程中的应用[M].北京:中国建筑工业出版社,2001.
    [4]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(1):112-113.
    [5]孔宪宾,任青文.土钉墙技术及其发展[J].水利水电科技进展,2002,10(2):24-27.
    [6]陈松,黄雄.弹性地基梁法在桩锚支护结构设计中的应用[J].铁道建筑,2007年第12期:77-79.
    [7]邓子胜.深基坑支护结构-土空间非线性共同作用研究[博士学位论文].长沙:湖南大学,2004.
    [8]刘章军,雷进生.地铁深基坑支护方案优选的模糊概率方法[J].铁道科学与上程报,2007,12,第4卷第6期:58-59.
    [9]王爱勋.武汉国际会展中心工程关键施工技术研究与应用[博士学位论文].武汉理工大学,2005.
    [10]齐如明.逆作法施工技术的设计与实践[博士学位论文].吉林:吉林大学,2006.
    [11]宋二祥.土钉支护及其有限元分析[J].工程勘察,1996,(2):1-5.
    [12]杨志银.土钉支护技术中的新发展.见:岩土锚固协会论文集[M].北京:中国建筑工业出版社,1996.
    [13]曹庭校.北京地铁十号线某深基坑复合土钉支护与机理研究[博士学位论文].北京:中国地质大学,2008.
    [14]梁仕华.土钉支护结构极限分析法及大变形固结有限元分析[博士学位论文].杭州:浙江大学,2004.
    [15]王建军.基坑支护现场试验研究与数值分析[博士学位论文].北京:中国建筑科学 研究院,2006.
    [16]徐波.粘结型锚杆锚固理论与试验研究[博士学位论文].大连:大连理工大学,2006,10.
    [17]曾宪明,林润德.土钉支护软土边壁(坡)机理相似模型实验研究[J].岩石力学与工程学报.2000,19(4):334-341.
    [18]曾宪明,林皋,易平等.土钉支护软土边坡的加固机理实验研究[J].岩石力学与工程学报,2002,21(2):429-433.
    [19]Bangs.Investigation of soil nailing system,Advances in Geotechncial Engineering.Transport Reseacrh Recoder,1992:1368-1369
    [20]Gassler, G,Gudenhus,G. Soil nailing:Some aspects of a new technique Proc ICSMEF.Vol.3,1981,665-670
    [21]Schlosser, F., Unterreiner, P., Plumelle, C.French research program CLOUTERRE on soil nailing. Geotechnical Special Publication, v 2, n 30,1992:739-750.
    [22]Unterreiner,P, Schlosser, F.,Benhamida, B. Calculation of the displacement of a full scale experiment soil nailed wall-French national research project clouterre of soil reinforced in Europe, London:Thomas Telford house,1995:195-213.
    [23]Benhamida,B., Schlosser,F.,Unterriner,P. Finite element modeling of a soil nailed wall:earth pressure and arching effects. Numerical Models in Geomechanics,1997: 245-250.
    [24]Cartier,G.,Giqan,J.P.Experiments and observations on soil nailing structures. Proceedings of the European Conference on Soil Mechanics and Foundation Engineering, V2,1983:473-476.
    [25]Franzen, Gunila.Soil nailing:A laboratory and field study of pull-out capacity. Doktorsavhandlivid Chalmers Tekniska Hogskola, n 1432,1998:226.
    [26]Bridle, R. J.&Davies, M. C. R. Analysis of soil nailing using tension and shear: experimental observations and assessment. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, v 125, n 3, Jul,1997:155-167.
    [27]Eric W.Bahner. Soil Nailing:A Local Persperctive. Geotechnical Applications for Transportation Infrastructure,2005:28-33
    [28]Eric W.Bahner and Mike Christensen. Soil Nailing Earth Retention on the Park Afyette Development in Milwaukee,Wisconsin.2009 International Foundation Congress and Equipment Expo,2009:121-123.
    [29]彭衡和,邱贤辉GFRP锚杆加固高速公路红砂岩边坡的工程实例分析[J].公路工程,2008(4):114-117.
    [30]李国维,刘朝权,黄志怀等.应用玻璃纤维锚杆加固公路边坡现场试验[J].岩石力学与工程学报,2010.9:4057-4061.
    [31]黄生文,邱贤辉,何唯平等.FRP土钉主要性能的试验研究[J].土木工程学报,2007,40(8).74-78.
    [32]贾新,袁勇,李焯芬.新型玻璃纤维增强塑料砂浆锚杆的黏结性能试验研究[J].岩石力学与工程学报.2006,25(10):2109-2114.
    [33]马念杰,张玉,陈刚.新型玻璃钢锚杆研究[J].煤矿开采,2001,4:45-47.
    [34]曲光,杨振茂,洪华斌.树脂锚杆直径、钻孔直径及锚固长度的合理性分析[J].煤炭科学技术,2006,28(6):50-51.
    [35]张树光.纤维硬塑锚杆及其支护参数的研究[硕士学位论文].辽宁:辽宁工程技术大学,2000.
    [36]李志刚.复合材料土钉受力机制及数值分析[J].岩土力学,2005,26(12):1953-1956.
    [37]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋锚杆及其应用[J].岩石力学与工程学报.2004,23(13):2205-2210.
    [38]刘汉东,于新政,李国维GFRP锚杆拉伸力学性能试验研究[J].岩石力学与工程学报,2005,24(20):3719-3723.
    [39]朱虹.新型FRP筋预应力混凝土结构的研究[博士学位论文].南京:东南大学,2004.
    [40]John C, Duke Jr.,Scott Case and John J.Lesko.NDE of FRP Bridge Beams and Decks.AIP Conference Proceeding,2003.
    [41]刘弋,薛金科,匡亚川.FRP锚杆研究现状及其分析[J].工业建筑,2010年第40 卷:1015-1016.
    [42]Javier Walvar L. Tensile and Bond Properties of GFRP Reinforcing Bars[J].ACI,Materials Journal,1995.92(3):276-285.
    [43]Nanni A, Bakis C E,0'Neil E and Dixon T O.Performance of FRP Tendon-Anchor Systems for Prestressed Concrete Structures[J].PCI Journal,1996,V01.41(1):34-44.
    [44]包兆鼎,戴方毕,陈杰等.增强混凝土用玻璃纤维复合材料筋[C].第二届全木工程用纤维增强复合材料应用技术交流会论文集.北京:清华大学出版社,2002,7:275-279.
    [45]Y.M.Cheng, Yong-ki Choi.New Soil Nail Material-Pilot Study of Grouted GFRP Pipe Nails in Korea and Hong Kong. ASCE,2009,21:91-93.
    [46]Julio F. Davalos and Bin Zou. Experimental Study on Shear Connection for FRP Bridge Decks.11th ASCE Aerospace Division International Conference (Earth and Space 2008), Long Beach, CA, USA, ASCE,March 3-6,2008:2-9.
    [47]Stijn Matthys and Thanasis Triantafillou. Shear and Torsion Strengthening with Externally Bonded FRP Reinforcement. COMPOSITES IN CONSTRUCTION:A REALITY,2002:204-206.
    [48]Andrea Protal.Gaetano Manfredi and Fabio Nardone. Assessment of Design Formulas for In-Plane FRP Strengthening of Masonry Walls. Journal of Composites for Construction,2008:643-648.
    [49]Veysel Yazici and Muhammad N.S.Hadi.Axial Load-Bending Moment Diagrams of Carbon FRP Wrapped Hollow Core Reinforced Concrete Columns. Journal of Composites for Construction, July,2009:262-265.
    [50]R. Realfonzo, Ph.D.,and A. Napoli. Cyclic Behavior of RC Columns Strengthened by FRP and Steel Devices. Journal of Structure Engnr, Oct.,2009:1164-1175.
    [51]Paul H. Ziehl, P.E., Michael D. Engelhardt,ect. Design and Field Evaluation of Hybrid FRP/Reinforced Concrete Superstructure System. Journal of Bridge Engnr, Sept./Oct.,2009:309-319.
    [52]A. Balsamo,L.Coppola, P. Zaffaroni. FRP in Construction:Applications, Advantages, Barriers and Perspectives. COMPOSITES IN CONSTRUCTION:A REALITY,2003,(2):58-61.
    [53]Al-Zaharani,M.Bond behavior of fiber reinforced plastic reinforcements with concrete. Pennsylvanis State Univ., University Park,1995.
    [54]AL-Zaharani M.M.,Nanni A.,AL-Dulaijan S.U.and Bakis C.E.Bond of FRP to concrete in reinforcemrnt rods with anxisymetric deformation.2nd International Conference on Advanced Composite Materials in Bridge Structure,Montreal,Quebec,Canada,2002.
    [55]Brahim Benmokrane,Peng Wang,Tan Minh Ton-That,et al.Durability of glass reinforced polymer reinforcing bars in concrete environment[J] Journal of Composites for Construction,Vol.6,No.3,2002:143-153
    [56]Eric W. Banner, P.E.l, Member.Geo-Institute of ASCE.SOIL NAILING:A LOCAL PERSPECTIVE Geotechnical Application for Transportation Infrastructure.ASCE, 2005:28-30.
    [57]M. H. Harajli.Bond Stress-Slip Model for Steel Bars in Unconfined or Steel, FRC, or FRP Confined Concrete under Cyclic Loading.JOURNAL OF STRUCTURAL ENGINEERING (C) ASCE, MAY,2009:509-516.
    [58]ACI Comittee 440.Guide for the design and construction of concrete reinforced with FRP bars[R],440.1R-03.Farmington Hills,American Concrete Institute,2003.
    [59]王芝国,武卫莉,谷万里.复合材料概论[M].哈尔滨:哈尔滨工业大学出版社,2011,2.
    [60]黄志雄.热固性树脂复合材料及其应用[M].北京:化学工业出版社,2007,1.
    [61]益小苏,杜善义,张立同主编.复合材料手册[M].北京:化学工业出版社,2009,7.
    [62]周祖福.复合材料学[M].武汉:武汉理工大学出版社,2007,7.
    [63]冯小明,张崇才.复合材料[M].重庆:重庆大学出版社,2007,9.
    [64]倪礼忠,陈麒.聚合物基复合材料[M].上海:华东理工大学出版社,2007,2.
    [65]黄争鸣.复合材料细观力学引论[M].北京:科学出版社,2004,9.
    [66]张明轩.复合材料工程辞典.北京:化学工业出版社,2009,2.
    [67]石定杜.非金属材料标准手册丛书-复合材料标准手册.北京:中国标准出版社,2008,10.
    [68]胡保全,牛晋川.先进复合材料-材料工程师系列.北京:国防工业出版社,2006,6.
    [69]矫桂琼,贾普荣.复合材料力学[M].西安:西北工业大学出版社,2008,3.
    [70]尹洪峰,任耘,罗发.复合材料及其应用[M].西安:陕西科学技术出版社,2003,7.
    [71]大谷杉郎(日).复合材料入门[M].北京:冶金工业出版社,1995,12.
    [72]顾书英,任杰.聚合物基复合材料[M].北京:化学工业出版社,2007,3.
    [73]王善元,张汝光.纤维增强复合材料[M].上海:中国纺织大学出版社,1998,11.
    [74]李思远,杨伟,杨鸣波.木塑复合材料挤出成型工艺及性能的研究[J].塑料工业,2003,11:22-24.
    [75]黄家康主编.复合材料成型技术及应用[M].化学工业出版社,2011,2.
    [76]欧阳国恩,欧国荣.复合材料试验技术[M].武汉:武汉工业大学出版社,1993,03.
    [77]黄丽.聚合物复合材料[M].中国轻工业出版社,2001,06.
    [78]胡福增,郑安呐,张群丰,聚合物及其复合材料的表界面[M].北京:中国轻工业出版杜,2001,9.
    [79]J.M惠特尼,L.M 丹尼儿,R.B派卜斯.纤维增强复合材料实验力学[M].王弘生,刘方龙译.北京:科学出版社,1990,4.
    [80]中国复合材料在线.玻璃纤维是复合材料的最佳增强材料-访中国复合材料在线专家危良才,http://frponline.com.cn/expert/news/detail_54.html,2009.
    [81]危良才博客.全球玻璃纤维生产现状及其玻纤制品最新开发动向http://frponline.com.cn/expert/news/detail_228.html,2009.
    [82]长沙理工大学.公路土钉支护技术指南[M].北京:人民交通出版社,2006.
    [83]Fabio Matta,A.M.ASCE and Antonio Nanni, P.E.,F.ASCE.Connection of Concrete Railing Post and Bridge Deck with Internal FRP Reinforcement.JOURNAL OF BRIDGE ENGINEERING (C) ASCE, JANUARY/FEBRUARY,2009:66-75.
    [84]G.Sankarasubramanian,M.Manivannan,and S.Eswari.Discussion of "Effect of Size on the Failure of Geometrically Similar Concrete Beams Strengthened in Shear with FRP Strips"JOURNAL OF COMPOSITES FOR CONSTRUCTION (C) ASCE, JULY,AUGUST,2009:339-341.
    [85]J. G. Teng, G. M. Chen, J. F. Chen, O. A. Rosenboom,et al.Behavior of RC Beams Shear Strengthened with Bonded or Unbonded FRP Wraps.JOURNAL OF COMPOSITES FOR CONSTRUCTION(C),ASCE,SEPTEMBER/OCTOBER,200 9:394-399.
    [86]Steckel G L., Hawkins G.F., and Bauer J.L. Environmental durability of composites for seismic retrofit of bridge columns.Proceedings of NIST Workshop on Standards development for the Use of Fiber Reinforced Polymers for the Rehabilitation of Concrete and Masonry Structures. Tucson, Arizona:January 1998(1-8):83-96.
    [87]李趁趁.FRP加固混凝土结构耐久性试验研究[D].大连:大连理工大学,2006.
    [88]张新越,欧进萍.FRP筋酸碱盐介质腐蚀与冻融耐久性试验研究[J].武汉理工大学学报,2007,29(1).
    [89]胡安妮.荷载和恶劣环境下FRP增强结构耐久性研究[博士学位论文].大连:大连理工大学,2007.
    [90]杨永新,岳清瑞,郭春红等.FRP耐久性评价方法[J].工业建筑,2006,36(8):6-9.
    [91]肖建庄,于海生,秦灿灿.复合材料加固混凝土耐久性研究[J]玻璃钢/复合材料,2003,2:16-21.
    [92]陕西省建筑科学研究院主编.中华人民共和国建设部批准.《建筑砂浆基本性能试验方法标准》(JGJ/T70-2009).2009.
    [93]中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.《纤维增强塑料密度和相对密度试验方法》(GB/T 1463-2005).2005,12.
    [94]中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.《玻璃纤维增强塑料树脂含量试验方法》(GB/T 2577-2005).2005,12.
    [95]中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.《拉挤玻璃纤维增强塑料杆力学性能试验方法》(GB/T 13096-2008).2009,4.
    [96]Pleimann, L. G. Tension and bond pull-out tests of deformed fiber glass rods.Final Report for Marshall-Vega Corporation, Marshall, Arkansas, Civ. Engrg. Dept., Univ. of Arkansas, Fayetteville,Ark.,1987:5-11.
    [97]Pleimann, L. G Strength, modulus of elasticity, and bond of deformed FRP rods. Adv. Composites Mat. in Civ. Engrg. Struet.,Proc., of the Specialty Conf., Mat. Engrg. Div.,ASCE,1991(1):99-110.
    [98]Faza, S. S., and GangaRao, H. V. S.Bending and bond behavior of concrete beams reinforced with plastic rebars". Transp. Res. Rec, Transportation Research Board, Washington, D.C.1990:185-193.
    [99]Chaallal,O., Benmokrane, B. and Masmoudi, R.An innovative glass-fiber composite rebar for concrete structures. Adv. Composite Mat. in Bridges and Struct., Canadian Soc. for Civ. Engrg.1992(2):169-177.
    [100]M.R.Ehsani, H. Saadatmanesh and S.Tao.Design Recommendations for Bond of GFRP Rebars to Concrete[J].ASCE,Journal of Structural Engineering,1996,V01, 122(3):247-254.
    [101]郭恒宁,张继文.FRP筋混凝土粘结滑移模型的研究和试验分析[J].玻璃钢/复合材料,2007,2:21-24.
    [102]周继凯,陈诗学,陈礼和.GFRP筋与混凝土粘结性能试验研究[J].玻璃钢/复合材料,2007,1:16-18.
    [103]郝庆多,张志春,王言磊等.不同外形GFRP变形筋的粘结性能试验比较[J].玻璃钢/复合材料,2007,2:37-39.
    [104]高丹盈,朱海棠,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型[J].工业建筑,2003,7(33):41-44.
    [105]朱浮声,张海霞GFRP筋与混凝土粘结滑移力学性能研究综述[J].混凝土,2006,(2):12-15.
    [106]ACI 440.3R-04 Guide Test Methods for Fiber-Reinforced Polymers (FRP) for Reinforcing or Strengthening Concrete Structure(混凝土结构用FRP筋性能测试 方法)
    [107]国家技术监督局,中华人民共和国建设部,《混凝土结构试验方法标准》(GB50152-92).1992,7.
    [108]中华人民共和国国家标准局.《纤维增强塑料性能试验方法总则》(GB/T1446-1983).1984,8.
    [109]中华人民共和国国家质量监督检验检疫总局.中国国家标准化管理委员会.《纤维增强塑料拉伸性能试验方法》(GB/T 1447-2005).2005,12.
    [110]贾新.玻璃纤维增强塑料锚杆锚固机理研究[硕士学位论文].上海:同济大学,2005.
    [111]Zenon Achillides,Kypros Pilakoutas.Bond behavior of fiber reinforcd polymer bars underdirect pullout conditions[J].Joural of Composites For Constructure,2004, 8(2):173-181.
    [112]Veysel Yazici and Muhammad N. S. Hadi().Axial Load-Bending Moment Diagrams of Carbon FRP Wrapped Hollow Core Reinforced Concrete Columns.JOURNAL OF COMPOSITES FOR CONSTRUCTION (C) ASCE,AUGUST,2009:262-265.
    [113]康清梁.钢筋混凝土有限元分析[M].北京:中国水利水电出版社,1995:103-106.
    [114]殷波,刘萍华.玻璃钢筋混凝土的有限元计算与试验[J].纤维复合材料,2005,9:45-46.
    [115]朱传成.土钉墙技术在武汉地区基坑工程中的应用研究[硕士学位论文].武汉:华中科技大学,2008.
    [116]清华大学土木工程系,总参工程兵科研三所.《基坑土钉支护技术规程》(CECS96:97),1997,12.
    [117]中华人民共和国城乡与住房建设部.《混凝土结构设计规范》(GB50010-2010),2010.
    [118]王会清.复合土钉支护技术在基坑工程中的应用研究[硕士学位论文].武汉:华中科技大学,2009.
    [119]陆晓中,孙晓民.木塑复合材料发展中的机遇与挑战.专家报告,2007.
    [120]刘柳.木塑复合材料的研究进展[J].塑料科技,2007,第34卷6期:90-92.
    [121]克列阿索夫(俄罗斯).木塑复合材料[M].王伟宏,宋永明,高华译.北京:科学出版社,2010,2.
    [122]王清文,王伟宏等编著.木塑复合材料与制品.北京:化学工业出版社,2007,1.
    [123]杨玲玲,李慧,钟志有.聚丙烯基木塑复合材料力学性能的研究[J].塑料技术,2010,2:34-36.
    [124]欧阳彦辉.木塑复合材料的性能研究[硕士学位论文].合肥:合肥工业大学,2009.
    [125]周箭.新型PVDF基木塑复合材料体系界面行为及物性研究[博士学位论文].杭州:浙江大学,2009.
    [126]原国家冶金工业局主编.《锚杆喷射混凝土加固技术规范》(GB 50086-2001).2001,9.
    [127]中冶集团建筑研究总院.《岩土锚杆(索)技术规程》(CECS22:2005)北京:中国计划出版社,2005,8.
    [128]刘国彬,王卫东.基坑工程手册[M].中国建筑工业出版社,2009,11:737-738.
    [129]MA Nianjie. The new structure of fibre glass reinforced plastics bolt[J]. Journal of Coal Science & Engineering (China),2003, (7).
    [130]杨振茂,马念杰等.玻璃钢锚杆试验研究[J].煤炭科学技术,2002,(2).
    [131]S.S Parkl and H. T. Kimz Design and Stability Analysis of a Novel Pretensioned Soil Nailing System in Korea Advances in Earth Structures:Research to Practice ASCE, 2006:303-308.
    [132]郑宏,葛修润,谷光荣等.关于岩土工程有限元分析中的若干问题[J].岩土力学,1995,Vol.16,No.3:7-12.
    [133]胡强.深基坑工程建模理论与稳定性评判的关键技术研究[博士学位论文],南京:河海大学,2004.
    [134]李奋强.基坑土钉支护的数值模拟及其预报系统[博士学位论文].长沙:中南大学,2005.
    [135]林琳.复合型土钉支护的有限元分析及工作机理研究[硕士学位论文].湘潭:湘潭大学,2003.
    [136]刘熙媛.基坑开挖过程的试验与数值模拟及土的微观结构研究[博士学位论文].天津:天津大学,2003.
    [137]沈细中.深基坑工程基本过程数值模拟及实时优化研究[博士学位论文].武汉:武汉大学,2004.
    [138]Itasca Software Comp.Theory and back ground,constitutive model:theory and implementation[P].UserManual of FLAC 3D 2.0,2002.
    [139]Itasca Software Comp.Interfaces [P].User Manual of FLAC 3D 2.0,2002.
    [140]Itasca Software Comp.Structure elements [P].User Manual of FLAC 3D 2.0,2002.
    [141]李海深.复合型土钉支护工作性能的研究[博士学位论文].长沙:湖南大学,2003.
    [142]林希强.基坑复合土钉支护全过程内力及变形研究[博士学位论文].武汉:中国地质大学,2003.
    [143]吴忠诚等.复合土钉墙大型现场测试及变形性状分析研究[J].岩石力学与工程学报,2007,Z1:2974-2980.
    [144]吴春雷.土钉支护结构非线性数值分析[博士学位论文].北京:中国地质大学,2006.
    [145]田宗若.复合材料中的边界元法及数值解[M].西安:西北工业大学出版社,2006,12.
    [146]梁基照.聚合物基复合材料设计与加工[M].北京:机械工业出版社,2011,4.
    [147]朱剑锋,陈昌富,徐日庆.基坑土钉支护可靠性分析优化算法[J].岩土力学,2010年7月第31卷第7期:2337-2441.
    [148]王广冰,张远芳,高盟,高广运.基于最小势能原理的土钉支护结构位移解析解[J].岩土工程学报,2010年3月第32卷第3期:416-419.
    [149]张立军,王德禹,朱锡等.纤维束增强复合材料的双层次随机扩大临界核模型[J].复合材料学报,2010,4:141-143.
    [150]王全凤,李飞,陈浩军等.玄武岩纤维布加固木梁抗弯性能的试验研究与有限元分析[J].工业建筑,2010年第40卷第4期:126-130.
    [151]孙剑平,魏焕卫,江宗宝等.影响复合土钉墙的变形因素的实测分析[J].岩土工程学报,2010年7月,第32卷增刊1:430-434.
    [152]黄竟强,李东彬,赵基达,徐福泉.预应力碳纤维板锚具试验研究[J].施工技术,2010,2:96-98.
    [153]曾宪明,李世民,陆卫国等.制约锚固类结构发展应用的若干问题概论[J].岩土工程学报,2010年7月第32卷增刊1:57-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700