静压开口混凝土管桩施工效应试验及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
静压开口混凝土管桩的施工效应包括土塞效应、挤土效应、承载力时间效应和残余应力四部分。它们彼此相互影响共同制约桩的承载力性状。本文通过现场足尺试验、室内物理力学试验,统计分析和理论建模解析计算,系统揭示了施工效应中各个方面对静压开口混凝土管桩受力特性的影响规律。本文的主要工作及创新成果如下:
     土塞效应是指挤入桩孔内的土柱对桩-土体系的影响。本文通过现场试验和室内土工试验,获得了不同土层中土塞的物理力学特性、分层特征及发展规律,建立了土塞端阻与土塞增长率的线性表达式;发现桩端以上4-5倍桩径范围内土塞的物理力学指标优于原状土,桩端处土塞的静力触探锥尖阻力高于原状土67%。基于土塞效应,首次建立并解答了开口混凝土管桩“桩中桩”荷载传递解析模型。研究表明土塞摩擦力的发挥主要集中在桩端以上2倍桩内径范围内,桩端处的土塞摩阻力为桩壁外侧摩阻力的3.4倍。同时,本文提出了更适用于开口混凝土管桩的基于静力触探试验的承载力设计方法-ZJU设计法。
     挤土效应是指沉桩挤土对桩-土体系的影响。本文在粉土地基中进行了开口管桩的挤土效应试验,揭示了沉桩过程及静置期内桩周土体的应力、孔隙水压力和位移的变化规律,发现单桩压入对周围土体的影响范围约为15倍桩径。基于试验结果,建立了开口管桩挤土效应解析计算模型,将桩体的压入过程模拟为半无限体中一系列球孔的扩张。现场实测表明黏性土中管桩的挤土效应导致群桩中单桩的承载力降低35%-75%,并讨论了挤土效应的防治措施。通过自制的恒刚度剪切试验,揭示了桩侧摩阻力随剪切循环的指数型退化规律。
     时间效应是指管桩沉桩后承载力随休止时间的提高。本文提出了承载力三阶段增长理论模型,并建立了基于固结理论的承载力时效解析计算模型。计算表明,完全非闭塞的摩擦型开口管桩承载力随时间的相对增长速度高出闭口桩约10%。采用隔时复压试验和静载荷试验揭示了开口管桩的时效性规律,发现基桩承载力随时间呈对数型增长,每时间对数循环的增幅处于15%-29%范围。利用时效性的有益影响,提出了基于隔时复压试验的静压桩承载力优化方法。
     残余应力是指沉桩后由于桩身压缩不能完全恢复而残留于桩内的应力。本文利用光纤传感技术对开口管桩的残余应力展开足尺试验研究,建立了残余应力与沉桩过程的关系。根据试验结果,实现了基于能量守恒的残余应力模拟计算解答,揭示了桩土参数和沉桩方式对残余应力的影响规律。研究表明,忽略残余应力将高估中性点以上摩阻力,而低估中性点以下摩阻力及桩端阻力。
     开口管桩施工效应的系统研究表明,土塞效应、挤土效应、承载力时间效应和残余应力共同制约管桩的承载力性状。统计近2000根管桩静载荷试验发现,管桩的极限承载力与压桩终止瞬间的压桩力存在相关性:短桩的极限承载力往往小于终压力,而随着桩长的增加承载力将超过终压力;单桩极限承载力与终压力的比值随桩长径比呈双曲线型增长,持力层为黏性土且桩侧为粉土时增幅最显著。
The construction effects of the jacked open-ended concrete pipe pile consist of plugging effect, compaction effect, time effect on bearing capacity, and residual load. All of these effects interact with each other, controlling the characteristics on pile bearing capacity. A comprehensive research program, involving in-situ and laboratory test, numerical solution and statistical analysis, was conducted to reveal the influences of construction effects on mechanical characteristics for open-ended concrete pipe pile. This study includes the topics as follows:
     Plugging effect means the influences of the soil column squeezed into pile on the. A series of in-situ and laboratory tests reveal the physical, mechanical characteristics and the layer sequence of soil plug, as well as the changes on plug length during pile penetration in different soils. A linear relationship between the plug resistance and the plug incremental fill ratio is established. The test results indicate that the engineering properties of soil plug in the range of 4-5 pile diameters above the pile tip is better than the corresponding in-situ deposit. The CPT cone tip resistance for the soil plug near the pile tip is 67% larger than that for the in-situ deposit. Considering the plugging effect, a pile-in-pile transfer model is proposed. The research indicates that the mobilized plug friction is concentrated within the range of 2 diameters above the pile tip. The plug friction on the pile tip is 3.5 times as large as the pile shaft resistance at same level. A CPT-based design method for jacked open-ended concrete pipe pile, named ZJU method, is proposed in this study.
     Compaction effect means the influences of displacement behavior on pile-soil system. Full-scale tests in silty deposits reveal the developments of the total radial stress, pore pressure, movements in surrounding soils during and after pile installation. The test results indicate that the affecting range of single pile jacking on surrounding soil is approximately 15 pile diameters from pile wall. Based on test results, a computation model is proposed for researching the compaction effects of open-ended pipe piles. This model simulates the pile penetration as the expansions of a series of spherical cavities in semi-infinite space. Moreover, a in-situ research indicate that the compaction effects of pile group reduce the single pile capacity by 35%-75% in clayey soil, and several suggestions that could reduce the influence of compaction effects are proposed in this part. A series of tests using an invented constant normal stiffness direct shear system indicate an exponential decay trend of unit shaft resistance with increasing shear cycles.
     Time effect is defined as an increase in pile capacity over time after installation. A three-phase conceptual model is suggested in this paper. In addition, a computation model is proposed based on consolidation theory for evaluating the soil set-up on pile capacity. The research indicates that the relative setup rate for friction-type open-ended pile under full coring condition is 10% larger than that for corresponding closed-ended pile. A series of researches using re-pressed tests and static load tests reveal an approximately logarithmic set-up on bearing capacity with time after installation. The average increase rate for total capacity is in the range of 15%-29% per log cycle. In addition, an optimum design method of jacked pile based on re-pressed test is proposed taking advantage of the setup effect.
     Residual forces are compressive forces in a pile caused during pile penetration due to elastic compression of the pile material. A series of full-scale tests using optical fiber sensors was conducted on jacked open-ended concrete pipe pile to reflect the post-installation residual loads. Based on the test results, an expression of residual stress for jacked pile is resolved according to energy balance formulation. Then the influences of characters for pile and soil as well as installation methods on post-installation residual stress are researched. The researches indicate that the toe resistance and shaft resistance under neutral point would be under-interpreted and the shaft resistance above neutral point would be over-interpreted in pile load tests if the residual force was ignored.
     All the above mentioned studies on construction effects reveal the significant influences of plugging effect, compaction effect, time effect on bearing capacity and residual load on the characteristics on pile bearing capacity. A database including about 2000 static load tests for open-ended concrete piles is established to reveal the relationship between the ultimate capacity for single pile and terminative. The statistical analysis reveals that the ultimate capacity is always less than the terminative jacking force for short pile. With the increase of pile length, the ultimate capacity will exceed the terminative jacking force for some extent.The ratio between the ultimate capacity and terminative jacking force increases hyperbolically with the increase in the ratio between pile length and diameter, and a largerst ratio is corresponding to the bearing stratum of cohesive soil and surrounding soil of silty soil.
引文
[1]Adams, J.I., and Hanna, T. H. Ground movements due to pile driving behavior of piles[A]. London:Institution of Civil Engineers,127-133.
    [2]Altaee, A., Fellenius, B. H., and Evgin, E. Load transfer for piles in sand and the critical depth[J]. Canadian Geotcchnical Journal,1993,30(3),455-463.
    [3]Alawneh, A. S., and Husein Malkawi, A. I. Estimation of post driving residual stresses along driven piles in sand[J].Geotechnical Testing Journal,2000,23(3),313-326.
    [4]Alawneh, A. S., Nusier, O., Husein Malkawi, A. I., and Al-Kateeb, M. Axial compressive capacity of driven piles in sand:a method including post-driving residual stresses[J]. Canadian Geotechnical Journal,2001,38(2),364-377.
    [5]Alsamman, O.M. The use of CPT for calculating axial capacity of drilled shafts[D], PhD Thesis, University of Illinois, USA,1995.
    [6]American Petroleum Institute (API). Recommended practice of planning, designing and constructing fixed offshore platforms-working stress design (20th edition) [M]. Washington, 1993,59-61.
    [7]Astedt, B., Weiner, L., and Holm, G. Increase in bearing capacity with time for friction piles in silt and sand[J]. Proc. Nordic Geotech. Meeting.1992, p.411-416.
    [8]Attwooll, W. J., Holloway, D. M, Rollins, K. M., et al. Measured Pile Setup During Load Testing and Production Piling-I-15 Corridor Reconstruction Project in Salt Lake City[R]. Utah. Transportation Research Record 1663,2001, Paper No.99-1140,1-7.
    [9]Axelsson, G. Long-term set-up of driven piles in sand evaluated from dynamic tests on penetration rods[C]. Proc. of the 1st Int Conf. on Site Characterization, Atlanta,1998, Vol. 2, p.895-900.
    [10]Axelsson G. Long-term set-up of driven piles in non-cohesive soils[D], Ph.D. thesis, Royal Institute of Technology, Stockholm,2000.
    [11]Axelsson, G. A conceptual model of pile set-up for driven piles in non-cohesive soil[J]. Deep Foundations Congress, Geotechnical Special Publication,2002,116(1), p.64-79.
    [12]Baligh, M.M. Strain path method[J]. Journal of Geotechnical Engineering,1985,111(9), 1108-1136.
    [13]Baligh, M.M. Undrained deep penetration, Ⅰ:shear stresses[J]. Geotechnique,1986,36(4), 471-485.
    [14]Baligh, M. M. Undrained deep penetration, Ⅱ:pore pressures[J]. Geotechnique,1986, 36(4),487-501.
    [15]Baligh, M.M., and Levadou, J.N. Consolidation after undrained piezoeone penetratlon[J]. Journal of Geotechnical Engineering,1986,112(7),727-745.
    [16]Banerjee P K, Davis T G, Fathallah R C. Behavior of axially loaded driven piles[J]. Developments in Soil Mechanics and Foundation Engineering,1982.
    [17]Barmpopoulos, I. H., and Ho, T. K. Y., Jardine, R. J. et al. The large displacement shear characteristics of granular media against concrete and steel interface[C].Proceedings of the Conference on the Behavior of interfaces. Atlanta,2008.
    [18]Blanchet, R., Tavenas, F., and Garneau, R. Behavior of friction piles in soft sensitive clays[J]. Can. Geotech. J.,1980,17(2),203-224.
    [19]Bjerrum, L., and Johannessen, I. J. Pore pressure resulting from driving piles in soft clay[C]. Conf. on Pore Pressure & Suction in soil, Sydney, p.14-17,1960.
    [20]Bogard, J.D., and Matlock, H. Application of model pile tests to axial pile design.22nd annual Offshore Technology Conference, Houston,1990, Vol.3, p.271-278.
    [21]Bozozuk, M. Soil disturbance from pile driving in sensitive day[J]. Can. Geotech. J., 1978,15(3),346-361.
    [22]Branko, L., and Hugo, L. Short- and Long-term sharp cone tests in clay[J]. Canadian Geotechnical Journal,2005,42(1),136-146.
    [23]Briaud, J. L., and Tucker, L. Piles in sand: a method including residual stresses[J]. Journal of Geotechnical Engineering,1984,110(11),1666-1680.
    [24]Brucy, F., Meunier, J., and Nauroy, J. F. Behavior of pile plug in sandy soils during and after driving[C]. Proc.23rd Offshore Tech. Conf.,1991, Vol.1,145-154.
    [25]Bullock, P. J., Schmertmann, J. H., McVay, M. C. and Townsend, F. C.Side Shear Setup. I:Test Piles Driven in Florida[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(3), p.292-300.
    [26]Bullock, P. J., Schmertmann, J. H., McVay, M. C. and Townsend, F. C. Side Shear Setup. II:Results from Florida Test Piles[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2005,131(3), p.301-310.
    [27]Burland, J.B. Shaft friction of piles in clay- a simple foundation approach[J].Ground Engineering,1973,6(3),30-42.
    [28]Bustamante, M., and Gianseslli, L. Pile bearing capacity prediction by means of static penetrometer CPT[C]. Pcoceedings of the 2nd European Symposium on Penetration Testing. Amsterdam, the Netherlands,1982, p.493-500.
    [29]Butterfied R, and Banerjee P K. The elastic analysis of compressible pile and pile groups [J]. Geotechnique,1971,21(1),43-60.
    [30]Camp, W. M., and Parmar, H. S. Characterization of Pile Capacity with Time in the Cooper Marl-Study of Application of A Past Approach to Predict Long-Term Pile Capacity[J]. Journal of the Transportation Research Board, No.1663,1999, p.16-24.
    [31]Canadian Geotechnical Society. Canadian foundation engineering manual[M],1992.
    [32]Cao, L.E., THE, C.I., and Chang, M. F. Undrained cavity expansion in modified cam clay I:Theoretical analysis [J]. Geotechnique,2001,51(4),323-334.
    [33]Carter, J. P., Booker, J. R., and Yeung, S. K. Cavity expansion in cohesive frictional soils [J]. Geotechnique,1986,36(3),349-353.
    [34]Carter, J.P., Randolph, M.F., and Wroth, C.P. Some aspects of the performance of open-and closed-ended piles[J]. Num. Methods in Offshore Piling, ICE,1980,165-170.
    [35]Chang, M. F., The, C.I. and Cao, L.E. Undrained cavity expansion in modified Cam clay Ⅱ:Application to the interpretation of the piezocone test[J]. Geotechnique,2001,51(4), 335-350.
    [36]Chao, S.D., Eigenbrod, D.K., and Wriggers, P. Finite element analysis of pile installation using large-slip frictional contact[J]. Computers and Geotechnics,2005,32(1),17-26.
    [37]Charlie W.A., Rwebyogo M.F.J. and Doehring D.O. Time-dependent cone penetration resistance due to blasting[J]. J.Geotech. Engng.,1993,118 (8),1200-1215.
    [38]Cheung Y K, Tham L G, and Guo D J. Analysis of pile group by infinite layer method [J]. Geotechnique,1988,38(3),415-431.
    [39]Choi, Y., and O'Neill, M. W. Soil plugging and relaxation in pipe pile during earthquake motion. J. Geotech. Geoenvir. Eng.,1997,123(10),975-982.
    [40]Chopra, M. B. Finite element analysis of time-dependent large-deformation problems [J]. International Journal of Numerical and Analytical Methods in Geomechanics,1992,16(1), 101-130.
    [41]Chow. F.C. Investigations into the behaviour of displacement piles for offshore foundations[D]. Ph.D. Thesis, Imperial College, London,1997.
    [42]Chow F.C., Jardine R.J., Naroy J.F., and Brucy F. Effects of time on capacity of pipe piles in dense marine sand[J]. J. Geotech. Engng.,1998,124(3),254-264.
    [43]Chow, Y. K., and The, C. I. A theoretical study of pile heave[J]. Geotechnique,1990, 40(1),1-14.
    [44]Clausen, C.J.F., Aas, P.M. and Karlsrud, K. Bearing capacity of driven piles in sand, the NGI approach[C]. Proceedings of International Symposium on Frontiers in Offshore Geotechnics, Perth, Australia,2005, p.677-681.
    [45]Cooke R W. The settlement of friction pile foundation[J]. Foundation and Soil Technology, Building Research, S3,1974.
    [46]Cooke, R.W. Influence of residual installation forces on the stress transfer and settlement under working loads of jacked and bored piles in cohesive soils[J]. In Behaviour of deep foundations. Edited by R. Lundgren. American Society for Testing and Materials. Special Technical Publication STP 670,1979, p.231-249.
    [47]Cooke, R.W., and Price, G. Strains and displacements around friction piles[C]. Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow,1973, Vol.2.1,53-60.
    [48]Costa, L. M., Danziger, B. R., and Lopes, F. R. Prediction of residual driving stresses in piles[J]. Canadian Geotechnical Journal,2001,38(2),410-421.
    [49]Coyle, H. M., and Reese, L. C. Load transfer for axially loaded piles in clay[J]. Journal of the Soil Mechanics and Foundations Division,1966,92(2),1-26.
    [50]Danziger, B.R., Costa, A.M., Lopes, F.R., and Pacheco, M.P. Back-analyses of closed-end pipe piles for an offshore platform[C].In Proceedings of the 4th International Conference on the Application of Stress-Wave Theory to Piles, The Hague,1992, Vol.1, 557-562.
    [51]D'Appolonia, D. J., and Lambe, T. W. Performance of four foundations on end-bearing piles[J]. J. Soil Mech. Found. Div.,1971,97(1),77-93.
    [52]Darrag, A. A., and Lovell, C. W. A simplified procedure for predicting residual stresses for piles[C].Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Rio de Janeiro,1989,1127-1130.
    [53]Decourt, L., Thoughts concerning the interpretation of successiveload tests on the same pile[C]. Proceedings of the 9thPanamerican Conference on Soil Mechanics and Foundation Engineering,1991, Vol.2,585-597.
    [54]DeJong, J., Randolph, M. F., and White, D. J. Interface load transfer degradation during cyclic loading:a microscale investigation[J]. Soils and Foundations,2003,43(4),81-89.
    [55]De Nicola, A., and Randolph, M. F. The plugging behavior of driven and jacked piles in sand[J]. Geotechnique,1997,47(4),841-856.
    [56]De Ruiter, J., and Beringen, F. L. Pile foundation for large North Sea structures Marine structures[J]. Marine Geotechnology,1979,3,267-314.
    [57]Dingle, H. The testing and analysis of jacked foundation piles[D]. MEng Thesis, Cambridge University, UK,2006.
    [58]Doherty, P., Gavin, K., and Gallagher, D. Field investigation of the undrained base resistance of pipe piles in clay[C]. Proc. ICE, Geotech. Eng.,2010,163(GE1),13-22.
    [59]Ekstrom J. A field study of model pile group behaviour in non-cohesive soils[D]. Ph.D. Thesis, Chalmers Univ. of Technology, Gothenburg, Sweden,1989.
    [60]Eurocode 3. Design of steel structures, chapter 5, piling[M]. DD ENV 1993-1-1:1992.
    [61]Fahey, M., Lehane, B. M., Stewart, D. Soil stiffness for shallow foundation design in the Perth CBD[J]. Australian Geomechanics Journal,2003,38(3),61-90.
    [62]Fellenius B.H., Edde R.D. and Beriault L.L. Dynamic and static testing for pile capacity in a fine-grained soil[C]. Proc.4th Int. Conf. App. Stress-wave Theory to Piles, The Hague, The Netherlands,1992, p.401-408.
    [63]Fellenius, B.H., Riker, R.E., O'Brian, A.J. and Tracy, G.R.,1989. Dynamic and static testing in soils exhibiting set-up[J]. J. Geotech. Engng., ASCE,115(7),984-1001.
    [64]Finlay T.C.R., White D.J., Bolton M.D. and Nagayama T. Press-in Piling: The installation of instrumented steel tubular piles with and without driving shoes[C]. Proceedings of the 5th International Conference on Deep Foundation Practice, Singapore, 2001,p.199-208.
    [65]Fioravante, V. On the shaft friction modeling of non-displacement piles in sand[J]. Soils and Foundations,2002,42(2),23-33.
    [66]Fioravante,V., Jamiolkowski, M., and Lancellotia, R. An analysis of pressure meter holding test[J].Geotechnique,1994,44(2),227-238.
    [67]Fleming, W. G. K. A new method for single pile settlement prediction and analysis[J]. Geotechnique,1992,42(3),411-425.
    [68]Fleming, W.G.K., and W.K.Elson. Pile Engineering (2nd edition)[M].1992,118-122.
    [69]Eriksson, H.Behaviour of driven piles evaluated from stress wave measurements performed during dynamic probing[D]. Ph.D. Thesis, Royal Institute of Technology, Stockholm,1992.
    [70]Esrig, M.I., and Kirby, R.C. Soil capacity for supporting deep foundation members in clay[J]. ASTM special technical publication,1979, No.670,27-63.
    [71]Gavin, K. G. Experimental investigations of open and closed-ended piles in sand. PhD thesis, University of Dublin, Ireland,1998.
    [72]Gavin, K. G., and Lehane, B.M. The shaft capacity of pipe piles in sand[J]. Can. Geotech. J.,2003,40(1),36-45.
    [73]Gavin, K. G., O'Kelly, B. C. Effect of friction fatigue on pile capacity in dense sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007,133(1),63-71.
    [74]Ghionna, V. N., Jamiolkowski, M., Lancellotta, R., and Pedroni, S. Base capacity of bored piles in sands from in situ tests[C]. Geotechnical Seminar on Deep Foundation on Bored and Auger Piles,1993, Rotterdam, The Netherlands, p.67-75.
    [75]Gibson, R.E., and Anderson W.F. In situ measurement of properties with the pressuremeter[J]. Civil Engineering and Public Works Review,1961,56 (658),615-618.
    [76]Goble, G.G., and Hery, P. Influence of residual forces on pile driveability. In Proceedings of the 2nd International Conference on the Application of Stress Wave Theory to Piles, Stockholm,1984,154-161.
    [77]Gregersen, O.S., Aas, G., and DiBiagio, E. Load tests on friction piles in loose sand. Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow,1973, Vol.2.1,109-117.
    [78]Hagerty, D.J., Peek, R.B. Heave and lateral movements due to pile driving. Journal of soil Mechanical foundations division, ASCE,1971,97(11),1513-1532.
    [79]Heerema, E. P. Predicting pile driveability: heather as an illustration of the friction fatigue theory[J]. Ground Engineering,1980,13,15-37.
    [80]Heerema, E. P., and Jong, A. An advanced wave equation computer program which simulates dynamic plugging through a coupled mass-Spring system[C]. Conference On Numerical Methods in Offshore Piling, London, ICE,1980, p.37-42
    [81]Heydinger, A. G., and O'neill M. W. Analysis of axial pile-soilinteraction in clay[J]. International Journal for Numerical and Analysis Method in Geomechanics,1986,10(4), 857-871.
    [82]Holloway, D.M., Clough, G.W., and Vesic, A.S. The effects of residual driving stress on piles performance under axial loads[C]. Proceedings of the Offshore Technology Conference, Houston,1978, OTC 3306,.p.2225-2236.
    [83]Huang, S. Application of Dynamic Measurement on Long H-Pile Driven into Soft Ground in Shanghai[C], Proc., of 3rd International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, Ontario, Canada,1988, p.635-643.
    [84]Hunter, A. H., and Davisson, M. T. Measurement of Pile Load Transfer[J]. Proc. Conf. Performance of Deep Foundations Performance of Deep Foundations, ASTM STP 444, 1969,106-117.
    [85]Hwang, J. H., Lee, C. C., and Fang, J. S. Behavior of frictional driven piles in underconsolidated clay[C].1st Int. Symp. Struct. Found., Hangzhou,1994.
    [86]Hwang, J.H., Liang, N. and Chen, C. H. Ground response during pile driving[J] Journal of Geotechnical and Geoenvironmental Engineering,2001,127(11),939-949.
    [87]Jardine, R., Chow, F., Overy, R. et al. ICP design methods for driven piles in sands and clays[M].London: Thomas Telford Publishing,2005.
    [88]Johnston, I. W., Lam, T. S. K., and Williams, A. F. Constant normal stiffness direct shear testing for socketed pile design in weak rock[J]. Geotechnique,1987,37(1),83-89.
    [89]Karlsrud, K., and Haugen, T. Axial static capacity of steel model piles in overconsolidated clays[C].Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering:Balkema publisher,1985,1401-1406.
    [90]Kishida, H, and Isemoto, N. Behaviour of sand plugs in open-end steel pipe piles[C]. Proceedings 9th International Conference Soil Mechanics, Tokyo,1977, vol.1, p.601-604.
    [91]Komurka, V.E., Wagner, A.B., and Edil, T.B. Estimating Soil/Pile Set-Up[R]. Wisconsin Department of Transportation, USA WHRP Report No.03-05,2003.
    [92]Kulhawy F H. Limiting tip and side resistance:fact or fallacy [C]. Proceedings of Symposium on Analysis and Design of Pile Foundations, San Francisco,1984, pp.80-98.
    [93]Ladanyi, B., and Foriero, A. A numerical solution of cavity expansion problem in sand based directly on experimental stress-strain curves[J]. Can. Geotech. J.,1998,35(4), 541-559.
    [94]Lee, F. H., Juneja, A., and Tan, T. S. Stress and pore pressure changes due to sand compaction pile installation in soft clay[J]. Geotechnique,2004,54(1),1-16.
    [95]Lee, J. H., and Salgado, R. Determination of pile base resistance in sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(8),673-683.
    [96]Lehane, B.M. Experimental investigations of pile behaviour using instrumented field piles[D], PhD Thesis, Imperial College, London,1992.
    [97]Lehane, B. M., Chow, F. C., McCabe, B. A., and Jardine, R. J. Relationships between shaft capacity of driven piles and CPT end resistance[J]. Geotechnical Engineering,2000, 143(2),93-101.
    [98]Lehane, B.M., and Gavin, K. Base resistance of jacked pipe piles in sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(6),473-480.
    [99]Lehane, B.M., Schneider, J.A., and Xu, X. The UWA-05 method for prediction of axial capacity of driven piles in sand[M]. Proceedings of International Symposium on Frontiers in Offshore Geotechnics, Perth, Australia,2005, pp.683-689.
    [100]Lehane, B., Schneider, J, and Xu, X. CPT based design of driven piles in sand for offshore structures[R], GEO:05345. Perth:University of Western Australia,2005.
    [101]Lehane, B. M., and White, D. J. Lateral stress changes and shaft friction for model displacement piles in sand[J]. Can. Geotech. J.,2005,42,1039-1052.
    [102]Leonards, G.A., and Darrag, A.A. Analysis of residual stress effects in piles,Discussion[J]. Journal of Geotechnical Engineering, ASCE,1987,113,589-593.
    [103]Leong, E. C., and Randolph, M. F. Finite element analyses of soil plug response[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1991, 15(1),121-141.
    [104]Leung, C. F., Lee, F. H., and Yet, N. S. Centrifuge model study on pile subject to lapses during installation in sand. Int. J. Phys. Modeling Geotech.,2001,1(1),47-57.
    [105]Liu, J.W., Zhang, Z.Z. and Yu, F. Case History of Installing Instrumented Jacked Open-Ended Piles[J]. Accepted by J. Geotech. Geoenviron. Eng.,2011.
    [106]Lo, K. Y., and Stermac, A. G. Induced pore pressure during pile-driving operations. Proc. 6th Int. Conf. Soil Mech. Found. Eng., Montreal,1965, Vol.Ⅱ,285-289.
    [107]Long, J. H., Bozkurt, D., Kerrigan, J. A., and Wysockey, M. H. Value of Methods for Predicting Axial Pile Capacity, Transportation Research Record 1663, No.99-1333,1999, p.57-63.
    [108]Mabsout, M.E. and Tassoulas, J.L. A finite element model for the simulation of pile driving[J].International Journal for numerical methods in Engineering,1994,37:257-278.
    [109]Maiorano, R.M.S., Viggiani, C., and Randolph, M.F. Residualstress system arising from different methods of pile installation[C]. Proceedings of the 5th International Conference on the Application of Stress-Wave Theory to Piles, Orlando,1996, Vol.1, p.518-528.
    [110]Malhotra, S. Effect of wall thickness on plugging of open ended steel pipe p.iles in sand[C]. Contemporary issues in deep foundations (GSP 158), ASCE,2007.
    [111]Massad, F. The interpretation of load tests in piles, considering the residual point loads and the skin friction reversion. Part Ⅰ. Relatively homogeneous soils Sao Paulo[J]. Revista Solos e Rochas,1992.15(2),103-115.
    [112]McCabe, B. A., and Lehane, B. M. Behavior of axially loaded pile group driven in clayed silt[J]. J. Geotech. Geoenviron. Eng.,2006,132 (3),401-410.
    [113]McVay, M.C., Schmertmann, J., Townsend, F., and Bullock, P. Pile friction freeze:A field and laboratory study[R]. Florida Department of Transportation,1999, Vol.1,192-195.
    [114]Miller, G. A., and Lutenegger, A.J. Influence of pile plugging on skin friction in overconsolidated clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,1997,123(6),525-533.
    [115]Mindlin, R. D.Force at a point in the interior of a semi-infinite soild[J]. Physics,1936, 7:195-202.
    [116]Ng E.S., Tsang S.K. and Auld B.C. Pile foundation: The behaviour of piles in cohesionless soils[R]. Federal Highway Adm. Report FHWA-RD-88-081,1988.
    [117]Orrije,O., and Brom, B.B. Effects of pile driving on soil properties [J]. Journal of soil Mechanical foundations division, ASCE,1967,93(5):59-73.
    [118]O' Neill, M.W., Hawkins, R.A., and Audibert, J.M.E. Installation of pile group in overconsolidated clay. Journal of the Geotechnical Engineering Division, ASCE,1982,108, 1369-1386.
    [119]O'Neill M. W., and Raines, R.D., Load transfer for pipe piles in highly pressured dense sand[J]. Journal of Geotechnical Engineering,1991,117(8),1208-1226.
    [120]Paik, K. H., and Lee, S. R., Behavior of soil plugs in open-ended model piles driven into sands[J], Marine Georesources and Geotechnology,1993,11(4),353-373.
    [121]Paik, K., and Salgado, R. Determination of Bearing Capacity of Open-Ended Piles in Sand[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(1),46-57.
    [122]Paik, K., Salgado, R., Lee J., and Kim B. Behavior of open- and closed-ended piles driven into sands[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003, 129(4),296-306.
    [123]Paik, K., and Salgado, R. Effect of pile installation method on pipe pile behavior in sands. Geotech. Test. J.,2004,27(1):1-11.
    [124]Paikowsky, S. G., Whitman, R. V. The effects of plugging on pile performance and design[J]. Canadian Geotechnical Journal,1990,27,429-440.
    [125]Pestana, J. M., Hunt, C. E., and Bray, J. D. Soil deformation and excess pore pressure field around a closed-ended pile[J]. J. Geotech. Geoenviron. Eng.,2002,128(1),1-12.
    [126]Poulos, H. G. Analysis of residual stress effects in piles[J]. Journal of Geotechnical Engineering,1987,113(3),216-229.
    [127]Poulos, H. G. Efect of pile driving on adjacent piles in clay[J]. Can. Geotech. J.,1994, 31(6),856-867.
    [128]Poulos, H. G, and Davis, E. H. Pile foundation analysis and design[M]. John Wiley and Sons, New York,1980.
    [129]Preim, M. J., March, R., and Hussein, M. Bearing capacity of piles in soils with time dependent characteristics[C]. Proc.,3rd Int. Conf. on Piling and Deep foundations, Brookfield,1989,p.363-370.
    [130]Randolph, M. F. Modelling of the soil plug response during pile driving[C]. Proc.9th SE Asian Geotechnical Conf., Bangkok,1987, vol.2, p.6.1-6.14.
    [131]Randolph, M.F. The effect of residual stress in interpretingstress wave data[D]. Computer Methods and Advances in Geomechanics, A.A. Balkema, Rotterdam.1991, Vol. 1, p.777-782.
    [132]Randolph, M. F. Science and empiricism in pile foundation design[J]. Geotechnique, 2003,53(10),847-875.
    [133]Randolph, M. F., Carter, J. P. and Wroth, C. P. Driven piles in clay-the effects of installation and subsequent consolidation[J]. Geotechnique,1979,29(4),361-393.
    [134]Randolph, M. F., Dolwin, J., and Beck, R. Design of driven piles in sand[J]. Geotechnique,1994,44(3),427-448.
    [135]Randolph, M. F., Leong E.C., and Houlsby, G.T. One-dimensional analysis of soil plugs in pipe piles[J].Geotechnique,1991,41(4),587-598.
    [136]Randolph, M. F., May, M. Leong E.C., Hyden, A. M., et al. Soil plug response in open-ended pipe piles[J] Journal of Geotechnical Engineering,1992,118(5),733-743.
    [137]Randolph, M. F., and Wroth, C. P. Analysis of deformation of vertically loaded piles [J]. Journal of the Geotechnical Engineering Division,1978,104(12),1465-1488.
    [138]Randolph, M. F., and Wroth, C. P. An analytical solution for the consolidation around a driven pile[J]. Int. J. Numer. Anal. Methods Geomech.,1979,29(3),217-229.
    [139]Rausche F., Thendean G., Abou-matar H., et al. Determination of pile drivability and capacity from penetration tests[R]. Report no.FWHA-RD-96-179, Volume 1.,1997.
    [140]Rieke, R. D., and Crowser, J. C. Interpretation of pile load test considering residual stresses[J]. Journal of Geotechnical Engineering,1987,113(4),320-334.
    [141]Robert, Y. A few comments on pile design[J]. Canadian Geotechnical Journal,1997, 34(4),560-567.
    [142]Roy, M., Blanchet, R., Tavenas, F., et al. Behavior of sensitive clay during pile driving[J]. Can. Geotech. J.,1981,18(2),67-85.
    [143]Reese, L. C., and Seed, H. B. Pressure distribution along friction piles. Proc. ASTM, 1955,1156-1182.
    [144]Sagaseta,C. Analysis of undrained soil deformation due to ground loss[J]. Geotechnique, 1987,37(3):67-86.
    [145]Sagaseta, C., and Whittle, A. J. Prediction of ground movements due to pile drving in clay[J] Journal of Geotechnical and Geoenvironmental Engineering,2001, 127(11):939-949.
    [146]Samson, L., and Authier, J. Change in pile capacity with time, Case histories[J]. Canadian Geotech. Journal,1986,23(1),174-180.
    [147]Schmertmann J.H. The mechanical aging of soils.25th Terzaghi Lecture[J], J.Geotech. Engng.,ASCE,1991,117(8),1288-1330.
    [148]Schmertman, J.H. Guidelines for use in the soils investigation and design of foundations for bridge structures in the State of Florida[R]. Research Report 121-A, Florida Department of Transportation,1967.
    [149]Schneider, J.A., and White, D.J. Back analysis of Tokyo port bay bridge pipe pile load tests using piezocone data[C].International Workshop on Recent Advances of Deep Foundations. Yokosuka, Japan,2007, p.183-194.
    [150]Seed, H. B., and Reese, L. G. The action of soft clay along friction piles[J]. Transaction, ASCE,1957,731-754.
    [151]Seidel J.P, Haustorfer, I.J., and Plesiotis S. Comparison of dynamic and static testing for piles founded into limestone[C]. Proc.3rd Int. Conf. App. Stress-wave Theory to Piles, Ottawa,1988, p.717-723.
    [152]Selby, A.R. Control of vibration and noise during piling[M]. Brochure publication, British Steel, UK,1997.
    [153]Skov, R., and Denver, H.Time-dependence of Bearing Capacity of Piles[C]. Proc.,3rd Int. Conf. on the Application of Stress-Wave Theory to Piles, Vancouver, BC.,1988, p.879-888.
    [154]Soderman, L. G., and Milligan, V. Capacity of friction piles in varved clay increased by electro-osmosis[C]. Proc.5th Int. Conf. on Soil Mech. and Found. Eng., Paris,1961,2, 143-147.
    [155]Svinkin, M.R., Morgano, C. M. and Morvant, M. Pile Capacity as a Function of Time in Clayey and Sandy Soils[C]. Proceedings of 5th International Conference and Exhibition on Piling and Deep Foundations, Belgium,1994, p.1.11.1-1.11.8.
    [156]Tan, S. L., Cuthbertson, J. and Kimmerling, R. E. Prediction of Pile Set-up in Non-cohesive Soils. Current Practices and Future Trends in Deep Foundations[J]. Geotechnical Special Publication,2004, No.125, p.50-65.
    [157]Tavenas F., and Audy, R. Limitations of the driving formulas for predicting bearing capacities of piles in sand[J]. Can. Geotech. J.1972,9(1), p.47-62.
    [158]Terzaghi, K., and Peck, R. B. Soil Mechanics in Engineering Practice [M]. New York: John Wiley & Sons,1948.
    [159]Thompson, C.D. and Thompson, D.E. Real and apparent relaxation of driven piles[J]. Journal of Geotechnical Engineering,1985,111(2),225-237.
    [160]Thurman A G., D'Appolonia. Computed movement of friction and end-bearing piles embedded in uniform and stratified soils [C]. Proceeding of 6th International Conference on Soil Mechanics and Foundation Engineering, Montereal,1965, Vol.2, p.323-327.
    [161]Trochanis, A. M., Bielak, J., and Christiano, P. Three-dimension nonlinear study of piles [J]. Journal of geotechnical engineering,1991,117(3), 429-447.
    [162]Vesic, A. S.A study of bearing capacity of deep foundations[R]. Final Report Project B-189, Georgia Institute of Technology, Engineering Experiment Station, Atlanta,1967.
    [163]Vesic A. S. Expansion of cavities in infinite soil mass[J]. Soil Mech. and Foud. Div.,1972,98(3),265-290.
    [164]Vesic, A. S. On the significance of residual loads for load response of piles[C]. Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering. Tokyo,374-379,1977.
    [165]Wendel, E. On the Test Loading of Piles and Its Application to Foundation Problems in Gothenburg[M]. Tekniska Samf Goteberg handl.,1900, Vol.7,3-62.
    [166]White D. J. An investigation into the behavior of press-in piles[D]. Cambridge, UK: University of Cambridge,2002.
    [167]White, D. J., and Bolton, M. D. Displacement and strain paths during plane strain model pile installation in sand[J]. Geotechnique,2002,54(6),375-398.
    [168]White, D.J., and Deeks, A.D. Recent research into the behaviour of jacked foundation piles[C]. International Workshop on Recent Advances of Deep Foundations. Yokosuka, Japan,2007, p.3-26.
    [169]White, D. J., Finlay, T. C. R., Bolton, M. D., et al. Press-in piling: Ground vibration and noise during pile installation[C]. Proc. Int. Deep Foundations Congress, Orlando, USA, ASCE Special Publication,2002,116, p.363-371.
    [170]White, D. J., and Lehane, B.M. Fiction fatigue displacement piles in sand [J]. Geotechnique,2004,54(10),645-658.
    [171]White, D. J., Schneider, J. A., and Lehane, B. M. The influence of effective area ratio on shaft friction of dis-placement piles in sand[C]. Proceedings of International Symposium on Frontiers in Offshore Geotechnics, Perth, Australia,2005, p.741-747.
    [172]Whittle, A. J., and Sutabutr, T. Prediction of Pile Setup in Clay[R]. Transportation Research Record 1663, Paper No.99-1152,1999, p.33-40.
    [173]Xu, X., Schneider J. A., and Lehane B. M. Cone penetration test (CPT) methods for end-bearing assessment of open-and closed-ended driven piles in siliceous sand[J]. Canadian Geotechnical Journal,2008,45(8),1130-1141.
    [174]Xu, X. T., Liu, H, L., and Lehane, B. M. Pipe pile installation effects in soft clay[J]. Geotech. Eng.,2006,159(GE4),285-296.
    [175]Yang, J., Tham, L. G., Lee, P. K. K., et al. Observed performance of long steel H-piles jacked into sandy soils[J]. J. Geotech. Geoenviron. Eng.,2006,132(1),24-35.
    [176]Yang, N. C. Relaxation of Piles in Sand and Inorganic Silt [J]. Journal of the Soil Mechanics and Foundations Division,1970, March,395-409.
    [177]York, D.L., Brusey, W.G. Clemente, F.M., et al. Setup and relaxation in glacial sand [J]. Journal of Geotechnical Engineering,1994,120(9),1498-1511.
    [178]Yu, F. Behavior of large capacity jacked piles[D]. PhD thesis, The University of Hong Kong, Hong Kong,2004.
    [179]Yu, F., Tan, G. H., and Yang, J. Post-installation residual stresses in preformed piles jacked into granular soils [R]. Hong Kong:The University of Hong Kong,2010.
    [180]Yu, F., and Yang, J. Mechanism and assessment of interface shear between steel pipe pile and sand. Accepted by the GeoHunan International Conference II, Hunan, China, ASCE Geotech. Spec. Pub.,2011.
    [181]Yu, H.S., and Houlsby, G. T. Finite cavity expansion in dilatant soils:loading anal ysis[J].Geotechnique,1991,41(2),173-183.
    [182]Zai J. M. Pile dynamic testing experiences in Shanghai[C]. Proc.3rd Int. Conf. App. Stress-wave Theory to Piles, Ottawa,1988, p.781-792.
    [183]Zhang, L. M., Ng, C. W. W., Chan, F., et al. Termination criteria for jacked pile construction and load transfer in weathered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2006,132(7),819-829.
    [184]Zhang, L. M., and Wang, H. Development of residual forces in long driven piles in weathered soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007, 133(10),1216-1228.
    [185]Zhang, L. M. and Wang, H. Field study of construction effects in jacked and driven steel H-piles[J]. Geotechnique,2009,59(1),63-69.
    [186]Zhu, G. Y. Wave Equation Applications for Piles in Soft Ground[C]. Proc.,3rd International Conference on the Application of Stress-Wave Theory to Piles, Ottawa, Ontario, Canada,1988, p.831-836.
    [187]贝耀平.Y型沉管灌注桩挤土效应和沉降分析研究[D].河海大学硕士论文,2007.
    [188]陈波,李向秋,闫澍旺.动力打入钢管桩中的土塞研究现状[J].中国海上油气(工程),2003,15(1),25-28.
    [189]陈晶,高峰,沈晓明.基于ABAQUS的桩侧摩阻力仿真分析[J].长春工业大学学报:自然科学版,2006,27(1),27-29.
    [190]陈龙珠,高飞,宋春雨等.静压预制桩挤土效应的现场监控与分析[J].上海交通大学学报,2003,37(12),1910-1915.
    [191]陈龙珠,梁国钱.桩轴向荷载-沉降曲线的一种解析算法[J].岩土工程学报,1994,16(6),30-38.
    [192]陈书申.固结效应与静压预制桩技术应用[J].土工基础,2001,15(4),27-30.
    [193]陈文.饱和软土中静压桩沉桩机理及挤土效应研究[D].河海大学硕士论文,1999.
    [194]陈文,施建勇,龚友平,周林根等.饱和粘土中静压桩挤土效应的离心模型试验研究[J].河海大学学报,1999,27(6),103-109.
    [195]陈文,施建勇,龚友平等.饱和粘土中沉桩机理及挤土效应压研究综述[J].水利水电科技发展,1999,3(8),38-41.
    [196]陈园卿.减少沉桩挤土的工程措施研究[D].浙江大学硕士论文,2005.
    [197]杜来斌.PHC管桩土塞效应浅析[J].工业建筑,2005,35(增),590-594,612.
    [198]方万军.软土中管桩挤土效应分析及影响研究[D].浙江大学硕士论文,2006.
    [199]龚维明,蒋永生,穆保岗等.某海洋平台钢管桩可打性分析[J].岩土工程学,2000,22(2),227-230.
    [200]何耀辉.静压桩沉桩挤土效应研究及实测分析[D],浙江大学硕士论文,2005.
    [201]胡琦,蒋军,严细水等.回归法分析预应力管桩单桩极限承载力时效性[J].哈尔滨工业大学学报,2006,38(4),602-605.
    [202]胡士兵.沉桩挤土球孔扩张理论研究和数值模拟分析[D].浙江大学博士学位论文,2007.
    [203]胡伟.排土桩挤土效应研究[D].西安建筑科技大学硕士论文,2006.
    [204]胡中雄.饱和软黏土中单桩承载力随时间的增长[J].岩土工程学报,1985,7(3),58-61.
    [205]胡中雄,侯学渊.上海饱和软土中打桩的挤土效应[R],同济大学岩土系土力学及基础工程教研室,1987.
    [206]黄宏伟.微型预制桩单桩承载力时效现场试验分析[J].岩石力学与工程学报.2000,19(5),666-669.
    [207]黄院雄,许青侠,胡中雄.饱和土中引起桩周围土体的位移[J].工业建筑,2000,30(7),15-19.
    [208]姜颢.预压托换桩的压桩机理与压桩阻力研究[D].西安科技大学硕士论文,2008.
    [209]蒋明镜,沈珠江.岩土类软化材料的柱形孔扩张统一解问题.岩土力学,1996,17(1),1-8.
    [210]蒋跃楠,韩选江.静压桩终压力及单桩竖向承载力的相关性[J].南京工业大学学报,2006,28(5),63-66.
    [211]姜坷.考虑软粘土结构性损伤的静压桩沉桩规律分析[D].浙江大学硕士学位论文,2003.
    [212]李月健.土体内球形孔扩张及挤土桩沉桩机理研究[D].浙江大学博士学位论文,浙江大学,2001.
    [213]鹿群,龚晓南,崔武文等.静压单桩挤土位移的有限元分析[J].岩土力学,2008,28(11),2426-2430.
    [214]李雄,刘金砺.饱和软土中预制桩承载力时效研究[J].岩土工程学报,1992,14(4),9-16.
    [215]刘国辉.土塞对管桩单桩竖向承载力计算的影响[D].天津大学硕士论文,天津,2007.
    [216]刘汉龙,雍君,丁选明等.现浇X型混凝土桩的荷载传递机理初探[J].防灾减灾工程学报,2009,29(3),267-271.
    [217]刘汉龙,费康,周云东等.现浇混凝土薄壁管桩内摩阻力的数值分析[J].岩土力学,2004,z2,211-216.
    [218]刘辉.静压桩压桩力计算及长期承载力预测[D].青岛理工大学硕士论文,青岛,2009.
    [219]刘俊龙.砾卵石层中预制桩的承载性状研究[J].岩土力学,2008,29(5),1280-1284.
    [220]刘俊伟,张明义等.基于球孔扩张理论和侧阻力退化效应的压桩力计算模拟[J].岩土力学,2009,30(4),1181-1185.
    [221]刘金砺,高文生,邱明兵等.建筑桩基技术规范应用手册[M].中国建筑工业出版社,2010
    [222]刘润,禚瑞花,闫澍旺.大直径钢管桩土塞效应的判断和沉桩过程分析[J].海洋工程,2005,23(2),71-76.
    [223]刘松玉,吴燕开.论我国静力触探技术(CPT)现状与发展[J].岩土工程学报,2004,26(4),553-556.
    [224]刘学增,朱合华.上海典型土层与混凝土接触特性的试验研究[J].同济大学学报,2004,32(5),601-605.
    [225]刘英克,刘松玉,田兆丰.PHC管桩挤土效应理论研究[J].常州工学院学报,2008,21(10),146-148.
    [226]鲁祖统.软粘土地基中静力压桩挤土效应的数值模拟[D].浙江大学,1998.
    [227]陆昭球,高倚山,宋铭栋.关于开口钢管桩工作性状的几点认识[J].岩土工程学报,1999,21(3),111-114.
    [228]卢廷浩,王伟,王晓妮.土与结构接触界面改进直剪试验研究[J].沈阳建筑大学学报(自然科学版),2006,22(1),82-85,99.
    [229]罗战友.静压桩挤土效应及施工措施研究[D].浙江大学博士学位论文,2004.
    [230]吕凡任.倾斜荷载作用下斜桩基础工作性状研究[D].杭州:浙江大学硕士论文,2004.
    [231]律文田,王永和,冷伍明.PHC管桩荷载传递的试验研究和数值分析[J].岩土力学, 2006,27(3),466-469.
    [232]马海龙.开口桩与闭口桩承载力时效的试验研究岩石力学与工程学报[J].2008,27(S2),3349-3353.
    [233]帕塔列耶夫.桩和桩基的计算,杨振清译,人民交通出版社,1954.
    [234]樊良本.关于打桩引起的土体位移及土中应力状态变化的探讨[D].同济大学,1981.
    [235]潘赛军.管桩静压过程中地基孔压变化及承载力时效研究[D].浙江大学硕士论文,2006.
    [236]彭劼,施建勇,娄亮等.考虑时效作用的桩基承载力计算方法研究.岩土力学,2003,24(1),118-122.
    [237]商宇.静压预制桩在南宁的应用研究与实践[D].重庆大学硕士论文,2008.
    [238]邵勇,夏明耀.预估打桩引起临近结构物桩基位移的新方法.同济大学学报,1996,24(2),137-141.
    [239]施鸣升.沉入粘性土中桩的挤土效应探讨[J].建筑结构学报,1983,4(1),60-71.
    [240]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社,1984.
    [241]孙世光.群桩沉桩挤土效应分析[D].天津城市建设学院硕士论文,2007.
    [242]孙晓东.成层地基土中静压桩挤土效应的模型试验研究及有限元数值模拟[D].天津城市建设学院硕士论文,2010.
    [243]唐世栋.用有效应力原理分析桩基承载力的变化全过程[D].同济大学,1990,50-66.
    [244]唐世栋,何连生,傅纵.软土地基中单桩施工引起的超孔隙水压力[J].岩土力学,2001,22(6),725-729.
    [245]唐世栋,何连生,叶真华.软土地基中桩基施工引起的侧向土压力增量[J].岩土工程学报,2002,24(6),752-755.
    [246]唐世栋,王永兴,叶真华.饱和土地基中群桩施工引起的超孔隙水压力[J].同济大学学报,2003,31(11),1290-1294.
    [247]铁路触探研究组.静力触探确定打入混凝土桩的承载力[J].岩土工程学报,1979,1(1),4-23.
    [248]王亮.基于统一强度理论的桩基扩孔问题弹塑性分析[D].长安大学博士论文,2008.
    [249]王启铜,龚晓南,曾国熙.考虑探讨拉、压模量不同时静压桩的沉桩过程[J].浙江大学学报,1992,26(2),678-687.
    [250]王伟,卢廷浩,宰金珉.预制桩承载力时效的人工神经网络预测[J].水运工程,2004,370(11),9-12.
    [251]王伟,宰金珉,王旭东.考虑时间效应的预制桩单桩承载力解析解[J].南京工业大学 学报2003,25(5),13-17.
    [252]王哲,龚晓南,丁洲祥,等.大直径薄壁灌注筒桩土芯对承载性状影响的试验及其理论研究[J].岩石力学与工程学报,2005,24(21),3917-3921.
    [253]吴庆勇,张忠苗.开口管桩极限承载力的分析与简化计算[J].工程勘察,2006,4,10-12,16.
    [254]谢永健,王怀忠,朱合华.软黏土中PHC管桩打入过程中土塞效应研究[J].岩土力学,2009,30(6),1671-1675.
    [255]谢志专.静压开口管桩沉桩挤土效应机理研究[D].浙江大学硕士论文,2011.
    [256]徐建平,周健,许朝阳等.沉桩挤土效应的模型试验研究[J].岩土力学,2000,21(3),235-238.
    [257]许清侠,黄院雄.有限元分析打桩及打桩后桩周土再固结[J].建筑科学,2000,16(1),35-39.
    [258]杨敏,周洪波,朱碧堂.长期重复荷载作用下土体与邻近桩基相互作用研究[J].岩土力学,2007,28(6),1083-1090.
    [259]杨敏,周洪波,杨桦.基坑开挖与临近桩基相互作用分析[J].土木工程学报,2005,38(4),91-96.
    [260]姚笑青.桩间土的再固结与桩承栽力的时效[J].上海铁道大学学报1997,18(4),91-94.
    [261]姚笑青,胡中雄.饱和软土中沉桩引起的孔隙水压力估算[J].岩土力学,1997,18(4),30-34.
    [262]俞峰,张忠苗.混凝土开口管桩竖向承载力的经验参数法设计模型[J].土木工程学报,2011,44(7),100-111.
    [263]俞峰,谭国焕,杨峻等.静压桩残余应力的长期观测性状[J].岩土力学,2011,32(8),2318-2324.
    [264]俞峰,杨峻.砂土中钢管桩承载力的静力触探设计方法[C].第十届中国桩基工程学术会议,河南开封,2011.
    [265]俞峰,谭国焕,杨峻,等.粗粒土中预制桩的静压施工残余应力[J].岩土工程学报,2011,33(12),待刊.
    [266]宰金珉,杨嵘昌.桩周土非线性位移的广义剪切位移法[J].南京建筑工程学院院报,1993,1,1-16.
    [267]周火垚,施建勇.饱和软黏土中足尺静压桩挤土效应试验研究[J].岩土力学,2009,30(11):3291-3296.
    [268]郑俊杰,聂重军,鲁燕儿.基于土塞效应的柱形孔扩张问题解析解[J].岩石力学与工程学报,2006,25(增2),4004-4006.
    [269]郑俊杰,邢泰高,赵本.沉桩挤土效应的参变量有限元分析[J].岩土工程学报,2005,27(7),796-799.
    [270]詹晖.沉桩挤土过程的理论与数值分析[D].上海交通大学硕士论文,2006.
    [271]张海霞.静压桩挤土效应分析[D].华南理工大学硕士论文,2010.
    [272]张鹤年,刘松玉,季鹏.PHC管桩在高速公路桥梁工程施工中引起的超孔隙水压力分析[J].建筑结构,2008,38(4):38-40.
    [273]张季如.砂性土内球形孔扩张的能量平衡分析及其应用[J].土木工程学报,1994,27(4),37-44.
    [274]张明义.静力压入桩的研究与应用[M].北京:中国建材工业出版,2004.
    [275]张明义,邓安福等.静力压桩数值模拟的位移贯入法[J].岩土力学,2003,24(1),113-117.
    [276]张明义,刘俊伟,于秀霞.饱和软黏土地基静压管桩承载力时间效应试验研究[J].岩土力学,2009,30(10),3005-3009.
    [277]张文超.静压桩残余应力数值模拟及其对桩承载性状影响分析[D].天津:天津大学硕士论文,2007.
    [278]张友权.静压桩挤土问题及减小其效应的措施研究[D].中冶集团建筑研究总院硕士论文,2007.
    [279]张宇.长春地区静压桩承载性状及应用研究[D].吉林大学硕士论文,2009.
    [280]张忠苗.预应力管桩在杭州的应用[C].深基础工程实践与研究,中国水利水电出版社,1999,301-306.
    [281]张忠苗.软土地基超长嵌岩桩的受力性状[J].岩土工程学报,2001,23(5),552-556.
    [282]张忠苗,辛公锋,俞洪良.软土地基管桩挤土浮桩与处理方法研究.岩土工程学报,2006,28(5),549-552.
    [283]张忠苗.桩基工程[M].北京:中国建筑材工业出版,2007.
    [284]张忠苗.工程地质学[M].北京:中国建筑工业出版社,2007.
    [285]张忠苗.灌注桩后注浆技术及工程应用[M].北京:中国建筑工业出版社,2009.
    [286]张忠苗,喻君,张广兴.PHC管桩和预制方桩受力性状试验对比分析[J].岩土力学,2008,28(18),3061-3065.
    [287]张忠苗,刘俊伟,俞峰等.静压预应力混凝土管桩土塞效应试验研究[J].岩土力学,2011,32(8):2274-2280.
    [288]张忠苗,张乾青,刘俊伟等.软土地区预应力管桩偏位处理实例分析[J].岩土工程学报,2010,32(6),975-980.
    [289]张忠苗,张乾青,贺静漪等.浙江某高层预应力管桩偏位和上浮处理实例分析 [J].岩土力学,2010,31(9),2919-2924.
    [290]郑刚,顾晓鲁.软土地基上静力压桩若干问题的分析[J].建筑结构,1998,19(4),54-60.
    [291]郑刚.高等基础工程学[M].机械工业出版社,2007.
    [292]周健,徐建平,许朝阳.群桩挤土效应的数值模拟[J].同济大学学报,2000,28(6),721-725.
    [293]周健,王冠英.开口管桩土塞效应研究进展及展望[J].建筑结构,2008,38(4),25-29.
    [294]JGJ94-94.建筑桩基技术规范[S].北京:中华人民共和国建设部,1994.
    [295]JGJ94-2008.建筑桩基技术规范[S].北京:中华人民共和国建设部,2008.
    [296]JTG D63-2007.公路桥涵地基与基础设计规范[S].北京:中华人民共和国交通部,2007.
    [297]JGJ106-2003建筑桩基检测技术规范[S].北京:中华人民共和国建设部,2003.
    [298]桩基工程手册编写委员会.桩基工程手册[M].中国建筑工业出版社,1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700