梯温楔压对喷射沉积SiC_p/7090铝基复合材料致密化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坩埚移动式喷射沉积技术作为一种先进的材料制备新技术,在制备大尺寸合金及金属基材料方面具有显著的优越性。然而喷射沉积坯料通常存在一定数量的孔隙,颗粒表面存在一定数量的氧化膜,颗粒之间未能完成良好的冶金结合状态。因些需要致密化和塑性变形才能获得理想的组织和性能。楔形压制是一种新型的压制工艺,即通过局部变形、多道次小变形累积实现大变形的致密化加工方法。本文在恒温楔压的基础上引入温度梯度,很好的解决了恒温楔压时高向变形不完全的问题,大大减化了工艺流程,本文主要对比研究了恒温楔压与梯温楔压两种加工工艺对SiC/7090铝基复合材料致密化的影响,并系统的研究了梯温楔压的致密化规律,通过对比实验发现梯温楔压很好地解决了恒温楔压时一次加工后致密化效果不佳的问题,这对大尺寸喷射沉积多孔材料的后续致密化和塑性变形的研究具有重要的指导意义,本文主要得出如下结论:
     (1)通过模拟坯料的加热过程,得知对坯料加热时,当加热时间为90min时,坯料的温度梯度最为理想,呈现出136℃的温度梯度。通过实验中对坯料的加热过程得知,当加热为时间为90min时,坯料的正面及侧面分别呈现出180℃及250℃的温度梯度。
     (2)梯温楔压时,坯料首先呈现出“双曲线”的形状,在中期与后期,坯料与模壁完全接触。恒温楔压时,坯料始终呈现出“倒梯形”的形状。梯温楔压初期上层与下层的金属流动优于中层的金属,中期与后期,金属的流动趋于均衡,最终整体基本达到致密化效果。恒温楔压时,坯料的上层金属首先发生流动,上层的流动速率大于中下层的金属,在整个压制过程中,中下层金属始终未与模壁接触。
     (3)梯温楔压与恒温楔压时,最大高向压下量均为25%,在同一位置的取样点,梯温楔压的相对密度均高于恒温楔压的相对密度。梯温楔压与恒温楔压时都是上层的硬度值最大,最大值分别为117.3HB与118.3HB,梯温楔压时硬度值分布比较均匀,大部分区域的硬度值都大于100HB,而恒温楔压的硬度值分布不均匀,底层的最大硬度值仅为68.5HB。
     (4)梯温楔压过程中,高向变形量为5%,15%以及25%时,在长度方向上,沿压头运动方向,坯料的相对密度逐渐增大。在宽度方向上,坯料中间的相对密度最小,坯料边缘的相对密度较大。
     (5)梯温楔压过程中,当高向变形量为5%时,相对密度呈现出上层最大,下层次之,中间层最小的分布规律。当高向变形量为15%与25%时,相对密度呈现出上层最大,中间层次之,下层最小的分布规律。
     (6)梯温楔压过程中,当高向变形量为25%时,试样的抗拉强度为304.52MPa,伸长率为2.4%,这些力学性能指标均优于此高向变形量时的恒温楔压坯料。温楔压后的断口上并无明显的大孔洞。
As an advanced materials preparation technology, spray deposition has shown remarkable superiority in producing large-sized alloys and metal matrix composites. However, the spray deposited preforms usually contain a certain quantity of porosity. Besides, the oxide film on the surface of the particles leads to weak metallurgical bonding between the particles. In order to obtain an ideal structure and performance, densification and plastically deformation are needed further. Wedge pressing is a new technology of pressing, in which the large deformation can be obtained through the sum-up of local deformation and multi-step small deformation. In this thesis, temperature gradient is introduced to constant temperature wedge pressing, which solves the problem of abundant deforming in short transverse through constant temperature wedge pressing. The process is simplified through the technology of temperature gradient wedge pressing. Effect of gradient temperature wedge pressing and constant temperature wedge pressing on densification of Spray deposited SiCp/7090 composite is compared. The regularity of densifying for gradient temperat- ure wedge pressing is also studied. It is found that the problem that the degree of densifying is inadequate by once pressing in constant temperature wedge pressing is solved through gradient temperature wedge pressing. The research is vital not only to the further densification but also to the further research on plastically deforming. The conclusion of this thesis can be concluded as following:
     (1) By simulating the process of heating the billet, it shows that when the billet is heated for 90 minutes, the billet’s temperature gradient is 136℃,which is perfect. It can be seen in the experiment that when the billet is heated for 90 minutes, the billet’s temperature gradient is 180℃in the front face and is 250℃in the side face.
     (2) In the process of gradient temperature wedge pressing, the shape of the billet is“hyperbolic”, and then the billet contacts the die wall absolutely. In the early stage of the process of gradient temperature wedge pressing, the flowing of the metal in the upper bed and the low bed of the billet is prior to the metal in the middle bed. In the intermediate stage and the anaphase the flowing of the metal balances, the whole of the billet is densified. In the process of constant temperature wedge pressing, the metal in the upper bed begins flowing firstly; the flow rate of the metal in the intermediate is greater than that in the anaphase. In the whole pressing process, the metal in the intermediate and the anaphase does not contact the die wall.
     (3) The maximum reduction in height is 25% in the two pressing process. The relative density of the sample plot in the process of gradient temperature wedge pressing is higher than that of the process of the constant temperature wedge pressing. It is found that the hardness is 117.3HB on the upper bed in the process of gradient temperature wedge pressing, while it is 118.3HB in the process of constant temperature wedge pressing. The hardness of the billet in the process of gradient temperature wedge pressing distributes uniformly, most of the hardness is more than 100HB. The hardness of the billet in the process of constant temperature wedge pressing distributes non-uniformly. The greatest hardness in the anaphase is 68.5HB.
     (4) In the process of gradient temperature wedge pressing, when the reduction of the billet in height is 5%, 15% and 25% respectively, the relative density becomes greater and greater along the pressure head moves in length. The relative density in the middle of the billet is minimum, the relative density in the edge is greater in width.
     (5) In the process of gradient temperature wedge pressing, when the reduction of the billet in height is 5%, the regularity of relative density distribution is found that the relative density in upper layer is the greatest, and the relative density is the least in the intermediate layer.
     (6) In the process of gradient temperature wedge pressing, when the reduction of the billet in height is 25%, the tensile strength is 304.52MPa and the elongation is 2.4%, the mechanical property is prior to that of constant gradient temperature wedge pressing. No evident pore can be seen in the fracture of the sample.
引文
[1] 王建强. 喷射成形技术的研究发展及展望. 世界科技研展, 2000, 22(1): 62-65
    [2] 陈振华. 多层喷射沉积技术及应用. 长沙: 湖南大学出社, 2003: 1-9
    [3] Q Xu, Hayes R W, Hunt W H, et al. Mechanical Properties and Fracture Behavior of Layered 6061/SiCp Composites Produced by Spray Atomization and Co-deposition. Acta. Mater., 1999, 47(1): 43-53
    [4] Leatham A G, Brooks R G, Goombs J S, et al. The past, present and future developments of the osprey perform process. In:1st Inter Conf on Spray Forming (ICSF).Wales: Osprey Metals Ltd, 1990, 467-472
    [5] Leatham A G, Brooks R G. The osprey process for the production of spray deposition disc billet and perform. Moderm Development in power Metallurgy, 1984, 2(5): 157
    [6] Lzvernia E J, Grant J N. Spray deposition of metals. Review.Mater.Sci.Eng.,1988, 98(1): 381
    [7] Grant P S, Katgerman L, Katgerman L. Modelling of droplet dynamic and thermal histories during spray forming. Acta. Metall. Mater, 1993, 41(11): 3097-3108
    [8] 田世藩. 国外快速凝固喷射成形技术. 航空科学技术, 1996, 32(1): 30-33
    [9] 袁武华. 喷射沉积轻量化材料的研制高性能 7075/SiCp 复合材料、8009 合金 板材的制备及应用研究: [湖南大学博士后研究工作报告]. 长沙: 湖南大学, 2005, 1
    [10] Bhargava S, Dube R K. Changes in the longitudinal flow and apparent plastic Po- isson’s ratio of a porous metal strip during hot densification rolling. Metallurgical TransactionsA, 1988, 19(1): 1268-1282
    [11] Deshmukh A R, Sundararajan T, Dube R K, et al. Analysis of cold densification rolling of a sintered porous metal strip. Mater. Pro. Tech., 1998, 5(84): 9-16, 56-72
    [12] 张深根, 姚德超. 快速凝固 Al-11.5Fe-3.8W-2.3Si-Re 耐热铝合金的挤压过程.中南工业大学学报, 1996, 27(1): 61-64
    [13] 杨卯生, 钟雪友. 金属喷射成形原理及其应用. 包头钢铁学院学报, 2000, 19(2): 175-180
    [14] Rainer Gerling, chimansky F P S, Wegmann G, et al. Spray forming of Ti 48.9Al (at.%) and subsequent hot isostatic pressing and forging. Mater.Sci.Eng., 2002,A326(4): 73-78
    [15] 詹美燕, 夏伟军, 袁武华, 等. 喷射沉积耐热铝合金 8009 板坯轧制工艺及其对板材组织性能的影响. 热加工工艺, 2004, 2(2): 38-40
    [16] 田荣璋. 铝合金及其加工手册. 长沙: 中南大学出版社, 2000: 328-332
    [17] Mori K, Osakada K. Analysis of the forming process of sintered poeder metals by a rigid-plastic finite-element method. Int.J.Mech. Sci., 1987, 27(4): 229-238
    [18] Hariprasad S, Sastry S M L, Jerina K L, et al. Microstructure and mechanical pro- perties of dispersion-strengtened high-temperature Al-8.5Fe-1.3V-1.7Si alloys pr- oduced by atomized melt deposition process.Metall.TransA.,1993, 24(4): 865-875
    [19] Jong Jin Park. Constitutive realtions to predict plastic deformations of porous me- tals in compaction.Int.J.Mech.Sci., 1995, 37(7): 709-719
    [20] Lynn B, Ferguson. Emerging Alternatives to Hot Isostatic Pressing. International Journal of Powder Metallurgy and Powder Technology, 1985, 21(3): 201-218
    [21] Amano N. Development of a Wear-resistance Rapid-solidified PM Aluminium Alloy. Metal Powder Report, 1989, 44(1): 186-192
    [22] Raman R V, Rele S V, Unni C K. Novel processing approach to fabricate aluminu- m nitride based composites-I. Journal of Materials Science Letters, 1996, 15(15): 1370-1373
    [23] Ferguson B, Kuhn A, Smith O D. Hot consolidation of porous preforms using 'so- ft' tooling. International Journal of Powder Metallurgy and Powder Technology, 1984, 20(2): 131-139
    [24] Raman R V, Rele S V, Meeks H S. Novel processing route for fabrication of the high temperature YBA2Cu3O7-x superconductor. Advances in Powder Metallurgy, 1990, 12(2): 451-457
    [25] Raman R V, Rele S V, Poland S,et al. One-step synthesis of dense titanium-carbide tiles. JOM, 1995, 43(7): 23-25
    [26] Ray L A, Groza, Joanna. High speed consolidation of rapidly solidified high temperature powder performs. Metal Powder Report, 1988, 43(10): 678-681
    [27] Raman R V. Advances in full density consolidation of engineered materials. Advances in Powder Metallurgy, 1992, 3(2): 401-419
    [28] Rele S V, Raman R V, Kapoor D. Soild state densification of tungsten heavy allo- ys at low temperature and high pressures. Advances in Powder Metallurgy,1992, 2(2): 421-429.
    [29] Smith O D, DeMuri, Ron. Computer aided manufacturing (cam) system. Modern Developments in Powder Metallurgy,1985, 15(2): 699-705
    [30] Suryanarayana C, Korth G E, Froes F H. Compaction and characterization of mec- hanically alloyed nanocrystalline titanium aluminides. Metallurgical and Materia- is Transactions A, 1997, 28(2): 293-302
    [31] Rabin B H, Wright R N, Knibloe J R. Reaction processing of iron aluminides. Ma- terials Science & Engineering A, 1992,153(1-2): 706-711
    [32] Stiglich B, Jacob J J, Brian E, et al. CVD coated tungsten powder composites, Part II:Powder fabrication and properties.Tungsten and Tungsten Alloys, 1991, 2(4): 103-107
    [33] 张远骏. 热等静压设备结构特点及应用工艺. 真空电子技术, 2002, 3(3): 54-56
    [34] Lynn B, Ferguson. Compaction and Other Consolidation Processes. Advances in Powder Metallurgy, 1992, 2(1): 507
    [35] Raman R V, Rele S V, Lasley C C. Advanced processing of high temperature P/M copper alloy for aerospace applications. In:P/M in Aerospace and Defense, TMS Meeting, Sacramento, CA, USA,1991, 3(2): 333-340
    [36] Raman V. Rapid consolidation of aluminum alloys. Light Metal Age, 1990, 48(11-12): 40
    [37] Mohan G, Ivan E, et al. Influence of processing on the microstructure and mechanical properties of a NbAl3-base alloy. Journal of Materials Research, 1992, 7(7): 1696-1706
    [38] Ferguson, Lynn B. Emerging alternatives to hot isostatic pressing. Carbide and Tool Journal, 1986, 18(3): 17-18, 20-27
    [39] Miura H, Honda T, Hens K F. High performance 4600 steels by injection molding. Proc Powder Injection Molding Symp 92, Booker P, Gaspervich J. Germany: Metal Powder Industries Federation, 1992: 203-217
    [40] James, Brian W. Overview of high density p/m forming processes. International Journal of Powder Metallurgy and Powder Technology, 1985, 21(3): 163 -182
    [41] Zhou Z Y, Chen P Q, Zhao W B, et al. Densification model for porous metallic po- wder materials. J. Mater. Pro.Tech., 2002, 129(1): 385-388
    [42] Dirk Bergmann, Udo Fritsching. Sequential thermal modelling of the spray-form- ing process. International Journal of Thermal Sciences, 2004, 43(4): 403-415
    [43] Shi X L, Shao G Q, DuanX L, et al. Mechanical properties, phases and microstru- cture of ultrafine hardmetals prepared by WC–6.29Co nanocrystalline composite powder. Mater.Sci.EngA., 2005, 392(1-2): 335-339
    [44] Kim H S. Densification mechanisms during hot isostatic pressing of stainless steelpowder compacts. Journal of Materials Processing Technology, 2002, 123(2): 319-322
    [45] Rahaman M N, DuttonR E, Semiatin S L. Fabrication of dense thin sheets of γ-Ti Al by hot isostatic pressing of tape-cast monotapes. Mater.Sci.EngA., 2003, 3(60): 165-179
    [46] Heung N H, Kyu H O, Dong N L. Anlysisi of forging limit for sintered porous metals. Scrip. Metall. Mater, 1995, 32(12): 1934-1944
    [47] 张忠伟, 汪凌云. 金属带材粉末轧制的研究. 轻合金加工技术, 2005, 3(4): 15-20
    [48] 任学平. 粉末金属屈服准则和流动应力的研究: [哈尔滨工业大学博士学位论文].哈尔滨: 哈尔滨工业大学, 1989
    [49] Palm M, Preuhs J, Sauthoff G. Production scale processing of a new intermetallic NiAl-Ta-Cr alloy for high-temperature application: Part II.Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology, 2003, 136(3): 114-119
    [50] Dube R K. Metal strip via roll compaction and related powder metallurgy routes. Inter.Mater.Reviews, 1990, 35(5): 253-291
    [51] Bhargava S, Dube R K. Properties of copper strip prepared from preformed cuprous oxide via concurrent reduction and sintering-hot densification rolling route.Mater.Sci.Tech.,1984, 4(3): 261-266
    [52] Dube R K. Particle technology methods for making metal strip(part5). Powder Metallurgy international, 1983, 15(1): 36-40
    [53] Dube R K. Particle technology methods for making metal strip(part2). Powder Metallurgy international, 1982, 14(1): 45-48
    [54] Dube R K. Particle technology methods for making metal strip(part3). Powder Metallurgy international, 1982, 14(2): 108-111
    [55] Dube R K. Particle technology methods for making metal strip(part4). Powder Metallurgy international, 1982,14(3):163-165
    [56] 郭栋, 周志德. 金属粉末轧制. 北京:冶金工业出版社, 1984: 77-79
    [57] Kevin M M, Delplanque J P, Johnson S B. Spray rolling aluminum alloy strip.Mater.Sci.Eng A., 2004, 383(1): 96-106
    [58] 詹美燕. 喷射沉积材料压缩和轧制变形规律研究: [湖南大学博士学位论文].长沙: 湖南大学, 2004, 64-87
    [59] 杨光晃, 郝启堂, 介万奇, 王武孝. 微量 Ti 对 Mg-9Al 合金显微组织和性能的影响. 稀有金属材料与工程, 2005, 4(3): 54-58
    [60] 陈文哲, 钱匡武, 顾海澄.热等静压对喷射成形 TiAl 基合金孔隙率的影响.理化检验一物理分册. 1997, 33(4): 18-20
    [61] Bouchaud E, Kubin L, Octor H. Ductility and dynamic strain aging in rapidly solidified aluminum alloys. Metall.Trans A., 1991, 22(3): 1021-1027
    [62] Bhargava S, Dube R K. Changes in the longitudinal flow and apparent plastic Poisson’s ratio of a porous metal strip during hot densification rolling. Metallurgical Transactions A, 1988, 19(5): 1250-1261
    [63] 范才河. 喷射沉积 5A06 铝合金楔压致密化工艺研究: [湖南大学硕士学位论文].长沙: 湖南大学, 2006, 11
    [64] 杨明辉, 梁伯祥, 夏琴香, 等. 旋压技术分类及应用. 机电工程技术, 2004, 33(11): 1-14
    [65] 黄培云. 粉末冶金原理(第 2 版). 北京: 冶金工业出版社, 2000, 342-346
    [66] 吉喆. 大尺寸 7075/SiCP 复合材料循环压制工艺的研究: [湖南大学硕士学位论文].长沙: 湖南大学, 2006, 20
    [67] 范才河, 陈刚, 严红革. 喷射沉积 7075/SiCp 复合材料热处理工艺的研究. 矿冶工程, 2006, 26(2): 106-108
    [68] 肖于德, 谭敦强,黎文献. 喷射沉积 Al-Fe-V-Si 合金模压致密化工艺与模锻制品组织性能研究. 材料与冶金学报, 2004, 3(3): 213-218
    [69] SEE K S, DEAN T A. The effects of pre-forge processing on forgeability and mechanical properties of co-sprayed aluminum-based MMCs. Journal of Materials Processing Technology, 1997, 71(2): 314-321
    [70] 黄培云. 粉末冶金原理. 北京: 冶金工业出版社, 1982, 361-385
    [71] 陈刚, 刘鹏飞, 范才河, 等.大型喷射沉积环件的楔压致密化加工. 矿冶工程,2 006, 26(2): 100-102
    [72] 尹丽丽. 国外铝挤压技术及其装备的进展. 轻合金加工技术, 2000, 28(10): 8-11
    [73] Herba E M, McQueen H J. Influence of particulate reinforcements on 6061 materials in extrusion modeling. Materials and Engineering, 2004, 372(1-2):1-14
    [74] 张兴全, 彭颖红, 阮雪榆, 等. 多孔体材料在镦粗变形过程中表面裂纹的有限元预测. 上海交通大学学报, 1998, 32(5): 14-17
    [75] Mori K. Analysis of the Forming Process of Sintered Powder Metals by Rigid Plastic Finite element Method. Int.J.Mech.Sci., 1987, 27(4) :227
    [76] Oh S I. Alpidp-Modeling of P /M Forming by the Finite Element Method. Materials Shaping Technology, 1986, 23(3): 294-302
    [77] 卫原平, 阮雪榆. 粉末烧结体材料塑性变形过程的有限元分析. 中国有色金属学报, 1994, (4): 56-61
    [78] shok A, Jinka G K, et al. 粉末冶金连杆的热锻 :三维计算机模型. 颜炼译. 武汉:武钢技术, 1998, 36(6): 57-59
    [79] 袁武华, 吉喆, 陈振华. 循环压制对喷射沉积 7075/SiCp 致密化的影响.湖南大学学报(自然科学版), 2006, 33(2): 81-85
    [80] 詹美燕, 匡勇, 周明, 等. 多孔金属及合金成形过程中的致密化与变形理论研究. 稀有金属与硬质合金, 2002, 30(4): 42-47
    [81] 柯尔巴什尼可夫. 颗粒材料. 薛永春, 周光垓译. 北京: 国防工业出版社, 1986, 50-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700