喷射沉积多孔材料陶粒轧制工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射沉积技术作为一种先进的材料制备新技术,已经被广泛应用于制备合金及金属基复合材料。然而喷射沉积坯料中通常存在一定量的孔隙,颗粒表面存在一定厚度的氧化膜,颗粒之间未能完全达到良好的冶金结合状态,因此需要进行后续致密化和塑性变形才能获得理想的组织和性能。本文通过对喷射沉积多孔材料的致密化和塑性变形规律的研究,以及对现有的喷射沉积多孔材料塑性加工工艺的分析比较,特别是根据准热等静压工艺特点提出了一种新型的轧制技术——陶粒轧制。本论文的主要研究内容和研究结果如下:
     (1)对喷射沉积8009Al/SiCp板坯陶粒轧制工艺进行了研究。分析了陶粒轧制的7种实验方案,研究了该工艺中的诸如钢压头形状、原始坯件的设计以及轧制方式等对多孔材料陶粒轧制变形行为的影响,在此基础上对工艺条件进行优化。
     在陶粒轧制过程中,钢压头的形状以及轧制方式对喷射沉积多孔材料板坯的轧制变形行为有很大的影响,特别是采用厚的平压头以及道次间采用180°转向轧制工艺,能够满足喷射沉积铝合金板坯轧制成形性能的要求。并且在陶粒轧制过程中喷射沉积板坯的致密化和轧制变形行为与用于传递压力的陶瓷颗粒介质特性有关。采用200目Al2O3进行陶粒轧制时,喷射沉积铝合金板坯的致密化效果和轧制成形性能最佳。
     (2)对在陶粒轧制工艺条件下喷射沉积5A06和8009/SiCP板坯的致密化规律和组织演变规律进行了研究。与常规轧制工艺比较,在陶粒轧制工艺中的裂纹形成阶段,由于陶瓷颗粒对材料纵向和横向变形的阻碍作用使多孔材料的延伸变形量明显小于常规轧制,从而减小了促使裂纹形成的拉应变,有利于材料的致密化进程,减小和避免表面裂纹的产生和扩展。并且在陶粒轧制过程中,轧件在三向大小不等的压应力作用下,轧件内部粉末颗粒表面的氧化膜发生剪切变形,粉末颗粒和氧化膜很容易破碎,有利于增强粉末颗粒粘结的完整性,获得更良好的冶金结合,故轧件通过陶粒轧制后的致密度相对通过常规轧制的致密度在同等变形程度下更高。
     (3)对在陶粒轧制工艺条件下喷射沉积5A06和8009/SiCP板坯的加工性能进行了研究。采用陶粒轧制工艺对喷射沉积法制备的5A06和8009/SiCP板坯进行轧制加工,板坯在变形量达到65%时仍不会形成表面裂纹,轧制后的板坯致密度、强度、延性均优于常规轧制,并且板坯在先陶粒轧制致密再轧制工艺下通过充分的变形,其室温力学性能也可超过传统轧制。采用陶粒轧制工艺对喷射沉积法制备的多孔材料板坯进行轧制加工,改善了喷射沉积5A06和8009/SiCP板坯轧制加工性能,轧制出了组织与性能优良的铝合金薄板。
As an advanced material preparation technology, spray deposition has been widely used to produce alloys and metal matrix composites. In principle, the spray deposited preforms usually exhibit limited mechanical properties due to the porosity and a lack of sound metallurgical bond between the particles. Higher performance can be achieved by further densification and deformation. The densification and plastic deformation behaviors and fracture behaviors of the as-spray deposited porous performs were investigated in this thesis. The involved deformation process is rolling. A novel rolling methods named as“Ceramic Rolling”developed based on pseudo-HIP technology is applied.The main conclusions are as follows:
     (1) The effects of processing conditions during“Ceramic Rolling”technique were investigated.Seven kinds of“Ceramic Rolling”experiments have been experimentally verified to improve the formability of the porous 8009/SiCP alloy performs.
     The experimental results show that the shape of the pressure transfer medium and the rolling method has obvious effect on the deformation of the spray deposited performs. The densification and plastic deformation behaviors and the fracture behaviors of the as-spray deposited porous performs are related with the effects of particulate characteristics during“Ceramic Rolling”process. The ceramic particulates, especially the Al2O3 particle with the size of about 200 meshes, can serve as the medium for transferring pressure, thus to provide a more homogenous severe hydrostatic stress field to handicape the flowing of the metals in the longitudinal and transverse directions and to avoid cracking during the rolling process.
     (2) The influence of the processing conditions on the densification and deformation behaviors of the porous 5A06 and 8009/SiCp alloy perform during“Ceramic Rolling”process were investigated. The experimental results show that comparing with the fully dense materials, the deformation behavior of spray deposited preforms is very complicated and difficult because of the existence of porosity in the preforms and oxidation film on the surface of the alloy particles in the matrit. During the conventional rolling process, the porous preform is liable to cracking or tearing. During Ceramic Rolling, the ceramic particulates may serve the dual functions of a compactible pressure transfer medium and also as a medium for heat preservation in workpiece body, thus helps to maintain the necessary temperature levels for the deformation during rolling. It is obvious that the ceramic particles can retard the flowing of the metal in the longitudinal and the transverse during Ceramic Rolling when the thickness reduction is up to 25%-30%, which is important in avoiding the cracks. Since severe hydrostatic stress field benefits the formability, extrusion is widely adopted for the densification and deformation of the as-spray deposited preforms.
     (3) The processing parameters such as packing materials, ceramic particulate size and kind should be paid more attention in order to improve the densification effect to so as to and obtain large dimension sheet free of crack. The results show that the“Ceramic Rolling”technique is an effective method to speed up the densification and improve the formability of porous spray deposition alloy preforms, which is thought to be resulted from the severe hydrostatic and homogenous stress. As the immature manufacture technique to process spray deposited aluminum alloys, great efforts will be stimulated for further investigation, and significant progress is expected. Nevertheless, extrusion can not produce large dimension plates limited by the facility.
引文
[1] 冯勇祥.国内冷等静压各向同性石墨的发展.炭素技术, 2002, 122(5):33-36
    [2] 马福康. 等静压技术. 第一版. 北京:冶金工业出版社, 1991:27
    [3] H.A.Kuhn, B.L.Ferguson, O.D.Simith. Pseudo-HIP using conven-tional presses. Metal Powder Report, 1983,38(6): 321-323
    [4] B.L.Ferguson. Emerging alternatives to hot isostatic pressing. Int. J. Powder Metallurgy & Powder Technology, 1985,21(3): 201-218
    [5] 刘咏, 周科朝, 黄伯云等. 粉末冶金成形技术—陶瓷模工艺. 材料导报, 1996, 4(4): 19-23
    [6] C.Deibel, D.R.Thornburg, F.Emley. Continuous compaction by cyclic pressing. Powder Metallurgy, 1960,5(5): 32-44
    [7] N.H.Pryds, J.H.Hattel, T.B.Pedersen, J.Thorborg. Emerging alternatives to HIP. Acta Materials, 2002, 50(5): 4075
    [8] E.J.Lavernia, N.J.Grant. Consolidation to full density under pseudo-isostatic conditions. Mater. Sci. Eng., 1988,98(9): 381
    [9] 冯勇祥.日本冷等静压各向同性石墨的发展.炭素技术, 2001, 113(2): 21-26
    [10] H.K.Cho, J.Suh, K.T.Kim. Hot consolidation of porous performs using. Int.J. Mech.Sci., 1994,36(4):317-328
    [11] W.B.Eisen, B.L.Ferguson, R.M.German, et al. Powder Metal Technologies and Applications,ASM Metals HandBook ,2005, 16(7): 905-906
    [12] H.N.Han, K.H.Oh, D.N.Lee. Anlysisi of forging limit for sintered porous metals. Scrip. Metall. Mater., 1995,32(12): 1934-1944
    [13] H. A. 库恩, A. 劳力编著, 任崇信译. 粉末冶金工艺新技术及其分析. 第 1 版. 北京:冶金工业出版社, 1982: 58-61
    [14] R.Henry, P.David, P.Delo. Physical Modelling of Powder Consolidation Processes. Int.Pro.Mater.Sci.,1997,43(8):263-275
    [15] H.S.Kim, C.W.Wom, B.S.Chun. Plastic deformation of porous metal with an initial inhomogeneous density distribution. J.Mater. Pro. Tech., 1998,74(7):213- 217
    [16] 黄培云, 粉末冶金原理. 第 2 版. 北京: 冶金工业出版社, 2000:342-346
    [17] H.A.Kuhn. Effects of porosity in materials processing. American society of mechanical engineers, applied mechanics division, AMD, 1976,16(11): 171-188
    [18] K.Mori, K.Osakada. Analysis of the forming process of sintered poeder metals by a rigid-plastic finite-element method. Int. J. Mech. Sci., 1987,29(4): 229-238
    [19] W.B.James. Overview of high density P/M forming processes. The International Journal of Powder Metallurgy & Powder Technology, 1985, 21(3): 163-182
    [20] 詹美燕, 陈振华. 喷射沉积多孔材料轧制变形理论. 材料研究学报, 2004, 18 (6):661-667
    [21] B.Ferguson, A.Kuhn, O.D.Smith et al. Hot consolidation of porous performs using. The International Journal of Powder Metallurgy & Powder Technology, 1984,20(2): 131-139
    [22] S.Bhargava, R.K.Dube. Changes in the longitudinal flow and apparent plastic Poisson’s ratio of a porous metal strip during hot densification rolling. Metallurgical Transactions A,1988.19A(6): 1250-1211
    [23] A.R.Deshmukh, T.Sundararajan, R.K.Dube et al. Analysis of cold densification rolling of a sintered porous metal strip. Mater. Pro. Tech., 1998,84(5): 9-72
    [24] 张深根, 姚德超等. 快速凝固 Al-11.5Fe-3.8W-2.3Si-Re 耐热铝合金的挤压过程. 中南工业大学学报, 1996,27(1): 61-64
    [25] 杨卯生, 钟雪友. 金属喷射成形原理及其应用. 包头钢铁学院学报, 2000, 19 (2): 175-180
    [26] R.Gerling, F.P.Schimansky, G.Wegmann et al. Spray forming of 8009SiCp Al and subsequent hot isostatic pressing and forging. Mater. Sci. and Eng., 2003, A36(6): 43-78
    [27] 詹美燕, 夏伟军, 袁武华, 傅定发, 陈振华. 喷射沉积耐热铝合金 8009 板坯轧制工艺及其对板材组织性能的影响. 热加工工艺, 2004,2:38-40
    [28] 田荣璋. 铝合金及其加工手册. 第 1 版. 长沙: 中南大学出版社. 2000:328- 332
    [29] S.Hariprasad, S.M.L.Sastry, K.L.Jerina et al. Microstructure and mechanical properties of dispersion-strengtened high-temperature Al-8.5Fe-1.3V-1.7Si alloys produced by atomized melt deposition process .Metall.Trans., 1993, 24A (4): 865-875
    [30] J.J.Park. Constitutive realtions to predict plastic deformations of porous metals in compaction.Int.J.Mech.Sci.,1995,37(7):709-719
    [31] B.L.Ferguson et al. International Journal of Powder Metallurgy and Powder Technology. Metal Powder Report, 1985,21(2): 201-218
    [32] A.H.Kuhn, L.B.Ferguson, O.D.Smith. Hot consolidation of porous performs. Metal Powder Report, 1983,38(4): 321-323
    [33] H.A.Kuhn, B.L.Ferguson et al. Consolidation to full density under pseudo-isostatic conditions using conventional presses. Progress in Powder Metallurgy, 1984,39(9): 59-71
    [34] R.V.Raman, S.V.Rele, C.K.Unni. Novel processing approach to fabricate aluminum nitride based composites-I. Journal of Materials Science Letters, 1996,15(3):1370-1373
    [35] B.Ferguson, A.Kuhn, O.D.Smith. Hot consolidation of porous preforms using 'soft' tooling. International Journal of Powder Metallurgy and Powder Technology, 1984,20(4):131-139
    [36] R.V.Raman, S.V.Rele, H.S.Meeks. Novel processing route for fabrication of the high temperature YBA2CU3O7-x superconductor. Advances in Powder Metallurgy, 1990,15(8): 451-457
    [37] C.J.Hebeisen. A review of the triennial conference on HIP Technology. International Journal of Powder Metallurgy (Princeton, New Jersey), 2005, 41(5):58
    [38] R.L.Anderson, G.Joanna. High speed consolidation of rapidly solidified high temperature powder performs. Metal Powder Report, 1988, 43(2):678-681
    [39] R.V.Raman. Advances in full density consolidation of engineered materials. Advances in Powder Metallurgy, 1992,2(2): 401-419
    [40] S.V.Rele, R.V.Raman, D.Kapoor. Soild state densification of tungsten heavy alloys at low temperature and high pressures. Advances in Powder Metallurgy, 1992,2(6):421-429
    [41] O.D.Smith, D.M.Ron. Computer aided manufacturing (cam) system. Modern Developments in Powder Metallurgy, 1985,15(6): 699-705
    [42] C.Suryanarayana, G.E.Korth, F.H.Froes. Compaction and characterization of mechanically alloyed nanocrystalline titanium aluminides. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997,28A(5): 293-302
    [43] B.H.Rabin, R.N.Wright, J.R.Knibloe. Reaction processing of iron aluminides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992,A153(2): 706-711
    [44] J.Stiglich, J.Jacob, B.E.Williams et al. CVD coated tungsten powder composites, Part II. Powder fabrication and properties. Tungsten and Tungsten Alloys, 1991, 31(7): 103-107
    [45] D.Bergmann, U.Fritsching. Sequential thermal modeling of the spray-formingprocess. International Journal of Thermal Sciences,2004,43(7):403-415
    [46] B.L.Ferguson. Compaction and Other Consolidation Processes. Advances in Powder Metallurgy, 1992,2(2): 507
    [47] R.V.Raman, S.V.Rele, C.C.Lasley. Advanced processing of high temperature P/M copper alloy for aerospace applications. 1991 P/M in Aerospace and Defense Technologies, 1991,2(3):333-340
    [48] R.V.Ramas. Rapid consolidation of aluminum alloys. Light Metal Age, 1990,48(2): 40
    [49] H.G.Mohan, L.E.Ivan, S.V.Raj. Influence of processing on the microstructure and mechanical properties of a NbAl3-base alloy. Journal of Materials Research, 1992,7(6): 1696-1706
    [50] F.B.Lynn. Emerging alternatives to hot isostatic pressing. Carbide and Tool Journal, 1986, 18(5):17-27
    [51] H.Miura, T.Honda, K.F.Hens. High performance 4600 steels by injection molding. Proc Powder Injection Molding Symp 92., 1992,18(6): 203-217
    [52] U.Engstrom, B.Johansson, H.Rutz, F.Hanejko, S.Luk. High Density Materials for Future Applications, Advances in Powder Metallurgy and Particulate Materials, Metal Powders Industries Federation, 1995, 3(11): 106-126
    [53] Z.Y.Zhou, P.Q.Chen, W.B.Zhao et al. Densification model for porous metallic powder materials. J. Mater. Pro. Tech., 2002, 129(12): 385-388
    [54] D.Bergmann, U.Fritsching. Sequential thermal modelling of the spray- forming process. International Journal of Thermal Sciences, 2004, 43(8): 403-415
    [55] X.L.Shi, G.Q.Shao, X.L.Duan et al. Mechanical properties, phases and microstructure of ultrafine hardmetals prepared by WC–6.29Co nanocrystalline composite powder. Mater. Sci. and Eng., 2005,A392(6): 335-339
    [56] K.H.Seop. Densification mechanisms during hot isostatic pressing of stainless steel powder compacts. Journal of Materials Processing Technology, 2002,123(2): 319-322
    [57] M.N.Rahaman, R.E.Dutton, S.L.Semiatin. Fabrication of dense thin sheets of γ-TiAl by hot isostatic pressing of tape-cast monotapes. Mater. Sci. and Eng., 2003,A360(6): 165-179
    [58] S.Abkowitz. Isostatic Pressing of Complex Shapes from Titanium and Titanium Alloys,Production to Near Net Shape Source Book, American Society for Metals, 1983,2(2):167
    [59] A.R.Deshmukh, T.Sundararajan, R.K.Dube et al. Analysis of cold densificationrolling of a sintered porous metal strip. Mater. Pro. Tech., 1998,84(3): 9-72
    [60] F.Tang, M.Hagiwara, J.M.Schoenung. Formation of coarse-grained inter-particle regions during hot isostatic pressing of nanocrystalline powder. Scripta Materialia, 2005,53(6): 619-624
    [61] M.Palm, J.Preuhs, G.Sauthoff. Production scale processing of a new intermetallic NiAl–Ta–Cr alloy for high-temperature application: Part II. Powder metallurgical production of bolts by hot isostatic pressing. Journal of Materials Processing Technology, 2003,136(3): 114-119
    [62] G.Wegmann, R.Gerling, F.P.Schimansky. Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders. Acta Materialia, 2003,51(3): 741-752
    [63] J.Rawers, F.Biancaniello, R.Jiggetts et al. Warm-HIP compaction of attrition-milled iron alloy powders. Scripta Mater. 1999, 7(5): 311-319
    [64] T.Hirose, K.Shiba, M.Ando et al. Joining technologies of reduced activation ferritic/martensitic steel for blanket fabrication. Fusion Engineering and design, 2006,81(7): 645-651
    [65] I.Sevostianov, M.Kachanov. On the yield condition for anisotropic porous materials. Mater.Sci.Eng., 2001, A313(8): 1-15
    [66] R.Gerling, F.P.Schimansky, G. Wegmann et al. Spray forming of Ti 48.9Al (at.%) and subsequent hot isostatic pressing and forging. Mater. Sci. and Eng., 2002,A326(3): 73-78
    [67] H.A.Kuhn, B.L.Ferguson, O.D.Simith. Pseudo-HIP using conven-tional presses. Metal Powder Report, 1983,38(6): 321-323
    [68] 郭德, 周志德. 金属粉末轧制. 第一版. 北京:冶金工业出版社, 1984,77-79
    [69] H.V.Atkinson, A.Zulfia, A.L.Filho et al.Hot isostatic processing of metal matrix composites. Materials & Design,1997,18(7): 243-245
    [70] E.Pagounis, M.Talvitie, V.K.Lindroos. Consolidation behavior of a particle reinforces metal matrix composite during HIP ping.Materials Research Bulletin, 1996, 3(110):1277-1285.
    [71] H.A.Kuhn. Effects of porosity in materials processing. American society of mechanical engineers, applied mechanics division, AMD,1976,16: 171-188
    [72] X.Liang , E.J.Lavernia. Solidification and microstructure evolution during spray atomization and deposition of Ni3AL. Mater.Sci.and Eng.A, 1993,15(5):161-169
    [73] W.B.James. Overview of high density P/M forming processes. The InternationalJournal of Powder Metallurgy & Powder Technology, 1985,21(3): 163-182
    [74] B.Ferguson, A.Kuhn, O.D.Smith et al. Hot consolidation of porous performs using. The International Journal of Powder Metallurgy & Powder Technology, 1984,20(2): 131-139
    [75] E.Bouchaud. L.Kubin, H.Octor. Ductility and dynamic strain aging in rapidly solidified aluminum alloys. Metall.Trans. A,1991,22A(3): 1021-1027
    [76] S.Bhargava, R.K.Dube. Changes in the longitudinal flow and apparent plastic Poisson’s ratio of a porous metal strip during hot densification rolling. Metallurgical Transactions A,1988,19A(6): 1250-1211
    [77] H.W.Chan. Ceracon process for P/M technology: A review of recent developments. Materials & Design, 1988, 9(5):355-358
    [78] G.M.Ecer, M.Sakarcan, S.Yeltekin. Metals joining and coating using the Ceracon process. ASM, 1985,9(3):221-231
    [79] R.V.Raman, S.V.Rele, D.L.Hunn. Oxidation resistance of powder metallurgy zirconium aluminide densified by the Ceracon process. Advances in Powder Metallurgy and Particulate Materials, 1993, 6(5): 25-39
    [80] J.Rawers, F.Biancaniello, R.Jiggetts et al. Warm-HIP compaction of attrition-milled iron alloy powders. Scripta Mater. 1999, 7(5): 311-319
    [81] 苏. AN. 柯尔巴什尼可夫 . 颗粒材料 . 第1版 . 北京:国防工业出版社 , 1986:97-99
    [82] G.M.Ecer, S.Yeltekin, M.Sakarcan. Ceracon produced wear resistent P/M coatings. Progress in Powder Metallurgy, 1986,41(4):701-722
    [83] H.W.Chan, B.L.Oslin, T.J.Sutherland et al. Ceracon processing of P/M 2124 aluminum. Microstructure and tensile properties. International Journal of Powder Metallurgy (Princeton, New Jersey), 1989,25(5): 351-355
    [84] R.J.Beltz, J.D.Dankoff, R.J.Henry et al. Microstructure and properties of vacuum sintered and Ceracon processed high speed steel-alumina composite materials. Advances in Powder Metallurgy, 1991, 6(3):177-189
    [85] U.Engstrom, B.Johansson, H.Rutz, F.Hanejko, S.Luk. High Density Materials for Future Applications. Advances in Powder Metallurgy and Particulate Materials, 1995, 3(11): 106-126
    [86] H.V.Atkinson, A.Zulfia, A.L.Filho et al. Hot isostatic processing of metal matrix composites. Materials & Design, 1997, 18(4): 243-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700