上覆巨厚火成岩下煤与瓦斯突出灾害危险性评估与防治对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上覆火成岩,尤其是在巨厚火成岩(厚度h≥100m)下开采煤层,因巨厚火成岩而诱发的煤岩冲击、煤与瓦斯突出、巨厚火成岩断裂产生矿震等灾害日趋增多。随着开采深度不断向下延伸,埋藏在地层深部的火成岩对煤层开采影响越来越严重,安全威胁越来越大。在对典型巨厚火成岩突出灾害的研究中发现,突出灾害已经发生在传统理论下的非突出煤层和非突出危险区域。事实说明巨厚火成岩下突出矿井,已经表现出与无巨厚火成岩下突出矿井的异样性特点。因此,针对上覆巨厚火成岩条件的突出矿井,系统研究其突出灾害的一般规律、影响因素及其组合权重排序、突出风险性评价,提出科学合理预测预报体系及防治对策,已经成为当前煤矿安全、高效开采中急需完成的新课题。
     在广泛查阅国内外相关文献和系统总结前人研究成果的基础上,采用理论研究、实验室试验、数值模拟分析和现场实验相结合的研究方法,针对巨厚火成岩下突出矿井,基于其突出的力学机理、主要影响因素、危险性评价、多元指标预测及综合防突对策,展开了系统深入的研究,为巨厚火成岩下突出矿井煤炭资源的高效开采提供安全保障。
     (1)以材料力学和结构力学理论分析为基础,对巨厚火成岩下采掘扰动影响的覆岩移动规律进行了受力分析,提出了在巨厚火成岩下煤层开采后,在采场内巨厚火成岩将形成“两端固支梁”假说,并建立了巨厚火成岩下采动力学模型和变形本构方程。
     (2)以断裂力学理论为基础,视巨厚火成岩为“近似四边固支薄板”,利用仿纳维叶解法步骤,求得了在下覆煤层被采出后,巨厚火成岩中心点处最大挠度解析式Wmax和垂直方向最大正应力σxmax,为确保在煤层开采期间巨厚火成岩不破断的采区极限跨度确定提供了理论依据。
     (3)突出是煤体结构损伤失稳后的破坏现象,则以损伤力学理论为基础,对巨厚火成岩下煤层在三维应力作用下的损伤变量(D)进行分析,通过数学推导,求得在巨厚火成岩作用下煤层损伤变量D。的本构方程,以此通过反演法求得煤层的极限(最大允许)应力。
     (4)以典型矿井煤样和围岩及火成岩岩样为试件,在实验室对煤层瓦斯基本参数进行了测试,测试结果发现7、8、9煤为突出煤层;对7、8煤顶板岩样和火成岩岩样的冲击倾向性试验结果表明,8煤顶板具有强冲击性,火成岩的冲击倾向性评价为中强—强烈。
     (5)以典型巨厚火成岩突出矿井—海孜煤矿煤层赋存条件为背景,利用专门模拟地下岩体开挖工程的应力及应变的二维有限元软件Phase2,对典型巨厚火成岩下煤层群的采动情况进行了有和无巨厚火成岩两种情况的对比分析,通过模拟结果分析发现,在上覆巨厚火成岩条件下的垂直位移比无巨厚火成岩条件下要大;最大主应力比同等条件下无巨厚火成岩情况的最大主应力要小。
     (6)根据对典型巨厚火成岩突出矿井现场考察,建立了评价典型巨厚火成岩突出危险性指标体系,利用层次分析法原理对其影响因素进行了组合权重的排序和一致性检验发现,管理层面上的预测准确度和技术层面上的防突措施合理性为其主要影响因素,分别位居第1、2位。同时,以海孜煤矿为突出危险性评价对象,利用可拓法原理对其突出危险等级进行评估发现,上覆巨厚火成岩典型矿井属于突出等级(j0=4.54)。说明其突出危险性比无巨厚火成岩条件下要高出54%的概率。
     (7)在对巨厚火成岩下采掘扰动力学分析、突出灾害影响因素排序和危险等级评价的基础上,以灰色预测理论为指导,提出了在巨厚火成岩下突出灾害多元突出指标的综合预测体系,即对煤层敏感性指标Smax、K1、Δh2采用新陈代谢动态预测进行预测;对瓦斯涌出特征指标采用灰色—马尔柯夫组合模型进行预测;对巨厚火成岩在垂直方向的位移变形特征指标(高程损失量),采用LogisticⅠ/Ⅱ预测模型预测。并对典型突出案例“4·25"事故中前测试的实际数据进行预测应用研究发现,在无突出发生时,其预测值与实测值的相对误差α均在好的精度等级范围,而在突出灾害发生前,则相对误差超出精度α≥0.20。
     (8)以典型巨厚火成岩突出矿井—海孜煤矿为背景,在对巨厚火成岩利弊分析和影响因素极为复杂的基础上,提出了地面采动井抽采卸压瓦斯、网格穿层钻孔抽采卸压瓦斯、本煤层顺层钻孔抽采卸压瓦斯和高位巷(钻场)抽放卸压瓦斯的综合防治对策。在对Ⅱ1023工作面综合防突技术效果考察看,防突技术比较科学合理和实用,为海孜煤矿巨厚火成岩下煤炭资源开采提供了安全保障。
Because of overlying igneous rocks, especially the very thick igneous rocks (the thicknessh≥100m), the coal rock shock, coal and gas outburst disasters and mine earthquake produced by very igneous rocks rupture are increasingly more when mining under the very thick igneous rocks. With the continuously downward extension of mining depth, the safety threat and effect to seam mining from igneous rocks buried deeply increases gradually. By researching the outburst disasters condition of the mine which is typical for the very thick igneous rocks, it is found that the disasters has occurred under the traditional theory of non-outburst coal seams and non-outburst regions. The facts proved that the unusual feature was happened under the very thick igneous rocks. Therefore, to systematic study the general laws of outburst disasters, effect factors, combine order of weights, outburst risk assessment and to put forward scientific and reasonable prediction and forecasting system and prevention measures, have become new urgent subjects needed to be completed with safety and efficient requirements.
     After widely consulted relevant literature and the previous research results home and broad, the mechanical mechanism of outburst disaster, main effect factors, risk assessment, multiple indexes prediction for the mine which very thick igneous rocks outburst are researched by using the method of theoretical research, laboratory experiment, numerical simulation analysis combined with field test. The safety guarantee for efficient mining of coal resources was provided.
     (1) Based on material mechanics and structural mechanics theory analysis, the mining disturbance on the effects of the law of overburden movement was analyzed. The hypothesis that the very thick igneous rocks will form clamped-clamped beam after mining the seams was put forward. Then the mining mechanical model and deformation constitutive equation under very thick igneous rocks were built.
     (2) Based on fracture mechanics theory, to treat the very thick igneous rock as a approximate quadrilateral thin plate, according to imitating Navier solution procedure, the maximum deflection of analytic Wmax in the central point of very thick igneous rocks and maximum vertical direction normal stressσxmax were obtained when the coal seams all mined. It provided theoretical basis for determining the limit mining region span to let the very thick igneous rocks not broken during the coal mining.
     (3) Outburst is the damage phenomenon of coal structure destruction. Based on the damage mechanics theory, the damage variable (D) of coal seams under the three dimension stress action was analyzed condition of the very thick igneous rocks. According to mathematical derivation, the constitutive equation of damage variable D总acting under very thick igneous rocks was obtained. Using inversion method, the maximum stress of coal seams was gained.
     (4) Through taking the typical coal samples, wall rocks and igneous rock samples as the pieces, the basic gas parameters of the coal seam are tested, the results show that the7th,8th and 9th coal seam are outburst coal seams; the test result of the impact trend, which is based on the test on the 7th,8th roof rock sample and igneous rock samples, shows that 8th roof is characterized by strong impact, and the impact of the igneous rocks is ranked from moderately strong to strong.
     (5) On the background of the occurrence condition of coal seams in Hai Zi mine, which is a very thick igneous rock outburst mine. According to the two dimensional finite element analysis program Phase, which is a special program used to perform the stress and strain of the rock after the excavation works, is used to make a comparison and analysis of the very thick igneous rocks covered mining condition and the condition not covered. It can be shown from the simulating results of the vertical displacement is greater when the coal seam is covered by very thick igneous rocks than the condition not covered, but the maximum main stress is smaller under the same conditions.
     (6) The risk index system of very thick igneous rock outburst is established through site inspection. Via using the theory of AHP to test the combination weight's sorted and consistency of the effect factors, it is found that the prediction accuracy from the management level and the rationality of the outburst proof measures from the technology level are the main factors, these two ranks the first and the second. At the same time, utilizing the theory of extension method to assess the risk grade, it is found that Hai Zi mine is a very thick igneous rock outburst mine, which belongs to the grade of outburst, strictly speaking, j0 is 4.54 here. It means the risk degree is 54 percent higher than the condition not covered by very thick igneous rocks.
     (7) Based on mining disturbance mechanical analysis, effect factors sort of outburst disaster and risk grade assessment, under the guidance of the gray prediction theory, the metabolism dynamic prediction of the main sensitivity indicators, such as Smax, K,, Ah2, were brought up. The characteristic index of gas emission was predicted by the dynamic grey-Markoff model. Displacement deformation index(the elevation loss) was also predicted by the LogisticⅠ/Ⅱprediction model. The forecasting application of the actual measured data in the case of typical "4·25" accident has done, it is found that the relative errorαbetween prediction value and the real measured value of the gas emission quantity are in a good range of accuracy class when no outburst occur. But the relative error least exceeds 0.20 before outburst disaster broken out.
     (8) Hai Zi coal mine, which is a very thick igneous rock outburst mine, serves as a background basis. Based on the advantages and disadvantages of very thick igneous rock and the very complicated influencing factors, the four methods of sucking the relieved methane via surface mined shaft, via grid point drilling downward holes, via the holes drilled along seam in the coal seam and via high-level suction tunnels or drill site are presented. Via inspecting the technique effects of the measure in theⅡ1023 working face, it can be concluded that the technical proposal to control outburst is more scientific, reasonable and practical. And a safety control is provided to Hai Zi coal mine when mining under the very thick igneous rocks.
引文
[1]国家安全生产监督管理总局,煤矿事故快报http://www.chinasafety.gov. cn/newpage/sgkb/sgkb_mksg. htm.
    [2]吴世跃.煤层中的耦合运动理论及其运用—具有吸附作用的气固耦合运动理论[M].北京:科学出版社,2009.
    [3]bp.com/statisticalreview《BP Statistical Review of World Energy June 2009》 [OL].http://www.bp.com/productlanding.do?categoryld=6929&contented =7044622,2009.
    [4]罗文柯,施式亮,李润求,等.灰色预测模型在能源消费需求预测中的应用[J].中国安全科学学报.2010,10(4):32—-37.
    [5]李果仁,刘亦洪.中国能源安全报告—预警与风险化解[M].北京:红旗出版社,2009.
    [6]郭详冰.当前能源形势与能源安全对策[R].福州:福建能源学会,2006.
    [7]宁宇.我国煤矿安全科技需求与对策[R].北京:煤炭科学研究总院,2009.
    [8]姜耀东,赵毅鑫,刘文岗,等.煤岩冲击失稳的机理和实验研究[M].北京:科学出版社.2009.
    [9]程远平.煤与瓦斯突出煤层区域性瓦斯灾害防治关键技术及应用[R].徐州:中国矿业大学,2009.
    [10]国家煤矿安全监察局.煤矿安全技术“专家会诊”资料汇编[R].2005.
    [11]Owen M, Hudyma M, Potvin Y. Risk analysis for mining induced seismicity.5th North American Rock Mechanics Symposium and the 17th Tunnelling Association of Canada Conference[C]. Toronto,2002:1079-1086.
    [12]李建铭.煤与瓦斯突出防治技术手册[M].徐州:中国矿业大学出版社,2006.
    [13]卫修君,林柏渠.煤岩瓦斯动力灾害发生机理及综合治理技术[M].北京:科学出版社,2009.
    [14]许江,尹光志,鲜学福,等.煤与瓦斯突出潜在危险区预测的研究[M].重庆市:重庆大学出版社,2004.
    [15]李胜.煤与瓦斯突出区域预测的模式识别方法研究:[博士学位论文].阜新:辽宁工程技术大学,2004.
    [16]唐俊.预测煤巷突出危险性的连续流量法研究:[博士学位论文].徐州:中国矿业大学,2009.
    [17]李玉生,张万斌,王淑坤.冲击地压机理探讨[J].煤炭学报,1984,9(3):1-9.
    [18]李玉.煤、岩爆机理研究与非线性有限元模拟[D].徐州:中国矿业大学,1992.
    [19]张万斌,吴耀昆,王淑坤.中国煤矿冲击地压预测与防治研究[J].矿山压力与顶板管理,1990,(1):43-46.
    [20]何满朝,姜耀东,赵毅鑫.复合型能量转化为中心的冲击地压控制理论[M].北京:科学出版社,2005:205-214.
    [21]张万斌,王淑坤,滕学军.我国冲击地压研究与防治的进展[J].煤炭学报,1992,17(3):27-35.
    [22]余立平,鲜学富.煤层冲击倾向性试验研究及模糊综合评判[J].重庆大学学报,1993,(6):114-119.
    [23]魏风清,张建国译.煤与瓦斯突出预测方法和防治措施[M].北京:煤炭工业出版社,2003.
    [24]杨其中.国外煤与瓦斯突出问题的探讨(上)[M].重庆:科技文献出版社重庆分社,1976.
    [25]王淑坤,齐庆新,曾永志.我国煤岩冲击倾向性研究的进展[J].重庆大学学报,1998,(3):30-132.
    [26]冯夏庭,王泳嘉.深部开采诱发的岩爆及其防治策略的研究进展[J].中国矿业,1998,7(5):21-25.
    [27]王晓涛,张成训.新汶矿区防治冲击地压初探[J].中国煤炭,2001,27(4):33-35.
    [28]P. D. Sun. A numerical approach for Coupled gas leak flow and coal/rocked for mation in parallel coal seams[J]. Int. J. Rock Mech. Min,2004,41(3):55-65.
    [29]Miao Xie-xing, Li Shun-cai, Chen Zhan-qing. Bifurcation and catastrophe of seepage flow system in broken rock[J]. Mining Science and Technology,2009, (19):1-7.
    [30]Stephen D. Butt, Paul K. Frempong, Chinmoy Mukherjee, James Upshall. Characterization of the permeability and acoustic properties of an outburst-prone sandstone[J]. Journal of Applied Geophysics,2006, (58):1-12.
    [31]Cao Yun-xing, He Ding-dong, David C. Glick. Coal and gas outbursts in footwalls of reverse faults[J]. International Journal of Coal Geology,2001, (48):47-63.
    [32]Zhu Jie, Jiang Yao-dongb, Zhao Yi-xinb, Lu Yu-kai, Zhao Yi. Constitutive equations for coal containing gas considering gas adsorption[J]. The 6th International Conference on Mining Science & Technology Procedia Earth and Planetary Science,2009, (1):425-431.
    [33]Maria B. Diaz Aguado, C. Gonzalez Nicieza. Control and prevention of gas outbursts in coal mines, Riosa-Olloniego coalfield, Spain[J]. International Journal of Coal Geology,2007, (69):253-266.
    [34]Li Jian-lou, Yan Jia-ping, Xie Yan, Chen Ping, et al. Dynamic action simulation system and preliminary experiments of coal seams and gas[J]. Mining Science and Technology,2009, (19):473-478.
    [35]T. Li, M. F. Cai, M. Cai. Earthquake-induced unusual gas emission in coalmines-A km-scale in-situ experimental investigation at Laohutai mine[J]. International Journal of Coal Geology,2007, (71):209-224.
    [36]Zhang Bao-yong, Wu Qiang, Sun Deng-lin, Effect of surfactant Tween on induction time of gas hydrate formation[J]. J China Univ Mining & Technol, 2008, (18):18-21.
    [37]Zhou Chun-mei, Zhang Ze-jun, Wang Sheng-wei et al. Exploration of numerical simulation on paleo-tectonic stress field[C]. The 6th International Conference on Mining Science & Technology, Procedia Earth and Planetary Science,2009, (1):875-881.
    [38]Cao An-ye, Dou Lin-ming, Chen Guo-xiang, et al. Focal mechanism caused by fracture or burst of a coal pillar[J]. J China Univ Mining & Technol,2008, (18)153-158.
    [39]Leszek Les W. Lunarzewski. Gas emission prediction and recovery in underground coal mines[J]. International Journal of Coal Geology,1998, (35): 117-145.
    [40]B. Basil Beamish, Peter J. Crosdale. Instantaneous outbursts in underground coal mines:An overview and association with coal type[J]. International Journal of Coal Geology,1998, (35):27-55.
    [41]霍多特B B.煤与瓦斯突出机理.[M].北京:中国工业出版社,1966.
    [42]朱连山.煤与瓦斯突出机理浅析[J].矿业安全与环保,2002,29(2):23-25.
    [43]于不凡,王佑安.煤矿瓦斯灾害防治及利用技术手册[M].北京:煤炭工业出版社,2000.
    [44]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990,(2):1-9.
    [45]郭勇义,何学秋,林柏泉.煤矿重大灾害防治战略研究与进展[M].徐州:中国矿业大学出版社,2003.
    [46]何学秋.含瓦斯煤的流变特性及其对煤与瓦斯突出的影响:[博士学位论文].徐州:中国矿业大学,1990.
    [47]何学秋.含瓦斯煤岩流变动力学[M].徐州:中国矿业大学出版社,1995.
    [48]李萍丰.浅谈煤与瓦斯突出机理的假说—二相流体假说[J].煤矿安全,1989,(11):29-35.
    [49]梁冰,章梦涛,潘一山,等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [50]蒋承林,俞起香.煤与瓦斯突出球壳失稳假说[J].煤矿安全,1995,(2):31-38.
    [51]蒋承林.石门揭穿含瓦斯煤层时动力现象的球壳失稳机理研究[J].中国矿业大学学报,1994:31-38.
    [52]蒋承林,俞起香.煤与瓦斯突出的球壳失稳机理与防治技术[M].徐州:中国矿业大学出版社.1998.
    [53]吕绍林,何继善.关键层—应力墙瓦斯突出机理[J].重庆大学学报,1999,22(6):80-84.
    [54]郭德勇,李念友,裴大文,等.煤与瓦斯突出预测灰色理论-神经网络方法[J].北京科技大学学报,2007,29(4):354-357.
    [55]樊栓保.国内外煤与瓦斯突出预测的新方法[J].煤矿安全与环保,2000,27(5):17-19.
    [56]张玉功,王魁军,范启炜.北票矿区煤与瓦斯突出预测预报的研究与应用[J].煤矿安全,1991,(1):17-22.
    [57]张宏伟,李胜.淮南矿区地质动力区划[M].北京:煤炭工业出版社,2004:86-87.
    [58]Fu Xue-hai, Zhang Wen-ping, Zhou Ya-nan etal. Technology and method of coal and gas outburst prediction during coal geological exploration[C]. The 6th International Conference on Mining Science & Technology, Procedia Earth and Planetary Science,2009, (1):911-916.
    [59]樊栓保.国内外煤与瓦斯突出预测的新方法[J].矿业安全与环保,2000,27(5):17-19.
    [60]刘晓丹,卢国斌.地球物理方法预测煤与瓦斯突出[J].辽宁工程技术大学学报(自然科学版),2008,27(增刊):7-9.
    [61]熊亚选,程磊,蔡成功,等.利用MATLAB神经网络进行煤与瓦斯突出预测的研究[J].煤炭工程,2004,(1):70-72.
    [62]Zhu Yu, Zhang Hong, Kong Ling-dong. Research of Coal-Gas Outburst Forecasting Based on Artificial Immune Network Clustering Model[J]. Second International Workshop on Knowledge Discovery and Data Mining,2009, (9): 23-27.
    [63]张文永,徐胜平.灰色聚类评估法在五沟煤矿突出预测中的应用[J].矿业安全与环保,2006,33(增刊):36-38.
    [64]国家煤矿安全监察局.防治煤与瓦斯突出规定[M].煤炭工业出版社,2009.
    [65]秦汝祥,张国枢,杨应迪.瓦斯涌出异常预报煤与瓦斯突出[J].煤炭学报,2006,31(5):599-602.
    [66]秦汝祥,张国枢,杨应迪.瓦斯浓度序列的煤与瓦斯突出预报方法及应用[J].安徽理工大学学报(自然科学版),2008,28(1):25-29.
    [67]胡千庭,邹银辉,文光才,等.瓦斯含量法预测突出危险新技术[J].煤炭学报,2007,32(3):277-280.
    [68]龚大银,,赵新华,徐小波,等.掘进工作面突出前瓦斯涌出规律研究[J].矿业安全与环保,2009,36(增刊):115-117.
    [69]熊建龙,张玉贵,张子敏.宣东矿Ⅲ3煤层瓦斯涌出地质因素分析[J].煤矿安全,2009,(3):77-80.
    [70]李学文.潘一矿煤体结构特征及其在煤和瓦斯突出预测中的应用[J].中国煤炭质,2009,21(9):17-21.
    [71]吕绍林,何继善.瓦斯突出煤体的导电性质研究[M].中南工业大学学报,1998,29(6):511-514.
    [72]谢和平,彭苏萍,何满朝.深部开采基础理论与工程实践[M].北京:科学技术出版社,2006.
    [73]谭云亮,肖亚勋,孙伟芳.煤与瓦斯突出自适应小波基神经网络辨识和预测模型[J].岩石力学与工程学报,2007,26(增1):3373-3377.
    [74]孙海涛,胡千庭,梁运陪,等.煤与瓦斯突出预测的自适应神经-模糊推理系统研究[J].河南理工大学学报(自然科学版),2007,26(4):353-358.
    [75]杨敏,汪云甲,程远平.煤与瓦斯突出预测的改进差分进化神经网络模型研究[J].中国矿业大学学报,2009,38(3):339-444.
    [76]吴财芳,曾勇,张子戌,等.基于模糊神经网络的煤与瓦斯突出区域预测研究[J].煤田地质与勘探,2002,30(6):4-7.
    [77]Dongxiang Nan, Yunsheng Zhang. Predictive Methods of Generalized Quantum Neural Networks and Its Application[C]. Proceedings of the 7th World Congress on Intelligent Control and Automation,2008.
    [78]Yang Min, Wang Yun-jia, Cheng Yuan-ping. An incorporate genetic algorithm based back propagation neural network model for coal and gas outburst intensity prediction[C]. The 6th International Conference on Mining Science & Technology. Procedia Earth and Planetary Science,2009, (1):1285-1292.
    [79]Frid. V. Electromagnetic radiation method for rock and gas outburst forecast[J]. Journal of Appiied Geophysics,1995, (38):97-104.
    [80]撒占友,何学秋,王恩元.工作面煤与瓦斯突出电磁辐射的神经网络预测方法研究[J].煤炭学报,2004,29(5):564-567.
    [81]撒占友,何学秋,王恩元.煤与瓦斯突出危险性电磁辐射异常判识方法[J].煤炭学报,2008,33(12):1373-1376.
    [82]曹树刚,刘延保,张立强.突出煤体变形破坏声发射特征的综合分析[J].岩石力学与工程学报,2007,26(增1):2794-2799.
    [83]刘明举,刘彦伟,何学秋,等.用电磁辐射法预测煤与瓦斯突出的实验理论基础[J].安全与环境学报,2003,3(4):7-10.
    [83]汤友谊,陈江峰,彭立世.无线电波坑道透视构造煤的研究[J].煤炭学报,2002,27(3):254-258.
    [84]徐宏武.透视法预侧煤与瓦斯突出的尝试[J].煤田地质与勘探,1995,23(2):61-62.
    [85]黄胜全,赵成军.声发射技术在预测预报煤与瓦斯突出方面的研究[J].矿山机械,2006,34(3):28-29.
    [86]肖红飞,何学秋,王恩元,等.煤与瓦斯突出电磁辐射预测指标临界值的确定及应用[J].煤炭学报,2003,28(5):465-468.
    [87]肖红飞,冯涛,何学秋,等.煤岩动力灾害电磁辐射预测技术中力电耦合方法的研究及应用[J].煤炭学报,2005,24(11):1881-1886.
    [88]王恩元,何学秋,刘贞堂,等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [89].王恩元,何学秋,刘贞堂.煤岩电磁辐射特性及其应用研究进展[J].自然科学进展,2006,16(5):532-536.
    [90]何学秋,聂百胜,王恩元,等.矿井煤岩动力灾害电磁辐射预警技术[J].煤炭学报,2007,32(1):56-59.
    [91]肖红飞,彭斌.基于自记忆模型的煤与瓦斯突出电磁辐射预测研究[J].中国安全科学学报,2009,19(10):88-94.
    [92]李博,李忠辉,杨明.电磁辐射技术在演马庄矿防突中的应用[J].2009,37(3):30-33.
    [93]聂百胜,何学秋,王恩元.电磁辐射法预测煤矿冲击地压[J].太原理工大 学学报,2000,31(6):609-611.
    [94]郭德勇,郑茂杰,郭超,等.煤与瓦斯突出预测可拓聚类方法及应用[J].煤炭学报,2009,34(6):783-787.
    [95]郭德勇,范金志,马世志.煤与瓦斯突出预测层次分析-模糊综合评判方法[J].北京科技大学学报,2007,29(7):660-664.
    [96]由伟,刘亚秀,李永,等.用人工神经网络预测煤与瓦斯突出[J].煤炭学报,2007,33(2):286-287.
    [97]孙燕,,杨胜强,王彬,等.用灰关联分析和神经网络方法预测煤与瓦斯突出[J].中国安全生产科学技术,2008,4(3):14-17.
    [98]冯占文,刘贞堂,李忠辉,等.应用层次分析—模糊综合评判法对煤与瓦斯突出危险性的预测[J].中国安全科学学报,2009,19(3):149-154.
    [99]蔡成功,景国勋.模糊综合评判法预测煤与瓦斯突出强度的研究[J].安全与环境学报,2004,4(2):54-56.
    [100]姜德义,,蒋再文,章永武.模糊神经网络预测公路隧道揭煤突出危险性[J].重庆大学学报(自然科学版),2000,23(增刊):200-202.
    [101]郝吉生,袁崇孚.模糊神经网络技术在煤与瓦斯突出预测中的应用[J].煤炭学报,1999,24(16):624-627.
    [102]秦书玉.煤与瓦斯突出预报的模糊聚类相似分析法[J].中国地质灾害与防治学报,2003,14(4):58-61.
    [103]孙艳玲,秦书玉,梁宏友.煤与瓦斯突出预报的模糊聚类关联分析法[J].辽宁工程技术大学学报,2003,22(4):492-493.
    [104]施式亮,伍爱友.基于神经网络与遗传算法耦合的煤与瓦斯突出区域预测研究[J].中国工程科学,2009,11(9):91-96.
    [105]李祥.基于神经网络的煤与瓦斯突出系统的开发:[博士学位论文].淮南:安徽理工大学,2009.
    [106]张子戌,刘高峰,吕闰生.基于模糊模式识别的煤与瓦斯突出区域预测[J].煤炭学报,2007,32(6):592-595.
    [107]张子戌,刘高峰,吕闰生,等.基于模糊聚类分析和模糊模式识别的煤与瓦斯突出预测[J].煤田地质与勘探,2007,35(3):22-24.
    [108]朱玉,张虹,苏成.基于免疫遗传算法的煤与瓦斯突出预测研究[J].中国矿业大学学报,2009,38(1):125-130.
    [109]戴宏亮.基于改进的自适应支持向量机建模的煤与瓦斯突出预测[J].计算机应用研究,2009,26(5):1656-1658.
    [110]李祥,石必明.基于贝叶斯正则化BP人工神经网络的煤与瓦斯突出预 测的研究[J].工矿自动化,2009,(2):1-4.
    [111]张克,汪云甲.基于贝叶斯网络的煤与瓦斯突出预测研究[J].计算机工程与应用,2007,43(29):220-221.
    [112]张大伟,郭立稳,杜通.灰色系统理论在煤与瓦斯预测中的应用[J].河北理工大学学报(自然科学版),2009,31(2):1-5.
    [113]张文永,徐胜平.灰色聚类评估法在五沟煤矿突出预测中的应用[J].矿业安全与环保,2006,33(增刊):36-38.
    [114]孟贤正.用巷道顶板动态法预测综采面突出危险性[J].煤炭工程师,1999,(4):19-20.
    [115]程五一.用地质构造及煤体结构特性预测煤层突出危险[J].辽宁工程技术大学学报自然科学版,1999,18(5):510-512.
    [116]曹运兴.瓦斯地质单元法预测瓦斯突出的认识基础与实践[J].煤炭学报,1995,20(增刊):76-78.
    [117]杜长虎.瓦斯地质编图在生产中的运用[J].焦作工学院学报,1997,16(2):116-119.
    [118]Jiang Cheng-lin, Wang Chen, Li Xiao-wei et al. Quick determination of gas pressure before uncovering coal in cross-cuts and shafts[J]. Journal of China University of Mining & Technology.2008, (18):494-499.
    [119]Liu Lin, Cheng Yuan-ping, Wang Hai-feng et al. Principle and engineering application of pressure relief gas drainage in low permeability outburst coal seam[J]. Mining Science and Technology.2009, (19):342-345.
    [120]国家安全生产监督管理局,国家煤矿安全监察局.煤矿安全规程[M].北京:煤炭工业出版社,2007.
    [121]国家煤矿安全监察局.瓦斯治理经验五十条[M].北京:煤炭工业出版社,2005.
    [122]国家安全生产监督管理局,国家煤矿安全监察局.国有煤矿瓦斯治理规定(第21号令),2005.
    [123]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [124]Liu lin. Research on the outburst prevention measures of controlled pre-fracturing blasting with long holes and its application[C]国际采矿技术研讨会,煤炭工业出版社,1998.
    [125]Bin jun, Zhong kui, Swets, et al. Changes of permeability of coal in the process of deformation[C]. In Frontiers of Rock Mechanics and sustainable development in the 21 st century, The Netherlands,2001:181-183.
    [126]C. Fairhurst. Geomaterials and recent development in micro-mechanical numerical models[J]. News Journal,1997,4(2):11-14.
    [127]Kunsoo Kim, Yao Cun-ying. Effects of micromechanical property variation on fracture processes in simple tension[C]. The 35th U.S. Symposium on Rock Mechanics,1995,471-476.
    [128]国家安全生产监督管理局,国家煤矿安全监察局.保护层开采技术规范[M].北京:煤炭工业出版社,2009.
    [129]于不凡.开采解放层的认识与实践[M].北京:煤炭工业出版社,1986.
    [130]俞启香.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005,12-46.
    [131]程远平.煤与瓦斯突出煤层区域性瓦斯灾害防治关键技术及应用[R].2009年全国煤矿瓦斯防治工作会议技术交流材料之二,2009.
    [132]Michael Bauer. High performance longwall mining in deep and methane rich coal deposits in Germany taking into account methods and technologies for controlling the estimated gas liberation[C]//2007中国(淮南)煤矿瓦斯治理技术国际会议论文集.徐州:中国矿业大学出版社,2007:57-75.
    [133]袁亮.松软低透煤层群瓦斯抽采理论与技术[M].北京:煤炭工业出版社,2004.
    [134]王海峰.采场下伏煤岩体卸压作用原理及在被保护层卸压瓦斯抽采中的应用:[博士学位论文].徐州:中国矿业大学,2008.
    [135]程远平,俞启香.煤与远程卸压瓦斯安全高效共采试验研究[J].中国矿业大学学报,2004,33(2):132-136.
    [136]吴自立.煤与瓦斯突出地质因素影响分析[J].矿业安全与环保,2009,36(8):208-212.
    [137]钱鸣高,刘听成.矿山压力及其控制(修订本)[M].北京:煤炭工业出版社,1991.
    [138]史红.综采放顶煤采场厚层坚硬顶板稳定性分析及应用:[博士学位论文].山东科技大学,2005.
    [139]徐芝纶.弹性力学[M].北京:高等教育出版社,1990.
    [140]徐秉业,刘信声.应用弹性力学[M].北京:清华大学出版社,1995.
    [141]吴家龙.弹性力学[M].上海:同济大学出版社,1987.
    [142]刘鸿文,林建兴,曹曼玲.板壳理论[M].浙江大学出版社,1987.
    [143][美]S.铁摩辛柯,S.沃诺斯基.板壳理论[M].科学出版社,1977.
    [144]刘文生,范学理,赵德深.覆岩离层充填技术的理论基础与工程实施[J]. 辽宁工程技术大学学报,2001,20(2):135-137.
    [145]谢世勇,赵伏军,陈才贤.开采解放层预防煤与瓦斯突出的断裂力学分析[J].煤炭科学技术,2007,35(4):22-25.
    [146]陈忠辉,冯竞竞,肖彩彩,等.浅埋深厚煤层综放开采顶板断裂力学模型[M].煤炭学报,2007,32(5):449-452.
    [147苏仲杰.采动覆岩离层变形机理研究:[博士学位论文].辽宁工程技术大学,2001.
    [148]钱鸣高,缪协兴,等.岩层控制的关键层理论[M].徐州:中国矿业大学出版社,2003
    [149]钱鸣高,刘听成.矿山压力及其控制(修订本)[M].北京:煤炭工业出版社,1991.
    [150]许家林,钱鸣高,金宏伟.岩层移动离层演化规律及其应用[J].岩土工程学报,2004,26(5):632-636.
    [153]Desai, C. S., Somasundaram, S., Frantziskonis, G.A hierachical approach for constitutive modeling of geologic material[J]. International Journal for Numerical and Analytical Methods in Geomechanics,1986,10(3):225-257.
    [154]勒迈特J.损伤力学教程[M].北京:科学出版社,1996.
    [155]Lippmann H. Mechanics of "bumps" in coal mines:a discussion of violent deformation in the sides of rockways in coal seams[J]. Applied Mechancs. Reviews,1987,40(8):1033-1043.
    [156]Hoek E, Broen E T. Underground excavation in rock[M]. Herford:Austin & Sons Ltd,1980.
    [157]李建铭.煤与瓦斯突出防治技术手册[M].徐州:中国矿业大学出版社.2006.4.
    [158]湖南省煤炭研究所.湖南省矿井瓦斯情况及防治技术[R].湖南省煤炭厅关于瓦斯治理研究成果(第1辑),1979.
    [159]湖南省煤炭科学研究所.湖南省矿井瓦斯情况及防治技术调研分析评价(1978-1988年)[R].湖南省煤炭厅关于瓦斯治理研究成果(第2辑),1990.
    [160]湖南省煤矿安全监察局.湖南省煤矿瓦斯情况防治技术[R].湖南省煤炭厅关于瓦斯治理研究成果(第3辑),2000.
    [161]吴基文,赵志根,程新明,等.影响海孜煤矿煤层瓦斯赋存的地质因素分析[J].西安科技学院学报,2003,23(3):264-266.
    [162]李伟,连昌宝.淮北煤田煤与瓦斯突出地质因素分析与防治[J].煤炭科学技术.2007,35(1):19-22.
    [163]兰泽全,夏万报,王志亮,等.海孜矿瓦斯动力现象特征及分析[J].煤矿安全,2008,(5):73-76.
    [164]张荣立,何国伟,李铎.采矿工程设计手册(上、中、下)[M].北京:煤炭工业出版社,2003.
    [165]马丕梁,陈东科.煤矿瓦斯灾害防治技术手册[M].北京:化学工业出版社,2007,5.
    [166]淮北矿业集团海孜煤矿,中国矿业大学.海孜煤矿巨厚火成岩下矿震冲击分析及其开采(初步)方案研究报告[R].课题研究报告.2008.
    [167]Hoek, Brown E T. Practical Estimates of Rock Mass Strength[J]. International Journal of Rock Mechanics of Mining Science,1997,34(8):1165-1186.
    [168]Yan Chang-bin. Blasting cumulative damage effects of underground engineering rock mass based on sonic wave measurement J]. Journal of Central South University of Technology,2007,14(2):230-235.
    [169]王星文.岩体力学[M].长沙:中南大学出版社,2004.
    [170]Germain P, Hadjigeorgiou J. Influence of stope geometry and blasting patterns on recorded overbreak [J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(3):115-126.
    [171]蔡美峰.岩石力学与工程[M].北京:科学出版社,2002.
    [172]干光瑜,秦惠民.材料力学(第三版)[M].北京:高等教育出版社,2002.
    [173]Gan H, Nandi S P, Walker P L. Nature of porosity in American coals[J]. Fuel, 1972,51:272-277.
    [174]郝琦.煤的显微孔隙形态特征及其成因探讨[J].煤炭学报,1987,(4).51-57.
    [175]张慧.煤孔隙的成因类型及其研究[J].煤炭学报,2001,26(1):40-44.
    [176]苏现波,冯艳丽,陈江峰.煤中裂隙的分类[J].煤川地质与勘探,2002,30(4):21-24.
    [177]景国勋,施式亮.系统安全评价与预测[M].徐州:中国矿业大学出版社,2009.
    [178]安永林.结合邻近结构物变形控制标准的隧道施工安全与风险评估研:[博士学位论文].长沙:中南大学,2009.
    [179]王卓甫.工程项目管理风险及及其应对[M].北京:中国水利水电出版社,2005.
    [180]杨宝安,张科静.多目标决策分析理论、方法与应用研究[M].上海:东华大学出版社,2008.
    [181]李润球.煤矿瓦斯爆炸事故演化特性与危险性评价研究:[硕士学位论文].湘潭:湖南科技大学,2009.
    [182]T.L,萨蒂.许树柏.层次分析法[M].北京:煤炭工业出版社.1988.
    [183]王莲芬.层次分析法引论[M].北京:中国人民大学出版社.1990.
    [184]彭立敏,安永林,张运良,等.可拓法识别勘测阶段隧道瓦斯突出的模型与实证[J].土木工程学报,20008,41(4):81-85.
    [185]安永林,彭立敏,张运良,等.可拓法评估煤矿瓦斯爆炸易发性[J].灾害学,2007,22(4):21-24.
    [186]周玉,钱旭,江涛,等.井采煤矿安全性态可拓评价模型的研究[J].中国矿业大学学报,2009,38(4):519-522.
    [187]杨玉中,冯长根,吴立云.基于可拓理论的煤矿安全预警模型研究[J].中国安全科学学报,2008,18(1):40-45.
    [189]李航,赵桂红.机场安全可拓预警模型研究[J].计算机工程与应用,2009,45(4):238-244.
    [190]傅鹤林,韩淑才.隧道衬砌荷载计算理论及岩溶处治技术[M].长沙:中南大学出版,2005.
    [191]杨宝安,张科静.多目标决策分析理论、方法与应用研究[M].上海:东华大学出版社,2008.
    [192]姚爱军,薛延河.复杂边坡稳定性评价方法与工程实践[M].北京:科学出版社,2008.
    [193]张瑞林.现代信息技术在煤与瓦斯突出区域预测中的研究:[博士学位论文].重庆:重庆大学,2004.
    [194]陈金国.瓦斯管理的关键技术研究:[博士学位论文].南京:南京航空航天大学,2007.
    [195]李胜.煤与瓦斯突出区域预测的模式识别方法研究:[博士学位论文].阜新:辽宁工程技术大学,2004.
    [196]赵志刚.煤与瓦斯突出的藕合灾变机制及非线性分析:[博士学位论文].济南:山东科技大学,2007.
    [197]高雷阜.煤与瓦斯突出的混沌动力学系统演化规律研究:[博士学位论文].阜新:辽宁工程技术大学,2006.
    [198]张国辉.煤层应力状态及煤与瓦斯突出防治研究:[博士学位论文].阜新:辽宁工程技术大学,2005.
    [199]张豫生.基于地质构造的煤与瓦斯突出预测研究:[博士学位论文].阜新:辽宁工程技术大学,2006.
    [200]张玉贵.构造煤演化与力学作用:[博士学位论文].太原:太原理工大学,2006.
    [201]刘思峰,谢乃明.灰色系统理论及其应用(第四版)[M].科学出版社,2007.
    [202]王治祯,柏景方.灰色系统及模糊数学在环境保护中的应用[M].哈尔滨工业大学出版社.2007.
    [203]熊和金,徐华中.灰色控制[M].国防工业出版社.2005:28-36.
    [204]张春华,刘泽功.多变量灰色模型及其在钻孔瓦斯流量预测中的应用[J].中国安全科学学报,2006,16(6):50-54.
    [205]邓聚龙,灰色系统基本方法[M].武汉:华中理工大学出版社,1987.
    [206]李希灿,李丽.时序残差GM(1,1)模型[J].系统工程理论与实践,1998,(10):59-63.
    [207]桂祥友,郁钟铭,孟絮屹.贵州煤矿瓦斯涌出量灰色预测的应用[J].采矿与安全工程学报,2007,24(4):449-452.
    [208]吕贵春,马云东.矿井瓦斯涌出量预测的灰色建模法[J].中国安全科学学报,2004,14(10):22-24.
    [209]王立杰,孙继湖.基于灰色系统理论的煤炭需求预测模型[J].煤炭学报,2002,27(3):333-336.
    [210]罗文柯,施式亮,谢东海.金竹山土朱煤矿开采地表沉降规律与灰色预测模型研究[J].中国安全科学学报.2009,19(10):52-58.
    [211]吕光华.矿业灰色系统[M].北京:炭工业出版社,1993.
    [212]钱家忠,朱学愚,吴剑锋,等.矿井涌水量的灰色马尔可夫预报模型[J].煤炭学报,2000,25(1):71-75.
    [213]同小军,张洪林.两种灰色模型的对比与分析[J].武汉工业学院学报.2003(4):101-104.
    [214]罗文柯,施式亮,刘影,等.灰色Logistic Ⅰ/Ⅱ模型在煤矿开采沉降预测中的应用[J].科技导报,2010,28(11):74-78.
    [215]罗文柯,施式亮,李东明,等.灰色系统理论在煤矿开采沉降中的应用[J].矿业工程研究,2009,24(1):11-14.
    [216]施式亮.海孜煤矿下保护层开采综合治理瓦斯技术及其应用研究[R].项目研究报告,2008.
    [217]王亮.巨厚火成岩下远程卸压煤岩体裂隙演化与渗流特征及在瓦斯抽采中的应用[D].徐州:中国矿业大学,2009.
    [218]施式亮.海孜矿86采区瓦斯综合治理技术研究[R].项目研究报告,2009.
    [219]张铁岗.矿井瓦斯综合治理技术[M].北京:煤炭工业出版社,2007.
    [220]刘家学,郑昌义.多阶段多指标决策的理想方案法[J].系统工程理论与实践,2001,(1):61-64.
    [221]杨自厚,李宝泽.多指标决策理论与方法[M].沈阳:东北大学出版社,1989.
    [222]刘琼,艾云平,王卓柱,等.多层次灰色聚类决策对目标价值排序的应用[J].火力与指挥控制,2008,33(5):79-81.
    [223]张新波.动态多目标决策问题的灰色分析方法[J].电路与系统学报,2004,9(3):118-121.
    [224]解建喜,宋笔锋,刘东霞.飞机顶层设计方案优选决策的灰色关联分析法[J].电路与系统学报,2004,19(4):350-354.
    [225]吴爱祥,张卫锋.优选法在采矿工程中的应用探讨[J].矿冶工程,2001,21(1):13-15.
    [226]罗党,陈东升.一类灰色组合投资决策方法[J].数学的实践与认识,2005,35(5):37-43.
    [227]陈孝新,刘思峰.权重信息完全未知的灰色多属性群决策方法研究[J].中国管理科学,2008,16(5):146-151.
    [228]卫贵武.区间数多指标决策问题的新灰色关联分析法[J].系统工程与电子技术,2006,28(9):1358-1359.
    [229]赵保太,林柏泉.“三软”不稳定低透气性煤层开采瓦斯涌出及防治技术[M].徐州:中国矿业大学出版社,2007.
    [230]张铁岗.矿井瓦斯综合治理示范工程[M].北京:煤炭工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700