铝合金厚板淬火—预拉伸内应力形成机理及其测试方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高强铝合金厚板是重要的航空工业材料,也是国家“大飞机”项目薄壁构件板坯的主要用材,因而对制备过程中材料组织均匀性、机械性能和内应力水平的控制都有着极高的要求。内应力又称残余应力,是生产制备过程中不可避免的平衡于材料内部的弹性力,是塑性变形不均匀的必然结果。工程中,残余应力对厚板的使用与加工有很大负面影响,例如板内应力致使板材淬火断裂、材料内部缺陷、预拉伸厚板加工扭曲变形等,既影响了成材率,也造成后续构件的加工精度难以达到要求。因此,开展对厚板应力形成机理与测试方法的研究具有十分重要的意义。本文以高强铝合金7075轧制厚板为研究对象,围绕厚板淬火-预拉伸残余应力的形成、分布与演变规律,从理论分析到实验研究,建立了残余应力形成过程热-力准耦合数学模型和有限元仿真模型,揭示了残余应力场形成的宏微观机理和分布规律,并研究了准确求取厚板残余应力的测试方法。
     运用弹塑性力学、热力学和有限元理论方法,分析了厚板淬火热传导过程中残余应力的形成,以及预拉伸塑性变形对材料应力场的演变,并对两者物理过程中应力-应变关系进行了较为完整的数学描述。同时,将应力连续变化过程离散为有限元数学模型,通过非线性有限元软件MSC.Marc建立了厚板淬火-预拉伸应力场有限元仿真模型。研究过程中,提出用离散解析方法求解换热系数,解决了模型热边界条件的求取问题,以便分析淬火温度与换热强度之间的关系。
     运用材料学和晶体变形理论,展开了对厚板淬火-预拉伸残余应力形成机理和演变过程的研究,从宏观塑性变形的差异,到局部微观组织表现的各向异性特征,揭示了厚板应力形成的本质在于塑性变形或局部变形的不均匀和不一致性所致。文中运用典型微结构抽象模型分析方法,分别对不同微区结构中晶粒相互作用形式,进行了微观应力不均匀和变化波动演变机理的分析,较好地揭示了微区应力变化波动现象。通过有限元仿真和实验计算,研究归纳了厚板残余应力形成与演变的一般规律,包括预拉伸板应力“M”双峰型分布形成原因、预拉伸板锯切区范围讨论等。同时,探讨了拉伸状态非对称因素对预拉伸厚板应力场分布的影响,如拉伸夹钳失效问题、厚板裂纹缺陷问题等,提出了可供参考意见和建议。
     为了获得厚板真实应力场,将积分算法引入到层削实验方法中,构建内应力计算数学模型,求取厚板深度应力场。同时,借助相应的铣削仿真与实验研究,提出层削实验应力计算的修正方法,提高了测试方法的正确性。进一步,总结了积分型层削法特点,分析层削实验计算的误差来源,求得其应力计算总不确定度小于10MPa,证明积分型层削法具有较高的计算精度。同时,为揭示厚板取样对测试的影响机理,研究了厚板取样过程中存在的应力分布非均匀特征,实验结果表明:取样平面尺寸大于2~3倍板厚对保证测试稳定性非常关键,而常规取样和实验加工方法对测试结果的影响很小。
     为保证测试结果的正确性和测试方法的可靠性,建立了仿真-实验综合方法,多层次互补地实现对厚板应力场的准确描述,该方法包括X-ray表面应力测定、应力场有限元仿真、力学实验测试方法。X-ray衍射测试用于标定厚板表面应力,修正换热边界条件,使有限元仿真模型计算结果能较好反映实际应力分布。同时,为揭示层削实验中变形累积增大的误差根源,构造层削实验应力计算修正函数,为完备实验测试方法的正确性研究提供依据。
     借助实验测试方法,完成对不同规格、不同状态下厚板残余应力的测试分析,结果表明:(1)淬火应力分布主要取决于淬火强度,沿深度两平面应力的分布状况基本相似。(2)预拉伸应力评估的结果显示,内部最先塑性变形是整个厚板应力消减的关键点,综合考虑消减效果和拉伸效率,1.8%~2.5%拉伸量是一个合适的拉伸范围。(3)预拉伸板应力水平基本处于±20MPa左右,说明预拉伸工艺对厚板残余应力分布有一定均化作用。(4)积分型层削计算方法能准确测得厚板应力场分布,尤其对预拉伸板这类低应力测试对象,仍能较客观地反映厚板应力分布,说明上述测试方法的研究成果能够用来解决厚板应力场测试问题。
     本文得到了国家重点基础研究发展计划项目“高性能铝材与铝资源高效利用的基础研究”,其中第八子课题“大规格铝材非均匀多相组织和内应力场的产生与演变(2005CB623708)”的资助。
Super-high-strength aluminum alloy thick plate is an important industrial material used in aeronautical industry and the main material for roughcast of thin-walled component in "large aircraft project". However, it has demanding requirement in homogeneity of material microstructure, material properties and the level of internal stresses to produce the aluminum alloy. Internal stress, also known as residual stress, which is the inevitable and self-balancing elastic force inside material during manufacturing, is determined by the inhomogeneity of plastic deformation. Unfortunately, the internal residual stress often cause quenching fracture of thick plate, material with internal defects, and distortion of pre-stretched thick plate, which is harm to the application of thick plate and will impede finished product rate and machining accuracy of subsequent machining. Therefore, the control and determination of internal stresses in thick plate has been a topic in aluminum alloy research, especially the formation mechanism and measurement methods need an in-depth study. Taking 7075 aluminum alloy hot-rolled thick plate as research object, this paper built thermo-mechanical quasi-coupled mathematical model and relevant finite element model centering on three aspects:formation mechanism and evolvement of residual stress, finite element simulation, and measurement methods of stresses. In addition, this paper revealed macro-micro formation mechanism of residual stress and its distribution and proposed accurate measurement methods for stress measurement.
     Based on elastic-plastic mechanics, thermodynamics and finite element method, the formation of residual stress in thick plate during quenching, the evolvement of stress field during stretching, and the mathematical description of stress-strain relationship in quenching and prestretching were analyzed. At the same time, the continuous variation of stress was discredited into a finite element mathematical model and the finite element models of quenching and pre-stretching were built by MSC.MARC. In the study, a discrete analytical method was used to calculate heat transfer coefficient, which provided convenience in discussing the relationship between quenching temperature and coefficient.
     Based on material science and theory of crystal deformation, formation mechanism and evolvement of residual stresses was studied. By studying aspects ranging from differences in macroscopic plastic deformation to anisotropic characteristic of local microstructure, this paper revealed that stress formation of thick plate results from the inhomogeneity of plastic deformation or local deformation. With abstract models of representative microstructure, this paper analyzed the inhomogeneity and variation of microstress in different local regions, and revealed the fluctuation mechanism of stress. Additionally, by finite element simulation and experiments, the general law of formation and evolvement of residual stress in thick plate during quenching and prestretching was studied and induced, including the formation cause of "M" curve of residual stress distribution through thickness and so on. Meanwhile, other problems which can influence distribution of stress field were studied, such as the failure of clamp and the initial defects of thick plate. Accordingly, relevant suggestion was made for these problems.
     For stress calculation, the integration method was introduced into layer removal experiments and relevant mathematical model in order to obtain the distribution of stress field. Meanwhile, by conducting related milling simulation and experiments, a modified method used for stress calculation in layer removal experiments was proposed to improve the accuracy of experimental result. Furthermore, the characteristic of layer removal method was summarized and the cause of error in the calculation was analyzed, keeping the total error of calculated stress less than 1OMPa. Besides, the influence exerted by sample size on measurement results of layer removal experiments was studied in order to improve the effectiveness of samples in layer-removal experiments. The experimental result shows that it is necessary to use sample with size twice the thickness of the thick plate or larger to measure its internal stresses. While common sampling method and experiment method have little influence on measurement results.
     In order to ensure the accuracy of results and the reliability of measurement methods, the simulation-experiment synthetical method is established to achieve multi-layer and complementary description of stress field, including measurement of surface stress by X-ray diffraction method, distribution of stress field by finite element simulation, and internal stress by layer removal method. Furthermore, the modification of heat transfer coefficient through measurement of surface stress by X-ray diffraction method is beneficial and will make finite element simulation model more coincide with real distribution of stress. Subsequently, based on milling simulation of samples, the root cause of accumulated error of deformation during conducting layer removal experiment was revealed and a modified function based on stress calculation in layer removal experiments was built.
     Based on analysis of stress measurement result from thick plates with different sizes and conditions, it was revealed that:(1) The distribution of quenching stress mainly depends on quenching intensity. Moreover, the distribution of plane stress through the thickness of thick plate is similar. (2) The analysis of stress field in stretched thick plate shows that the earliest internal plastic deformation is critical for the reduction of stress ef throughout the whole thick plate. Based on synthetical analysis, the reasonable stretch rate ranges from 1.8% to 2.5%. (3) Stress of prestretched plate is about±20MPa, which presents that prestretching process can even the residual stress of plate. (4) The integration model of layer removal method can accurately measure the stress field of thick plate regardless of the low stress level. So measurement methods can fully qualify for the stress determination of thick plate.
     The paper was supported by Key Project of Chinese National Programs for Fundamental Research and Development (2005CB623708).
引文
[1]曾苏民,袁季岗.我国迎来加快迈向世界铝加工强国的发展机遇.新材料产业,2008(4):14-16.
    [2]盛春磊,刘静安,朱英.我国铝及铝合金轧制设备现状与发展趋向.铝加工,2005,164(5):18-23.
    [3]刘静安.浅谈中国铝及铝合金材料产业发展战略(1).铝加工,2005,164(5):1-6.
    [4]曾渝,尹志民,潘青林,郑子樵,刘志义.超高强铝合金的研究现状及发展趋势.中南工业大学学报,2002,33(6):592-596.
    [5]钟掘.提高铝材质量基础研究的进展.基础科学研究·国家重点基础研究项目,2002.3:15-21.
    [6]肖尧.我国200吨级大飞机实体年底将在西安亮相.中国广播网,2009,11.08.http://news.sohu.com/20091108/n268042908.shtml.
    [7]刘静安.浅谈中国铝及铝合金材料产业发展战略(2).铝加工,2005,164(6):1-5.
    [8]楼瑞祥.大飞机用铝合金的现状与发展趋势.中国航空学会2007年学术年会,2007.
    [9]文献军.铝合金价格走势及对航空制造业的影响.2006年中国航空工业产业链发展论坛会议论文集,2006.
    [10]康小明,孙杰,苏财茂,等.飞机整体结构件加工变形的产生和对策.中国机械工程,2004,15(13):1140-1143.
    [11]黄志刚,柯映林,董辉跃.框类整体结构件铣削加工顺序的有限元模.浙江大学学报,2005,39(3):368-372.
    [12]江志邦,宋殿臣,关云华.世界先进的航空用铝合金厚板生产技术.轻合金加工技术,2005,33(4):1-7.
    [13]王祝堂.铝合金厚板供不应求.中国有色金属报,2007,2(6):1-2.
    [14]林高用.高性能7X75系铝合金厚板加工技术相关基础研究:[博士学位论文].长沙:中南大学,2006.
    [15]刘少洲,刘静安.现代铝合金管、棒、型、线材生产技术与装备发展概况.四川有色金属,2007,2(6):10-15.
    [16]刘少洲,陈丽君.7075-T651合金厚板预拉伸断裂原因分析.轻合金加工技术,2000,28(8):8-10.
    [17]张立军,招生顿,柳伟,化春键.棒料热应力预制裂纹的数值模拟研究.中国机械工程,2006,17(23):2512-2516.
    [18]钟利.铝合金厚板市场和生产技术发展.稀有金属,2006,30(12):185-191.
    [19]曾苏民.我国铝加工业发展趋势.中国有色金属学报,2008,14S1(5):179-181.
    [20]米谷茂.残余应力的产生和对策.北京:机械工业出版社,1983.
    [21]杨觉先.金属塑性变形物理基础.北京:冶金工业出版社,1988.
    [22]程晓宇,王晓梅.残余应力的本质及其调整.腐蚀研究.2009,23(7):33-35.
    [23]宁爱林,曾苏民.固溶处理对高纯高强铝合金组织和性能的影响.金属热处理.2004,29(4):13-17.
    [24]王秋成,柯映林,邢鸿燕.板类构件内部残余应力测试技术研究.浙江大学学报,2005,29(3):381-384.
    [25]王秋成,柯映林.航空高强度铝合金残余应力的抑制与消除.航空材料学报,2002,22(3):59-62.
    [26]王树宏.航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究:[博士学位论文].南京航空航天大学机电工程学院,2007(9):1404-1409.
    [27]张定铨,何家文.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社,1999.
    [28]袁发荣.残余应力测试与计算.长沙:湖南大学出版社,1987.
    [29]Shamachary Sathish, Thomas J. Moran, Richard W. Martin, Richard Reibel. Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements. Materials Science and Engineering A,2005,399:84-91.
    [30]Michael B Prime. Residual stress measurement by successive extension of a slot: The crack compliance method. Applied Mechanics Reviews,1999,52(2):75-96.
    [31]Gary S. Schajer, Michael B. Prime. Use of inverse solutions for residual stress measurement. Journal of Engineering Materials and Technology,2006, 128(3):375-382.
    [32]M.G. Batemana, O.H. Millera, T.J. Palmer. Prime et al. Measurement of residual stress in thicksection composite laminates using the deep-hole method. International Journal of Mechanical Sciences,47 (2005) 1718-1739.
    [33]Michael B Prime, Michael R Hill. Residual stress,stress relief,and inhomogeneity in aluminum plate:. Scripta Materialia.2000,46(1):77-82.
    [34]陈冷,张清辉,毛卫民.残余应力及其分布的X射线二维衍射分析与计算.材料热处理学报,2006,1(2):120-124.
    [35]林高用,郑小燕,冯迪.铝合金厚板淬火残余应力的研究进展.材料导报,2008,22(6):70-74.
    [36]朱伟.7075铝合金厚板淬火残余应力的研究:[硕士学位论文].长沙:中南 大学,2002.
    [37]胡少虬,曾苏民.无相变合金淬火热应力演变机理的理论模型——(1)角端和边缘淬火热应力模型与淬火角端效应.稀有金属材料与工程.2006,35(4):538-541.
    [38]方岱宁.先进复合材料的宏微观力学与强韧化设计:挑战与发展.福州大学学报,2000.17(2):1-7.
    [39]吴德隆,王江,王淑范,等.复合材料损伤分析及其本构关系—第二部分:微观力学方法,导弹与航天运载技术,2002.2:32-36.
    [40]Donald F. Adams. A micromechanical analysis of crack propagation in an elastoplastic composite material. Fibre Science and Technology,1974,7(4): 237-258.
    [41]D. RAABE, M. SACHTLEBER, Z. ZHAO, et al. Micromechanical and macromechanical effects in grain scale polycrystal plasticity experimentation and simulation. Acta mater,2001,49:3433-3441.
    [42]I. Doghri, L. Tinel. Micromechanical modeling and computation of elasto-plastic materials reinforced with distributed-orientation fibers. International Journal of Plasticity,2005,21:1919-1940.
    [43]Michael R. Hill, Tina L. Panontin. Micromechanical modeling of fracture initiation in 7050 aluminum. Engineering Fracture Mechanics,2002,69: 2163-2186.
    [44]张为民,张淳源,张平.微观力学中的平均场理论,湘潭大学自然科学学报,2003.25(4):64-69.
    [45]张淳源,张为民.微观力学中的对应原理,湘潭大学自然科学学报,2005.27(1):11-17.
    [46]田峰,胡更开,杨改英.塑性细观力学模型的比较分析,北京理工大学学报,1996,16(5):477-482.
    [47]石连升,刘红兵,王彪.预报复合材料热膨胀系数的细观力学模型.材料科学与工艺,1997,5(1):5-7.
    [48]牛莉莎,胡齐阳,施惠基.纤维增强铝基复合材料热残余应力细观力学模型,航空材料学报,2001,21(1):36-42.
    [49]李红周,贾玉玺,姜伟,安立佳.纤维增强复合材料的细观力学模型以及数值模拟进展,材料工程,2006,8:57-61.
    [50]李海.Ag、Sc合金化及热处理工艺对7055铝合金的微观组织和性能影响研究:[博士学位论文].长沙:中南大学,2005.
    [51]刘继华,李荻,刘培英等.时效和回归处理对7075铝合金力学及腐蚀性能的影响.材料热处理学报,2002,23(1):50-54.
    [52]Pellman et al.Vapor Phase Uphill Quenching of Metal Alloys using Fluorchemicals:U.S.A,4968358[P].1990-11-6.
    [53]T Croucher et al. Minimizing Machining Distortion in Aluminum Alloys Thru Successful Application of Uphill Quenching-A Process Overview. Journal of ASTM,2009,6:1-20.
    [54]赵祖德,王秋成,谢伟东等.7A04铝合金构件深冷处理过程瞬态温度场的数值模拟.低温工程,2007,2:21-24.
    [55]S.Kwofie. Plasticity model for simulation, description and evaluation of vibratory stress relief. Materials Science and Engineering.2009,A516:154-161.
    [56]Walker C A, Waddell A J, Johnston D J. Vibratory stress relief-an investigation of the underlying processes. Proc. Instn.Mech. Engrs part E:Journal of Process Mechanical Engineering,1995,209:51~58.
    [57]房德馨.金属的残余应力与振动处理技术.大连:大连理工大学出版社,1989.
    [58]陈立功.不锈钢焊接构件的振动时效与热时效.金属热处理,1997,(8):24-27.
    [59]沈华龙.铝合金厚板振动时效工艺以及效果的研究:[硕士学位论文],长沙:中南大学,2008.11.
    [60]郭俊康.铝合金厚板振动时效的微屈服机理探讨与试验研究:[硕士学位论文],长沙:中南大学,2010.5.
    [61]王秋成,柯映林.航空高强度铝合金残余应力的抑制与消除.航空材料学报,2002,9:59-62.
    [62]柯映林,董辉跃.7075铝合金厚板预拉伸模拟分析及其在淬火残余应力消除中的应用.有色金属学报.2004,14(4):639-645.
    [63]王树宏,左敦稳,润长生.LY12,B95和7075铝合金预拉伸厚板内部残余应力分布特征评估与分析.材料工程,2004,10:32-35.
    [64]蒋刚,谭明华,王伟明,等.残余应力测量方法的研究现状.机床与液压,2007,35(6):7-9.
    [65]姜传海.X射线内应力测定.青岛:第14届中国残余应力学术会议.2007,10.
    [66]张定铨.关于残余应力的基本概念和X射线应力测定的基本原理.青岛:第14届中国残余应力学术会议.2007,10.
    [67]罗健豪.无损残余应力测量及其新技术.力学与实践,2003,25(4):7-11.
    [68]王钟羡.缺口应力预测和裂纹尖端约束评估:[博士学位论文].南京:南京理工大学,2008.
    [69]S. Pratihar, V. Stelmukh, M.T. Hutchings, et al. Measurement of the residual stress field in MIG-welded Al-2024 and Al-7150 aluminium alloy compact tension specimens. Materials Science and Engineering A, 437(2006):46-53.
    [70]Vincent JI. Microstructural and Mechanical Heterogeneity Method Study by Neutron Diffraction Method. Qingdao:14th Residual Stress Conference in China. 2007,10.
    [71]李峻宏,高建波,李际周,等.中子衍射残余应力无损测量技术及应用.中国材料进展.2009,28(12):10-15.
    [72]N. Murugan, R. Narayanan. Finite element simulation of residual stresses and their measurement by contour method. Materials and Design. 30(2009):2067-2071.
    [73]M. Turski, L. Edwards. Residual stress measurement of a 3161 stainless steel bead-on-plate specimen utilising the contour method. International Journal of Pressure Vessels and Piping.86 (2009):126-131.
    [74]M.G. Batemana, O.H. Millera, T.J. Palmera,. et al. Measurement of residual stress in thicksection composite laminates using the deep-hole method. International Journal of Mechanical Sciences.47 (2005):1718-1739.
    [75]George D, Smith DJ. The application of the deep-hole technique for measuring residual stresses in autofrettaged tubes. ASME PVP High Pressure Technology 2000;406:25-31.
    [76]George D, Kingston E, Smith DJ. Measurement of through-thickness stresses using small holes. Journal of Strain Analysis.37(2002):125-39.
    [77]陈超,潘春旭.残余应力测量技术的现状与发展.十堰:湖北省第九届热处理年会.2004,9.
    [78]唐志涛,刘战强,艾兴,等.基于裂纹柔度法的铝合金预拉伸板内部残余应力测试.中国有色金属学报.2007,17(9):1404-1409.
    [79]田石柱,李凤臣.梁板类构件焊接残余应力测试的试验方法研究.哈尔滨工业大学学报,2009,30(5):501-507.
    [80]孙娟,张旦闻.基于断裂力学的数字相关技术残余应力检测方法.洛阳大学学报,2006,21(2):57-62.
    [81]M. B. Prime. Experimental procedure for crack compliance (slitting) measurements of residual stress, http://www.lanl.gov/residual/.
    [82]M. B. Prime, Michael R. Hill. Uncertainty analysis, Model Error, and Order Selection for Series-Expanded, Residual-Stress Inverse Solutions[J]. Journal of Engineering Materials and Technology.11(2006):175-185.
    [83]张旦闻,刘宏昭,刘平.裂纹柔度法在7075铝合金板残余应力检测中的应用.材料热处理学报,2006(4):126-131.
    [84]王钟羡,陈正平,苏虹.应力集中的灰色预测方法.江苏理工大学学报.2000,21(3):87-90.
    [85]扶名福,范洪春,张庭芳.BP神经网络在镁合金流变应力预测中的应用.锻压技术,2008,33(2):157-159.
    [86]Caner Simsir, C. Hakan Gur.3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. Journal of Materials Processing Technology.207(2008):211-221.
    [87]Dean Deng, Hidekazu Murakawa. Finite element analysis of temperature field, microstructure and residual stress in multi-pass butt-welded 2.25Cr-1Mo steel pipes. Computational Materials Science.43(2008):681-695.
    [88]Muammer Koc, John Culp, Taylan Altan. Prediction of residual stresses in quenched aluminum blocks and their reduction through cold working processes. Journal of Materials Processing Technology.174(2006):342-354.
    [89]Robert J. Flynn, J.S. Robinson. The application of advances in quench factor analysis property prediction to the heat treatment of 7010 aluminium alloy. Journal of Materials Processing Technology.153-154 (2004):674-680.
    [90]Jaroslav Mackerle. Finite element analysis and simulation of quenching and other heat treatment processes A bibliography (1976-2001), Computational Materials Science.27(2003):313-332.
    [9]李延平,赵万华,卢秉恒.热喷涂涂层和基体中残余应力预报与控制研究.工程力学.2005,22(5):236-240.
    [92]李慧梅,王钟羡.神经网络预测裂纹尖端约束效应.力学季刊.2008,29(2):310-313.
    [93]朱冬梅,刘国勇,李谋渭,张少军.中厚板冷却过程中热残余应力的控制.北京科技大学学报.2008,30(8):947-951.
    [94]许云波,邓天勇,刘相华,土国栋.热轧中厚板显微组织和平均流变应力的预测与优化.东北大学学报.2008,29(1):81-84.
    [95]王艳颖,黄志刚.基于正交切削模型的铣削加工残余应力预测方法.组合机床与自动化加工技术.2004(9):7-9.
    [96]李强.淬火过程的计算机模拟和试验研究:[博士学位论文].秦皇岛:燕山大学,2003.9.
    [97]牛山廷.淬火冷却过程三维有限元模拟与工艺参数优化的研究:[博士学位 论文].济南:山东大学,2007.12.
    [98]张金玲,崔振山,胡宏勋.多道次中厚板热轧过程的综合数值解析法模拟.上海交通大学学报.2008,42(1):32-36.
    [99]柯映林,董辉跃.7075铝合金厚板预拉伸模拟分析及其在淬火残余应力消除中的应用.中国有色金属学报,2004,14(4):639-645.
    [100]赵丽丽,张以都.预拉伸板轧制—拉伸残余应力的计算机仿真.北京航空航天大学学报,2004(7):606-609.
    [101]胡少虬,张辉,杨立斌等.7075铝合金厚板淬火温度场及热应力场的数值模拟.湘潭大学自然科学学报.2004,26(2):66-71.
    [102]董辉跃,柯映林,孙杰,等.铝合金厚板淬火残余应力的有限元模拟及其对加工变形的影响.航空学报.2004,25(4):429-432.
    [103]顾剑锋,潘健生,胡明娟.淬火过程的计算模拟及其应用.金属热处理,2000,25(5):35-38.
    [104]李辉平,赵国群,栾贻国,牛山廷.淬火过程应力/应变场有限元模拟关键技术研究.塑性工程学报.2005,12(6):98-102.
    [105]李敬勇,刘志鹏,王虎,等.预拉伸条件下铝合金焊接残余应力的数值模拟.航空材料学报.2008,28(5):59-63.
    [106]Caner S imsir, C. Hakan Uur.3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution. Journal of Materials Processing Technology,2008,207 211-221.
    [107]严宗达,王洪礼.热应力.北京:高等教育出版社,1993.
    [108]余同希.塑性力学.北京:高等教育出版社,1989.
    [109]卡恰诺夫.塑性理论基础.北京:人民教育出版社,1959.
    [110]王勖成.有限单元法.北京:清华大学出版社,2009.
    [111]李辉平,任旭芳,栾贻国,赵国群.基于非线性有限元技术的淬火温度、组织和应力耦合分析.中国机械工程.2006,17(19):2067-2071.
    [112]杨世铭等编.传热学.北京:高等教育出版社,2006.
    [113]顾剑峰,潘健生,胡明娟.淬火冷却过程中表面综合换热系数的反传热分析.上海交通大学学报,1998,32(2):19-22.
    [114]贾非,金俊泽.铝合金连续铸造喷水冷却的换热系数.中国有色金属学报.2001(5):39-43.
    [115]L. Li, J. Zhou, J. Duszczyk, Prediction of temperature evolution during the extrusion of 7075 aluminium alloy at various ram speeds by means of 3D FEM simulation. Materials Processing Technology.145 (2004):360-370.
    [116]侯忠霖,姚山,王廷利,等.一种铝合金水冷界面换热系数反求方法的研究.材料热处理学报.2008,29(1):157-161.
    [117]沈自求.沸腾传热研究.大连理工大学学报.2001,5:253-259.
    [118]刘明言,王红,王燕.表面工程技术应用于蒸发器的防垢及沸腾传热强化的研究进展.化工进展.2006,3:442-447.
    [119]陈火红.Marc有限元实例分析教程.北京:机械工业出版社,2002.
    [120]计红涛,李永堂,杜诗文,等.大型拉伸机钳口的运动和力学研究.锻压装备与制造技术.2007,5:106-108.
    [121]廖凯,吴运新,龚海.淬火铝合金厚板预拉伸变形区域仿真与分析.材料热处理学报.2009,30(2):197-202.
    [122]胡少虬,曾苏民.无相变合金淬火热应力演变机理的理论模型——(2)表层和内部淬火热应力模型及淬火动态薄膜效应.稀有金属材料与工程.2006,35(5):774-778.
    [123]胡少虬,曾苏民.无相变合金淬火热应力演变机理的理论模型——(3)淬火热应力拓扑模型及形状影响热应力规律.稀有金属材料与工程.2006,35(6):895-899.
    [124]F. Lefebvre, S. Ganguly, I. Sinclair. Micromechanical aspects of fatigue in a MIG welded aluminium airframe alloy:Part 1. Microstructural characterization. Materials Science and Engineering A.2005,397:338-345.
    [125]朱浩,朱亮,陈剑虹,等.不同应力状态下铝合金变形及损伤机理的研究,稀有金属材料与工程,2007.36(4):597-601.
    [126]张克实.多晶体变形、应力的不均匀性及宏观响应,力学学报.2004,36(6):714-723.
    [127]赵影,熊瑛,杨保和.微观应力和晶粒尺寸的X射线单峰傅立叶分析法,光电子·激光.2003.14(2):160-163.
    [128]张新明,韩念梅,刘胜胆,等.7050铝合金厚板织构、拉伸性能及断裂韧性的不均匀性,中国有色金属学报.2010.20(2):202-208.
    [129]邓运来,张新明,刘暎,等.冷轧高纯铝柱状晶粒的组织与微取向的不均匀性,中国有色金属学报.2005.15(8):1173-1178.
    [130]樊喜刚.Al-Zn-Mg-Cu-Zr合金组织性能与断裂行为的研究:[博士学位论文].哈尔滨:哈尔滨工业大学,2007.
    [131]刘刚,张国君,丁东向,等.含有不同尺度量级第二相的高强铝合金断裂韧性模量,中国有色金属学报,2002.12(4):706-713.
    [132]Cvijovic Z, Vratnica M, Rakin M. Micromechanical modeling of fracture toughness in overaged 7000 alloy forgings, Mater Sci Eng A.2006, 434(1/2):339-346.
    [133]熊创贤,邓运来,万里,等.7050铝合金板在固溶过程中微结构与织构的演变.中国有色金属学报.2010.20(3):427-434.
    [134]权高峰,柴东朗,宋余九.微观材料中增强粒子与基体中微观应力和残余应力分析.复合材料学报.1995.12(3):70-75.
    [135]李明伟,尹钟大,朱景川.ZrO2/Ni FGM中微观残余热应力分析.稀有金属材料与工程,2003.32(4):254-257.
    [136]冯端.金属物理学(第二卷 相变).北京:科学出版社,1998.
    [137]Todinov, M.T.. Mechanism for formation of the residual stresses from quenching, Modelling and Simulation in Materials Science and Engineering. 1998,6(3):273-291.
    [138]龚海,吴运新,廖凯.预拉伸对7075铝合金厚板残余应力分布的影响.材料热处理学报.2010.30(6):201-205.
    [139]廖凯,吴运新,龚海.预拉伸对铝合金厚板非均匀区应力场特征.材料科学与工艺.2010.18(1):79-82.
    [140]何肇基.金属的力学性质.北京:冶金工业出版社,1985.
    [141]吴运新,廖凯.铝合金厚板拉伸过程横向残余应力消减分析.材料工程.2009.10:48-52.
    [142]汤安民,师俊平.铝合金材料剪切断裂实验分析.力学季刊.2002(3):82-86.
    [143]汤安民,刘泽明.铝合金材料断裂形式变化规律的试验分析.西安理工大学学报.2003(3):226-229.
    [144]陶伟忠,孔超群.变形能分解的新概念与圣维南原理.力学季刊.1995(3):27-34.
    [145]D. J. Greving. Residual stresses and thermal spray coating performance:[博士学位论文].Unite States:The University of Tulsa,1995.
    [146]郭魂,左敦稳,王树宏,等.铝合金预拉伸厚板内残余应力分布的测量.华南理工大学学报.2006.34(2):33-36.
    [147]Gary S. Schajer, Michael B. Prime. Use of inverse solutions for residual stress measurement. Journal of Engineering Materials and Technology,2006, 128(3):375-382.
    [148]Virkar, A. V. Determination of Residual Stress Profile Using a Strain Gage Technique. Journal of the American Ceramic Society.1990,73(7):.2100-2102.
    [149]Kuang-Hua Fuh, Chih-Fu Wu. A residual-stress model for the milling of aluminum alloy (2014-T6). Journal of Materials Processing Technology.1995 (51):87-105.
    [150]达利著.实验应力分析.北京:海洋出版社,1987.
    [151]刘烈全.实验应力分析中的电测法.北京:国防工业出版社,1979.
    [152]张如一.实验应力分析实验指导.北京:清华大学出版社,1982.
    [153]沙定国.误差分析与测量不确定度评定.北京:中国计量出版社,2003.
    [154]古成晰.不确定度的分析与计算,计量与测试技术.2008.35(1):15-17.
    [155]谢少锋.测量系统分析与动态不确定度及其应用研究:[博士学位论文].合肥:合肥工业大学,2003.9.
    [156]倪骁骅.形状测量结果不确定度的研究及应用:[博士学位论文].合肥:合肥工业大学,2002.2.
    [157]陈国强,赵俊伟.最小条件下直线度误差评定的不确定度研究,农业机械学报,2008.39(1):169-171.
    [158]闫鹏飞.高强铝合金厚板取样切割过程残余应力场演变的研究:[硕士学位论文].长沙:中南大学,2010.4.
    [159]KAI LIAO, Yun-xin WU, HAI GONG. Influence of Preparing of Specimen on Internal Stress Measurement of Aluminum Alloy Thick Plate, Advanced Materials Research.2010, (97-101):2658-2663.
    [160]HAI GONG, Yun-xin WU, KAI LIAO. Influence of Specimen Sampling on Internal Residual Stress Test, Advanced Materials Research.2010,97-101: 4271-4276.
    [161]陶晓杰,王开坤,李朝荣.磨齿烧伤和裂纹及其变质层深度,北京科技大学学报.2001.23(5):449-451.
    [162]王大镇,邱加栋,刘华明.超精密加工铝基复合材料的切削变质层,福州大学学报.2008.36(3):393-397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700