隐身技术中的雷达截面预估与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争中,飞行器和舰船的隐身性能直接决定了它们在战场上的突防能力和战斗性能。以发动机进气道为代表的电大尺寸开口腔体结构可在飞行器鼻锥方向构成很强的后向散射,对该类结构雷达截面(RCS)的单独计算分析在隐身飞行器设计当中具有重要意义。相控阵天线已成为机载和舰载先进雷达系统的必要组成部分,对于相控阵天线辐射和散射的分析计算对于隐身舰艇的设计具有重要的指导作用。本论文密切结合“十一五”国防科技预研重点项目研究了腔体结构和阵列天线的散射分析方法和RCS控制技术。所取得的成果可概括为:
     1、RCS计算预处理技术研究。论文基于商业软件Rhinoceros的建模和网格剖分功能结合编写数据提取程序,完成了RCS计算中腔体和舰船的混合多边形面片建模和数据预处理,并研究了基于该模型的射线追踪、遮挡判断算法。
     2、腔体的RCS计算方法研究。论文分析了理想导体以及涂敷吸波材料理想导体腔体结构的IPO迭代公式。对IPO迭代算法进行了改进:首先改进了迭代计算中腔体终端的反射计算,然后将初值继承方法引入迭代过程,并利用前后向迭代、松弛因子大大加快了迭代的计算速度和收敛速度。论文采用IPO算法编程计算了进气道模型的RCS,与测试结果吻合良好。在对电大尺寸开口腔体RCS的各种算法的计算精度和计算速度分析的基础上,为保持计算精度的同时提高计算速度,论文基于消息传递协议MPI开发了腔体RCS的SBR、CRE、IPO并行计算程序,采用大粒度任务分配策略达到了较高的并行计算效率。
     3、腔体RCS控制技术研究。论文对涂敷吸波材料和采用S弯对腔体RCS的影响采用IPO计算程序进行了分析计算,并分析了将两种技术结合的腔体RCS控制技术。
     4、提出了电大尺寸载体上天线辐射场的FEM/CRE-UTD混合算法。该混合方法首先采用有限元法计算天线在自由空间的辐射场。在研究了利用富勒结构的天线辐射场复射线拟合的基础上,采用复射线展开、复射线轴线追踪、近轴近似计算技术计算载体对天线辐射场的反射,并通过UTD方法计入了棱边的绕射效应,得到电大尺寸载体上天线的辐射场。
     5、基于互易定理的天线模式项散射场快速计算。论文以天线的互易定理为基础,利用天线的辐射场来计算平面波照射下的天线模式项散射场。该方法可快速完成平面波在不同入射角度照射下天线模式项RCS的计算,还可以与天线辐射场的FEM/CRE-UTD混合算法相结合,分析舰载天线的天线模式项散射。
     6、阵列天线辐射和散射机理研究。利用阵列天线系统模型的S参数,分析了阵列天线单元的互耦。将场的矢量球面波函数展开和散射矩阵推广到阵列天线的辐射和散射分析当中,推导出阵列天线辐射和散射的基础理论公式。该公式以叠加定理的形式综合考虑了天线单元之间的互耦、馈电网络影响等因素,同时还反映了阵列天线模式散射场和天线单元辐射场的关系,公式近似后可简化为乘积定理的形式。在此基础上论文研究了大型阵列天线辐射场的近似计算方法,并采用阵列实例进行了验证。论文还采用阵列天线散射场基础理论公式的近似计算分析了阵列天线散射场的特点和峰值方向,并以一维阵列为例分离和分析了阵列天线的结构模式项和天线模式项散射,验证了理论分析结果。
     7、有源相控阵天线系统的辐射和散射分析。利用网络参数分析了有源相控阵天线单元的馈电系统模型,得到阵列单元的接收机负载反射系数表达式。结合阵列天线散射的基础理论公式和接收机负载反射系数表达式得到了相控阵天线的天线模式项散射近似计算公式。公式计入了单元馈电系统当中的接收机负载反射系数和移相器工作参数的影响。基于该公式,论文将天线模式项散射按照是否受配相状态影响分为两部分进行研究,最后对这样两部分散射场的特点和峰值方向进行了分析并采用微带阵列进行了验证,为相控阵天线的RCS分析计算和RCS控制提供了理论上的指导。
     8、舰载相控阵天线RCS控制方法研究。针对阵列天线各个散射模式,逐一分析了对应的RCS控制技术。重点分析了阵列的倾斜安装对天线辐射和散射特性的影响,对副瓣电平在天线隐身中的重要性进行了理论分析。在综合考虑辐射和散射特性的基础上利用泰勒综合和密度锥削稀疏技术设计了低副瓣电平阵列天线,并采用随机遍历算法对阵列天线副瓣进行了优化。最后研究了以控制RCS为目的的馈电系统小型化,利用左手电路原理设计了宽频带小型化电桥。
The stealth character of aircraft and ships determines the penetration and combat capability of them in modern warfare. The large-scale open-ended cavities, of which the aircraft inlet is the representation, lead to a strong back scattering in the snout direction of the aircraft, which makes the computation of the Radar Cross Section (RCS) of cavity structure significant in the design of stealthy aircrafts. The phased array antenna has become an indispensable component in the advanced radar system for aircraft or naval ship. As a result, the analysis of radiation and scattering fields of the phased array antenna plays an important role in the design of stealthy naval ships. Associated with the research project, this dissertation is mainly concerned with the RCS prediction and control of the cavity structures and phased array antenna systems. The author’s major contributions are outlined as follows:
     1、Pretreatment for RCS computation. Modeling and meshing of the cavities and ships for RCS computation with mixed polygon facets are fulfilled by the applications of the modeling and meshing functions of the Rhinoceros software and a data extraction program. Then, based on the facet models, a study is made of the ray trace technology and shadowing judgment arithmetic.
     2、Study of the RCS computation algorithms for cavities. An analysis is made firstly of the Iterative Physical Optics (IPO) iterative equation for cavities of the PEC or PEC surface coated with a thin absorber layers. The IPO algorithm is improved as follows. The bottom reflection calculation in the iterative computation is improved firstly, and then, the computation and convergence speed of the IPO algorithm are improved by introducing the initial values succession into the iterative computation, and using the forward-backward iterative and the relaxation factors. The RCS of an inlet model is computed by the developed IPO program, and the results are in good agreement with the experimental ones. Based on the analysis of the precision and computation speed of the RCS computation algorithms for cavities, the dissertation develops the codes of SBR,CRE and IPO parallel algorithms by using MPI, which speeds up the computation while keeping it precise. High efficiency of the parallel algorithms is also achieved by distributing the computation task by big cells.
     3、The RCS control technology of cavities. The effects of the absorber materials and S-shaping on the RCS of the cavities are studied by using the IPO program. The combination of both methods in RCS control is analyzed.
     4、Proposing the FEM/CRE-UTD hybrid method for the computation of the radiation fields of antennas on large carriers. The hybrid method computes the radiation fields of antennas in free space by the finite element method (FEM). After a study of the complex rays expansion of the radiation fields by use of the Fullerence mesh, the reflection effect of the carries on the fields is computed by employing the technologies of complex rays expansion (CRE) of radiation fields, ray trace and complex ray paraxial approximation. Then the diffraction effect of the edges of the carries on the fields is also taken into consideration by adopting the UTD method. As a result, the radiation fields of antennas on large carries are achieved.
     5、Fast computation of the antenna model scattering fields of antennas using the reciprocity theorem. The antenna model scattering fields of antennas illuminated by a plane wave are computed by using the radiation fields based on the antenna reciprocity theorem. The scattering fields of antennas illuminated by a plane wave at different incident angles can be computed quickly by this method. It can also be combined with the FEM/CRE-UTD hybrid method to compute the antenna model scattering fields of antennas on large ships.
     6、Study of the radiation and scattering mechanism of array antennas. The couple between the cells of array antennas is analyzed by S parameters of the model of antenna system. The basic theoretical calculation formulae for radiation and scattering of array antennas are deduced by applying spherical wave function expansion and the scattering matrix to the analysis of array antennas. In the formulae, the coupling between the cells and the reflection of the receiver load are taken into consideration, and the relationship between the antenna model scattering fields of the array and the radiation fields of cells is also shown in the formulae. The proposed formulae are still in the superposition form, which makes it possible for the formulae to be simplified to the product theorem by approximation. According to this, an approximate computation method for the radiation fields of large-scale array antennas is studied followed by its validation in the one-dimension array. The characters and peak values of scattering fields are analyzed by the approximation of the basic theoretical calculating formula. After this, the separation and analysis are made of the structural mode scattering and antenna mode scattering of a one-dimension array antennas, which validates the theoretical results.
     7、Analysis of the radiation and scattering of active phased-array antenna systems. The reflection coefficient of the receiver load of the cell in the array is analyzed by S parameters of the feed systems model of the active phased-array antenna. The approximation computation formula of the antenna mode scattering field is deduced by submitting the reflection coefficient of the receiver load to the basic theoretical formula, which takes the effects of the reflection coefficient of the receiver load and the parameters of the phase shifter into consideration. According to the formula, the antenna model scattering is analyzed by dividing it into two parts. And their characters and the max direction are analyzed and testified in the one-dimension array antenna, which plays a guidance role in the computation of the scattering fields of the phased array and its RCS control.
     8、RCS control of the phased array antenna on naval ships. Analysis is made of the RCS control technologies for different scattering models of the array antennas. Emphasis is put on the analysis of the effects of array leaning on its radiation and scattering characters, which shows that the side lobe plays an important role in the stealth characters of the array. The array antenna with low side lobe is designed by employing the Taylor synthesis and density taper sparseness with an overall consideration of the radiation and scattering performance. The side lobe of the array antenna is optimized by random search. Finally, a discussion is made about the compact feed system used in the RCS control of array antennas. And based on the left-hand circuit, a compact enhanced-bandwidth hybrid ring is designed.
引文
[1] E. F. Knott, J. F. Shaeffer and M. T. Turely,“Radar cross section and it’s prediction, measurement and reduction.”Dedham, MA: Artech House, 1985.
    [2] P. Ya. Ufimtsev.“Method of edge waves in the Physical Theory of Diffraction.”Air Force System Command, Foreign Tech. Document ID No:FTD-HC-23-259-71,1971.
    [3] D. J. Andersh, M. Hazlett, S. W. Lee, D. D. Reeves, D. P. Sullivan and Y. Chu,“XPATCH: A high-frequency electromagnetic scattering prediction code and environment for complex three-dimensional objects,”IEEE Antennas and Propagation Magazine, 1994, 36(l): 65-69.
    [4] D. M. Elking, J. M. Roedder, D. D. Car and S. D. Alspach,“A review of high frequency radar cross section analysis capabilities at McDonnell Douglas aerospace”. IEEE Antennas and Propagation Magazine, 1995, 37(6): 36-37.
    [5] S. D. Turner,“RESPECT: rapid electromagnetic scattering predictor for extremely complex targets”. IEE Proceedings, 1990, 137(4): 214-220.
    [6] J. A. Stratton, Electromagnetic theory. New York, NY:McGraw-Hill, 1941.
    [7]曹世昌.电磁场的数值计算和微波的计算机辅助设计.北京:电子工业出版社, 1989.
    [8]王秉中.计算电磁学.北京:科学出版社,2002.
    [9] F.Roger. Harrington著,王尔杰、肖良勇等译.计算电磁场的矩量法.北京:国防工业出版社,1981.
    [10] C. F. Smith, A. F. Peterson, and R. Mittra.“The biconjugate gradient method for electromagnetic scattering”. IEEE Transactions on Antennas and Propagation. 1990,38 (6):938-940.
    [11] F. X. Canning and Kevin Rogovin.“Fast direct solution of standard moment method matrices”. IEEE Antennas and Propagation Magazine. June, 1998, Vo1.40. pp.15-26.
    [12]高本庆.时域有限差分法.北京:国防出版社,1995.
    [13] A.Taflove K.R.Umashankar.“Review of FDTD numberical modeling of electromagnetic wave scattering and radar cross section.”IEEE Pro. 1989, 77(5): 684-699.
    [14] J. M. Jin. The finite element method in electromagnetics [M]. New York: Wiley. 1993.
    [15]万顺生,张钟勤.基于SBR法研究发动机进气道的RCS.微波学报2001, 17(3):91-95.
    [16] Ling, H., Chou, R.-C., Lee, S-W.,“Shooting and bouncing rays: calculating the RCS of an arbitrary shaped cavity”, Transactions on Antennas and Propagation. 1989 37(2):194-205
    [17] P.H.Pathak, R.J.Burkholder:“Model, Ray, and beam techniques for analyzing the EM scattering by open-ended waveguide cavities”, Transactions on Antennas and Propagation., 1989, AP-37:635-647.
    [18] F. Obelleiro, J.L. Rodr?guez, and R.J. Burkholder,“An iterative physical optics approach for analyzing the electromagnetic scattering by large open-ended cavities”, IEEE Transactions on Antennas and Propagation, 1995, 43(4): 356-361.
    [19] Burkholder, R.J.; Lundin, T.;“Forward-backward iterative physical optics algorithm for computing the RCS of open-ended cavities”Transactions on Antennas and Propagation 2005, 53(2):793-799.
    [20] R. J. Burkholder,“A fast and rapidly convergent iterative physical optics algorithm for computing the RCS of open-ended cavities”, Applied Computational Electromagnetic. Society Journal., 2001, 16(1):53-60.
    [21] F. Obelleiro, JL Rodriguez, and AG Pino“A progressive physical optics (PPO) method for computing the electromagnetic scattering of large open-ended cavities,”Microwave. Optic. Tech. Lett., 1997, 14(3):166-169.
    [22]阮颖铮.复射线理论及其应用.北京:电子工业出版社, 1991.
    [23] Garcia-Pino, A.; Obelleiro, F.; Rodriguez, J.L.;“Scattering from conducting open cavities by generalized ray expansion (GRE)”, IEEE Transon Antennas and Propagation, 1993, 41(7):989-992.
    [24] P. D. Einziger, Y. Harmaty, and L. B. Felsen,“Complex rays for radiation from discretized aperture distribution”IEEE Trans. Antennas Propagat. 1987. AP-35:1031.
    [25]高飞,马凤国,张红霞,刘其中,陈益邻,利用复射线法分析腔体的散射场,电波科学学报,2000,15(2):243-247.
    [26]何小祥改进的IPO与FEM混合法分析复杂电大腔体电磁散射电波科学学报2004,19(5):607-611.
    [27]顾长青王璟 IPO-FDTD混合法计算三维复杂腔体的RCS,电波科学学报2003, 18(4):385-388.
    [28] J.Liu and J.M.Jin.“A special higher order finite-element method for scattering by deep cavities”. IEEE Transaction on Antennas and Propagation, 2000, 48(5): 694-703.
    [29] D. C Ross, J. L. Volakis, H. T. Anastassiu.“Hybrid Finite Element-Modal Analysis of Jet Engine Intel scattering”. IEEE Trans-AP, 1995, 43(5):277-284.
    [30] David.M. Pozar, Daniel.H.Schaubert,“Analysis of an infinite array of rectangular microstrip patches with idealized probe feeds,”IEEE Trans. Antennas Propagat., 1984, 10, AP-32: 1101–1107.
    [31] David. M. Pozar,“Analysis of finite phased arrays of printed dipoles,”IEEE Trans. Antennas Propagat. 1985.10, . AP-33:1045–1053.
    [32] Daven.M.Porn,DAVE M. Porn“Finite phased arrays of rectangular microstrip patches,”IEEE Trans. Antennas Propagat., 1986. 5,. AP-34:658–665.
    [33] D. G. Fang, J. J. Yang, and G. Y. Delisle,“Discrete image theory for horizontal electric dipole in a multilayer medium,”Proc. Inst. Elect.Eng., 1988,10, 135: 297-303.
    [34] Pozar, D.M.“Analysis of an infinite phased array of aperture coupled microstrip patches”, IEEE Trans. Antennas Propagat. 1989, 37(4): 418-425.
    [35] Roscoe, A.J. Perrott, R.A.”Large finite array analysis using infinite array data”IEEE Trans. Antennas Propagat 1994,7, 42(7): 983-992.
    [36] Y. Zhuang, K. L. Wu, C. Wu, and J. Litva“A combined full-wave CG-FFT method for rigorous analysis of large microstrip antenna arrays,”IEEE Trans. Antennas Propagat., 1996, 44(1):102–109.
    [37] Chao-Fu Wang, Feng Ling, and Jian-Ming Jin,“A Fast Full-Wave Analysis ofScattering and Radiation from Large Finite Arrays of Microstrip”IEEE Trans. Antennas Propagat, 1998, 46(10):1467-1474.
    [38] A. S. King and W. J. Bow,“Scattering from a finite array of microstrip patches,”IEEE Trans. Antennas Propagat., 1992, 40(7):770–774.
    [39] Guo-Xin Fan Jian-Ming Jin,“A hybrid method for analyzing scattering from a large planarslotted waveguide array antenna in a real environment”IEEE Antennas and Propagation Society International Symposium, 1998. 4:2182-2185.
    [40] Tittensor, P.J. Newton, M.L.“Prediction of the radar cross-section of an array antenna”,Antennas and Propagation, 1989. ICAP 89., Sixth International Conference on (Conf. Publ. No.301) Meeting Date: 04/04/1989 - 04/07/1989 Apr, 1989, vol.1, pp:258-262.
    [41] Sembiam Rengarajan“Radar cross-section of waveguide-fed planar slot arrays,”??, http://www3.interscience.wiley.com/cgi-bin/fulltext/53948/PDFSTART
    [42] M. Gustafsson,“RCS Reduction of Integrated Antenna Arrays and Radomes with Resistive Sheets”Antennas and Propagation Society International Symposium 2006, IEEE July APS.2006.1711366 2006, pp: 3479-3482.
    [43]洪伟,童创明预条件共轭梯度法在大型振子阵列天线RCS分析中的应用电子学报2001,9(12):1601-1604.
    [44] GREENWOOD, A. D. and J. M. JIN.“Hybrid FEM/SBR method to compute the radiation pattern from a microstrip patch antenna in a complex geometry”. Proc. 1996 Antenna Appl. Symp. (Monticello, Ill., Sept. 1996).
    [45] J. M. Jin, S. S. Ni, and S. W. Lee,“Hybridization of SBR and FEM for Scattering by Large Bodies with Cracks and Cavities”. IEEE Trans. Antennas Propagat, 1995, 43(10):1130-1139.
    [46] J. N. Sahalos and G. A. Thiele,“On the application of the GTD-MoM technique and its limitations”, IEEE Trans. on Antennas and Propagat., 1981, 29(5): 780-786.
    [47] E. P. Ekelman and G. A.Thiele,“A hybrid technique for combining the moment method threatment of wire antennas with the GTD for curved surfaces”, IEEE Trans. on Antennas and Propagat., 1980, 28(11):831-839.
    [48] L. N. Medgyesi-Mitschang and D.-S. Wand,“Hybrid methods for analysis ofcomplex scatterers”, Proc. IEEE, 1989, 77(5):770-779.
    [49] L. N. Medgyesi-Mitschang, D.-S. Wand,“Hybrid methods in computational eletromagnetics: A review”, Computer Physics Communications, 1991, 68(4): 76-94.
    [50] L. N. Medgyesi-Mitschang, D.-S. Wand,“Hybrid solution for scattering from perfectly conducting bodies of revolution”, IEEE Trans. on Antennas and Propagat.,1983, 34(4): 570-583.
    [51] (美)阿米特等著;陆雷译.相控阵天线理论与分析.北京:国防工业出版社,1978.
    [52]刘英.天线雷达散射截面预估与减缩.西安电子科技大学.博士论文. 2004.
    [53] (比利时)斯普里特( Spriet,J.A.) ,范斯蒂恩基斯特( V ansteenkiste,G.C. )著;王正中等译.计算机辅助建模和仿真.北京:科学出版社, 1991.
    [54]徐云学龚书喜.基于Matlab的复杂目标RCS计算系统研究.电波科学学报2007, 22(2): 266-270
    [55] M. Domingo, F. Rivas, J. Perez, R. P. Torres and M. F. Catedra,“Computation of the RCS of complex bodies modeled using NURBS surface”. IEEE Antennas and Propagation Magazine,1995, 37 (6):36-47.
    [56] J. Perez, M. F. Catedra.“RCS of Electrically Large Targets Modeled With NURBS Surface”. Electronics Letters. 1992, 28(12):1119-1121.
    [57] Perez J, Catedra M F.“Application of Physical Optics to the RCS Computation of Bodies Modeled with NURBS Surface”. IEEE Trans. AP, 1994, 42(10):1404-1411.
    [58] M. Domingo, F. Rivas, J. Perez and M. F. Catedra.“Computation of the RCS of Complex Bodies Modeled Using NURBS Surface”. IEEE Trans. AP, 1995, 37(6):36-46.
    [59]唐玮,王荣辉编著. AutoCAD 3D绘图与实体应用范例.沈阳:辽宁科学技术出版社, 1999
    [60] (美)G eorge Omura著(M EI) G eorge Omur aZHU ;王丽艳译. AutoCAD 3D从入门到精通.北京:电子工业出版社, 1997.
    [61]吴大焱. 3DS 4.0实例精讲.西安:西安电子科技大学出版社, 1999.
    [62]陈绿春主编;孙宏等. Maya 2.5创意设计技巧与实例精选.北京:人民邮电出版社, 2000.
    [63]韩涌.犀牛之舞Rhinoceros轻松建模.北京:人民邮电出版社, 2001.
    [64]吴春燕刘向阳李培忠IGES文件的研究和转换工程建设与设计,1999, 3:26-28
    [65]汪茂光.几何绕射理论(第二版).西安:西安电子科技大学出版社,1994
    [66] J. Liu and J. M. Jin., A special higher order finite-element method for scattering by deep cavities[J].IEEE Transactions on Antennas and Propagation, 2000, 48(5): 694-703.
    [67] H.Y. Yee.“The design of large waveguide arrays of shunt slots”. IEEE Trans. on AP. 1992, 40(7):775-781.
    [68] RS Elliott. Antenna theory and design. Prentice-Hall, Englewood Cliffs, NJ, 1981.
    [69]卢礼芬.《环境电磁兼容控制基础》.北京:兵器工业出版社
    [70] Anaya, J.A..Marcotegui,T.Lopetegi, M.A.CzLaso and M.Sorolla.“Analysis of new periodic structures in microstrip by FDTD”. European Congress on Computational Methods in Applied Sciences and Engineering. Barcelona,2000.9, pp. l l-14.
    [71] Barry Wilkinson Michael Allen著,陆鑫达等译.并行程序设计北京:机械工业出版社,2002.
    [72]都志辉.高性能计算并行编程技术一MPI并布了程序设计.北京:清华大学出版社, 2001
    [73] WILLIAM J. Buchanan.“Analysis of EM wave Propgation useing the 3D FDTD method with Parallel Processing”. Napier University. 1996.
    [74] J.M.Song, C.C.Lu, W.W.Chew anal S.W.Lee.“Fast illinois Solver Code (FISC)”. IEEE Antennas and Propagation Magzine. 1998, 40(3): 27-34.
    [75] Gui.aut, C. and K. Mahdjoubi.“A parallel FDTD algorithm using the MPI library”. IEEE Antennas and Propagation Magazine. 2001,.43(2): 94-103.
    [76] Johan edlund.“A Parallel Iterative Method of Moments and Physical Optics Hybrid Solver for Arbitrary Surfaces”. Uppsala University, Sweden, August 2001.
    [77] Pascal Hav. e.“Parallel Fast Multipole Method for MaxwellEquations”. University Pierre et Marie Curie, Laboratoire Jacques-Louis Lions,2002.
    [78]张玉FDTD与矩量法的关键技术及并行电磁计算应用研究西安:西安电子科技大学,博士论文, 2004.
    [79]张玉,梁昌洪.并行UTD算法及在机载天线分析中的应用.电子学报,2003,31(3):332~334.
    [80]张玉,苏涛,翟会清,梁昌洪. PC群集系统中并行矩量法研究.电子学报2003, 31(9): 1368-1371.
    [81]张玉,宋健,梁昌洪.并行共形FDTD算法及其在PBG结构仿真中的应用.电子学报2003. 12A: 2142-2144.
    [82]袁军;邱扬;刘其中;田锦.基于并行技术的机载多天线耦合快速算法.电波科学学报2006, 21(6):904-908.
    [83]张玉.电磁场并行计算研究.西安:西安电子科技大学出版社,2006.
    [84] J. B.Keller and W. Streifer, Complex Rays with an Application to Gaussian Beams, J. Opt. Soc. Am.,VOL61, 1971, 40-43.
    [85] L. B. Felsen, Complex Rays, Philips Res. Reports, Special Issue in Honor of C. J. Bouwkamp 30, 1975,169-184.
    [86]阮颖铮.复空间惠更斯原理成都电讯工程学报, 1987, 16(1):28-32
    [87]阮颖铮.圆柱天线罩电磁散射的复射线分析,电子科学学刊,1989. 11(4):368-377.
    [88]冯文澜阮颖铮.用复射线法分析目标的雷达截面,电子科学学刊,1990. 12(6):646-649.
    [89]阮颖铮.地震场波的复射线展开,地球物理学报. 1990, 33(3):343-348.
    [90]阮颖铮.复惠更斯源展开的参量选择,电子科技大学学报. 1989, 18(5):456-461.
    [91]尧德中阮颖铮.球面波和柱面波的复射线束展开,地球物理学报.1993, 36(6):805-809.
    [92]邓书辉阮颖铮冯林.局部矢量平面波三维复射线平行波束展开. 1997, 15(2):149-155.
    [93]阮颖铮.天线方向图的复射线仿真,通信学报. 1994, 15(1):92-96.
    [94]尧德中阮颖铮.非均匀球面波的复射线展开,微波学报. 1993, 34:17-21.
    [95] A. J. Bogush, Jr., R. E. Elkins, IEEE Gauss field expansion for large aperture antennas Tranr. on AP, 1986 AP-34(2): 228-243.
    [96]杜惠平阮颖铮.吸波涂层角反射器的复射线分析,电子科技大学学报, 1991 .20(4):368-373.
    [97]龚书喜.天线隐身基础理论研究.西安:中日微波会议报告,2006.
    [98] Y.T.Lo, S.W.Lee, Antenna Handbook: Theory, Applications, and design, Van Nostrand Reinhold Company, New York, 1988.
    [99] (美) George W. Stimson著;吴汉平等译,机载雷达导论,北京:电子工业出版社, 2005
    [100]阮颖铮,天线的散射机理和雷达散射截面减缩,宇航学报,1990, 11(4):94-100.
    [101]阮颖铮等编著,雷达截面与隐身技术,北京国防工业出版社,1998.
    [102] D.M.Pozar.“Radiation and Scattering from a Microstrip Patch on a Uniaxial Substrate”. IEEE Trans. on AP, 1987, 35(6):613-621.
    [103] J.L. Volakis, et.al.,“Radar Cross Section Analysis and Control of Microstrip Patch Antennas”, 1992 PIEEE AP-S International Symposium, 1992,pp.2225-2228,.
    [104] J.L. Volakis, et.al.,“Broadband RCS Reduction of Rectangular Patch by Using Distributed Loading”, Electronic Letters, 1992, 28(25):2322-2325,.
    [105]阮颖铮,冯林等.天线RCS减缩技术研究,机械电子工业部电子科学研究院成果鉴定文集,1990,pp.16-66.
    [106]阮颖铮.天线的散射机理和雷达散射截面减缩.宇航学报,1990, 11(4):94-100.
    [107]刘英,龚书喜,傅德民.分形在天线雷达散射截面减缩中的应用.微波学报2003 (19), No.2, pp.28-31.
    [108] J.T.Aberle, et.al., Scattering and Radiation Properties of Varactor-Tuned Microstrip Antennas, 1992 PIEEE AP-S International Symposium, 1992 pp.2229-2232.
    [109]刘英,龚书喜,傅德民.阻抗条带减缩雷达散射截面的分析与优化设计.电波科学学报2003, 18(3):301-304.
    [110]刘英,龚书喜,傅德民.分形天线研究进展.电波科学学报2002, 17(1):54-58.
    [111]刘英,龚书喜,傅德民.分形与阵列天线.电波科学学报2001,16(9):147-149.
    [112] D.R.Jackson.“The RCS of a Rectangular Microstrip Patch in a Substrate-Superstrate Geometry”, IEEE Trans. on AP, 1990, 38(1):2-8.
    [113] H.Y.Yang, et.al.,“Mulifunctional Antennas with Low RCS, 1992 PIEEE AP-S International Symposium”, 1992 pp.2240-2243,.
    [114] A. Sanada, M. Kimura, I. Awai, H. Kubo, C. Caloz, and T. Itoh,“A planar zeroth order resonator antenna using left-handed transmission line,”to be presented at the European Microwave Conf.,Amsterdam, Netherlands, 2004.
    [115]卢俊,高劲松,孙连春.频率选择表面及其在隐身技术中的应用.光机电信息. 2003, 9:1-4.
    [116] T.K.Wu.Frequency Selective Surface and Grid Array.John Wiley and Sons,Inc.,New York,1995
    [117] Ben A.Munk. Frquency Selective Surfaces,Theory and Design. First edition New York:John Wiley and Sons,Inc., 2000.
    [118]徐向明,岳勇,阮颖铮.雷达舱和天线罩的电磁散射.电波科学学报, 2000,15(2):239-243
    [119]张光义.相控阵雷达技术.第二版北京:国防工业大学出版社, 2006.
    [120] [美]Robert J. Mailloux罗群等译“相控阵天线手册(Phased Array Antenna Handbook)”北京:电子工业出版社2007.
    [121] Galindo-Israel, V. Shung-Wu Lee Mittra, R.“Synthesis of a laterally displaced cluster feed for a reflector antenna with application to multiple beams and contoured patterns”, IEEE Transactions on Antennas and Propagation 1978, 26(2): 220- 228.
    [122] Thomas, D. T.“Multiple beam synthesis of low sidelobe patterns in lens fed arrays”, IEEE Transactions on Antennas and Propagation, 1978, 26: 883-886.
    [123] Kahn, W. Kurss, H.“The uniqueness of the lossless feed network for amultibeam array”IEEE Transactions on Antennas and Propagation 1962 ,10(1):100-101.
    [124] Butler J. and Lowe R.“Beam forming matrix Simplifies design of electronically scanned antennas”. Electronic design April 1961,12:170-173.
    [125] Skolnik,.M., J.W.Sherman, F.C.Org ,Jr.,“Statistically Designed Destiny-Tapered Arrays,”IEEE Trans on Antenna and Propagation, 1964, July,Vol AP-12,:408-417
    [126] V.G.Veselago,“The electrodynamics of substances with simultaneousely negative values ofεandμ”, Sov.Phys.-Usp., 1968 , 10(4):509-514.
    [127] D.R.Smith,W.J.Padilla,D.C.Vier,S.C.Nemat-Nasser,and S.Schultz,”Composite medium with simultaneously negative permeability and permittivity”, Phys, Rev.Lett. 2000, 84(18):4184-4187.
    [128] Okabe, H.; Caloz, C.; Itoh, T.;“A compact enhanced-bandwidth hybrid ring using an artificial lumped-element left-handed transmission-line section”Microwave Theory and Techniques, IEEE Transactions on 2004. 52(3):798-804.
    [129] C. Caloz and T. Itoh,“Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH transmission line”, IEEE-APS Intl Symp, San Antonio, TX, 2002, 1:412–415.
    [130] Lai, A.; Itoh, T.; Caloz, C.;“Composite right/left-handed transmission line metamaterials”Microwave Magazine, IEEE 2004, 5(3):34-50.
    [131] R. C. Ziolkowski and A. L. Kipple.“Application of double negative materials to increase the power radiated by electrically small antennas”. IEEE Transactions on Antennas and Propagation, 2003, 51(10):2626-2640.
    [132] L. Liu, C. Caloz, and T. Itoh,“Dominant mode (DM) leaky-waveantenna with backfire-to-endfire scanning capability,”Electron Lett., 2000, 38(23): 1414–1416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700