钙结合大豆蛋白的制备、特性及在微波春卷中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从低温脱脂大豆粉中提取11S蛋白,运用钙盐进行络合改性,考察了改性后蛋白的热力学性质、流变学特性和结构特征。将其应用到预油炸微波春卷皮中,以提高其微波复热后的脆性,并考察了钙结合蛋白对春卷皮面浆的流变学、糊化特性以及冻藏中回生及冻融稳定性的影响,初步探讨了钙结合蛋白对春卷皮脆性增加的机理。
     首先确定了11S蛋白的分离条件,选择Koshiyama法进行优化,11S蛋白得率可达29.5%。确定钙结合的工艺,并研究了钙结合后蛋白质的变性温度、钙结合能力和流变学特性。运用红外光谱法研究了蛋白质改性后的表观特征峰及拟合后二级结构的变化。
     研究钙结合大豆蛋白对冷冻预油炸微波春卷脆性的影响。比较不同市售春卷馅心的水分活度,选择最高值作为基准,用豆沙与水混合进行模拟,统一馅心,考察钙结合大豆蛋白对春卷皮脆性的增加作用,确定了钙结合11S蛋白的最适添加范围40 ~ 50 mg/g,采用扫描电子显微镜(SEM)观察皮层成型后超微结构的变化。研究了冷冻预油炸春卷在微波重制的过程中,馅心与皮层温度变化的规律。在保证皮层脆性的前提下,同时添加甘油,使体系内外均衡升温,得到了微波加热功率和时间的最佳组合,即功率600 W、处理时间40 s、甘油添加量20 mg/g。
     分别运用快速粘度分析仪(RVA)、流变仪、傅里叶变换红外光谱仪(FTIR)探讨钙结合大豆蛋白的添加对春卷皮糊化过程的影响。运用RVA发现加入钙结合蛋白后,体系最终粘度下降、糊化温度升高、延缓了糊化时间。运用流变仪研究面浆体系的静态流变行为,得出添加钙结合11S蛋白的面浆与空白面浆均属典型的非牛顿型剪切变稀和触变性流体。面浆体系的动态流变行为研究表明钙结合蛋白的添加使体系储能模量增加、损耗模量降低,证明钙结合蛋白的添加有效的提高了体系的凝胶性。运用FTIR分析了糊化前(混和阶段)的面浆体系,结果表明钙结合蛋白可以提高体系中蛋白质的水合特征、增加自螺旋结构、减少水结合的螺旋结构,但其对淀粉分子的结晶度影响甚微。糊化后体系的FTIR分析表明:添加钙结合11S蛋白的面浆体系中蛋白的水合度降低到1.596、整体螺旋结构减少、β折叠片结构明显提高、淀粉分子结晶度降低了10%以上。表明在面浆中添加钙结合大豆蛋白,能在混合时提高体系中整体蛋白的水分吸收,并在糊化后高通量的释放,从而间接的提高了面浆体系在糊化过程中结构的有序性,从而提高春卷皮脆性。
     研究钙结合大豆蛋白对春卷皮及面浆冻藏特性的影响。运用DSC考察改性蛋白对原料面浆回生特性的影响,发现钙结合蛋白的添加对回生有一定的阻碍作用,使其14天的回生率从33.72%降到12.71%。X射线衍射测定添加改性蛋白样品回生后的结晶度从52.1%降到17.5%。通过析水率的变化来考察改性蛋白对体系冻融稳定的影响,得知钙结合11S蛋白可以提高样品的冻融稳定性。
     综上所述,钙结合大豆蛋白可以提高冷冻预油炸微波春卷的脆性、延缓产品的回生、提高产品的冻融稳定性,因此在冷冻面食品制造工业中有很好的推广价值和市场前景。
With defatted soy protein in low temperature as main raw materials, 11S protein was separated from the total soluble protein and was modified. The thermodynamic and rheologital properties and structure of modified protein were studied. It could be applied to improve the crispness of microwave reheated pre-fried spring roll. We also studied the effect of calcium-binding protein added to the wrap of spring roll’s on the rheology and retrogradation properties, retrogradation and stability during freeze-thaw. The mechanism of improvement crispness of the wrap by 11S calcium-binding protein was studied from the point of its change of physical chemistry properties.
     The separation conditions of 11S protein were ascertained first. By comparing some separation methods, we selected the method of Koshiyama and optimized the yield ratio. Denaturation temperature, calcium-binding capability and rheological characteristic of the modified protein were also studied. The method of infrared spectroscopy was used to analyze the apparent character peaks and secondary structure fitting character.
     The function of calcium-binding protein to improving the crispness of freezing pre-fried microwavable spring roll was studied. Different kinds of commercial spring roll stuffing’s water activity were compared. The highest value as the benchmark, the mixture of sweetened bean paste and water was simulated and the stuffing was unified. We analyzed the effect of calcium-binding protein and its addition to the system of spring roll. The suitable addition of calcium-binding protein was 40~50 mg/g. Scanning Electronic Microscope (SEM) was used to observe the change of wrap’s microstructure. In the condition of maintaining the crispness of the wrap, the best combinations of microwave heating power and time were as follows: the power 600 W, the reaction time 40 s and the addition of glycerin was 20 mg/g .
     Rapid Visco Analyser (RVA), Rheometer and Fourier Transform Infrared Spectroscopy (FTIR) were used to analyze the effect of calcium-binding protein to the wrap of spring roll’s process of gelatinization. We found that according to the RVA, after calcium-binding protein was added, system’s final viscosity was fallen down and the gelatinization temperature was improved. Rheometer was used to study the padana’s static rheology and we found that with the increase of the shear rate, the panada added 11S protein fell its apparent viscosity. With the decrease of the shear rate, panada’s apparent viscosity increase. The dynamic rheology of panada confirmed that the addition of calcium-binding protein could increase the storage modulus and decrease the loss modulus so as to improve the system’s gelling ability. The system after gelatinization’s result of FTIR indicated that the decreasing degree of protein’s hydration was 1.596, the whole helix structure was fallen,β-extended strand structure improved significantly and the starch molecule’s crystallization degree of starch was decreased by more than 10%. Finally we could confirm that with the addition of calcium-binding protein, moisture absorption property of modified protein in the mixing could be improved and released after gelatinization and improved the structure’s well-ordered property so as to improve the crispness of spring roll.
     The effect of calcium-binding protein to the wrap of spring roll and panada’s freezing character was studied. DSC was used to measure the effect of modified protein on the retrogradation of raw panada. We found that the addition of calcium-binding protein holden back retrogradation. The rate of retrogradation in 14 days was changed from 33.72% to 12.71%. The crystallization degree of the sample added the modified protein was changed from 52.1% to 17.5% measured by the method of X-ray diffraction. According to the change of the rate of water counting, we studied the effect of modified protein to the system’s stability of freeze-thaw and found that 11S protein could improve the sample’s stability efficiently.
     In conclusion, calcium-binding soy protein had the function of improving the crispness of freezing pre-fried microwavable spring roll, retarding the retrogradation efficiently and improving the stability in freeze-thaw. So it has nice value and future in the frozen instant flour product.
引文
1.盛国华.国内外微波食品的概况及发展趋势.冷饮与速冻食品工业, 1999, 21(1): 40-41
    2. Triveni P, Shukla. Microwave technology in cereal foods processing[J]. Food Eng, 1995, 40(1): 24-25
    3.王绍林.微波食品工程[M].北京农业工程大学, 1993. 25-30
    4.高福成,陈卫.微波食品[M].中国轻工业出版社, 1999. 33-44
    5. S.H.Phillips. Coating: the microwave challenge[J]. Food Manufacture, 1991, 7: 22-23
    6.韩兆鹏.可食性大豆分离蛋白膜制备和基础特性分析[J].食品科学, 2004, 25(增刊): 19-20
    7.周湘. SiOx镀膜成食品包装“新宠”[J].市场观澜, 2001, 23: 55-57
    8.程裕东,刘军辉.微波食品的开发以及技术应用[J].中国食品学报, 2003, 3(3): 93-99
    9. Matsunaga, K. Influence of physicochemical properties of starch on crispness of tempura fried batter[J]. Cereal chemistry, 2003, 80(3): 339-345
    10. Hadasa Zuckerman, JosephMiltz. Prediction of dough browning in the microwave oven from temperatures at the suscep to rop roduct interface[J]. Lebensmittel Wissenschaft and Technologie, 1997, 30(6): 519-524
    11.徐文达,陈裕东.食品软包装材料与技术[M].北京:机械工业出版社, 2003. 78-81
    12. Mallikarjunan P, Chinnan M S. Edible coatings for keep fat frying of starchy products[J]. Lebensmitte Wissenschaft and Technologie, 1997, 30 (7): 709-714
    13.原圭志,筱原正美.适用于微波炉的冷冻油炸食品的制造方法[P].日本: JP31620502002, 2004
    14. Sunny Zhang. A Golden and Crispy Solution[J]. Asia food industry, 2002: 1-2, 32-34
    15.周兵,周瑞宝.大豆球蛋白的性质[J].西部粮油科技, 1998, 4 (23): 39-43
    16. Scilingo A A, et al. Calorimetric study of soybean protein isolates: effect of calcium and thermal treatments[J]. J. Agric. Food Chem, 1996, 44: 3751-3756
    17.吴立根,王岸娜.大豆蛋白在面制食品中的应用[J].食品与药品, 2006, 5(6): 67-70
    18.卓建兴,刘淑华.新型方便面添加剂-活性大豆蛋白粉的应用研究[J].郑州粮食学院学报, 1998, (4): 62-66
    19.李里特.大豆的加工与利用[J].北京:化学工业出版社, 2003. 164-165
    20.宋国安,付玉玲,吕近航.大豆蛋白在食品及乳品工业中的应用[J].食品科技, 1996, 22(l): 2
    21.刘跃泉.高功能型大豆分离蛋白研究及应用[J].粮食与油脂, 2003, 24(9): 25-26
    22.王燕,郭桂霞,万海泉.大豆蛋白制品在食品方面的利用[J].吉林粮食高等专科学校学报, 2002, (2): 5-7
    23.宫崎辰己,胜丸裕子等.食用涂料油炸食品和用微波加热的冷冻油炸食品[P].日本大阪, CN.1137869.
    24. Suhaila Mohamed. Food Components affecting the oil absorption and crispness of fried batter[J]. J Sci Food Agr, 1998, 78: 39-45
    25. Clyde E, Stauffer, PHD.大豆在烘烤食品中的应用[M].美国: ASA美国大豆协会, 1999. 80-85
    26.孟祥勋.大豆种子贮藏蛋白的研究[J].东北农业大学学报, 1997, 28 (2): 201-207
    27. Fukushima D. Structures of plant storage proteins and their functions[J]. Food Reviews International, 1991, 7(3): 353-379
    28. SpielmannA. Gel electrophoretic charaterization of protein fractions from soubean during seed development[J]. Crop science, 1998, 25(24): 137-147
    29. Peng IC, Quass DW, Dayton WR, et al. The physico-chemical and functional properties
    11S globulin a review[J]. Cereal Chemistry, 1998, 27(6): 480-489
    30.雷继鹏,田少君,李晓露.分离7S和11S大豆球蛋白简便方法[J].粮食与油脂, 2003,
    6: 6-7
    31.肖凯军,高孔鹫.大豆蛋白中7S和11S蛋白的功能特性研究[J]. CFI, 1996, 3(3):
    24-25
    32.朱建华,杨晓泉,陈刚.大豆7S和11S蛋白的研究[J].粮油加工与食品机械, 2003, 8: 37-39
    33. Saio K, Watanabe T. Differences in functional properties of soybean proteins[J]. J. Texture studies, 1978, 15(9): 1335-1357
    34. Wolf W J. Physical and chemical properties of soybean proteins[J]. J. Am Oil Chemist’s Soc., 1997, 54(2):112a-117a
    35.张红娟,陈振昌,周瑞宝. pH值对11S蛋白结构与凝胶性的影响[J].食品科技, 2003, 31(5): 27-29
    36.周瑞明,沈永嘉.蛋白质二级结构的红外光谱[J].华南理工大学学报, 1997, 23: 422-425
    37.王璋,许时婴,汤坚.食品化学[M].北京:中国轻工业出版社, 1999. 123-174
    38. D. Michael Byler and Heino Susi. Examination of the secondary structure of proteins by deconvolved FTIR spectra[J]. Biopolymers, 2004, 25(3): 469-487
    39.谢安建,沈玉华.碳酸钙对牛血清白蛋白微观结构的影响[J].光谱学与光谱分析, 2001, 21(6): 347-349
    40. Maria Cecilia Puppo, Maria Cristina Anon. Structural Properties of Heat - induced Soy protein Gels as affected by lonic Strength and pH[J]. J. Agric. and Food Chem., 1998, 46: 3583
    41. Tomohiko Mori, Takashi Nakamura and Shigeru Utsumi. Gelation Mechanism of soybean 11S Globulin: Formation of Soluble Aggregates as Transient Intermediates[J]. J. of Food Sci., 1981, 47: 26
    42. Kazuko Shimada, Setsuro Matsushita. Effect of Salts and Denaturants on Thermocoagulation of Proteins[J]. J. Agric. and Food Chem., 1981, 29: 15
    43. Maria Cecilia Puppo, Maria Cristina Anon. Effect of pH and Protein concentration on Rheological Behavior of Acidic Soybean Protein Gels[J]. J. Agric Food Chem., 1998, 46: 3039
    44. Walraj S Gosal. Globular protein gelation[J]. Current Opinion in Colloid & Interface Science, 2000, 5: 188-194
    45. Winter H H, Chambon F. Analysis of linear viscoelaticity of a crosslinking ploymer at the gel point[J]. Journal of Rheology, 1986, 30: 367-382
    46.朱红,黄以贞.食品感观分析入门[M].北京:中国轻工业出版社, 1993. 33-38
    47.黄正华.油水混合介质相对介电常数的研究[J].油气田地面工程(OGSE), 2000, 19(2): 56-58
    48. Kar A, Jacquier J C, Moran D J, Lyng J G, McKenna B M. Influence of Lipid Extraction Process on the Rheological Characteristics, Swelling Power, and Granule Size of Rice Starches in Excess Water[J]. J Agric Food Chem, 2005, 53: 8259-8264
    49. Yeh A I, Li J Y. Continuous measurement of swelling of rice starch during heating[J]. J Cere Sci, 1996, 23: 277-283
    50. Xie Wei, Li Guangmin, Lu Minchun, Nie Fusheng. Quantitative Analysis of Near Infrared Spectroscopy by Combination of Wavelet Analysis and N-way Partial Least Square[J]. Chinese J Anal Chem, 2006, 34(9): 113-117
    51. Lia Zuliang, Wu Peiyi. Probing Weak Interactions of Acetonitrile-Water-Sodium Perchlorate Mixtures Using Two Dimensional (2D) Correlation Infrared Spectroscopy[J]. Acta Chim Sinica, 2006, 64(23): 2357-2364
    52. Higgins H G, Stewart C M, Harrington K J. Spectra of Cellulose and Related Polysaccharides[J]. J Poly Sci, 1961, 51: 59-84
    53. Sevenou O., Hill S. E., Farhat I. A., Mitchell, J. R. Organisation of the external region of the starch granule as determined by infrared spectroscopy[J]. J. Biol. Macromol, 2002, 31: 79-85
    54.赵雅欣,王红英,刘侠.基于RVA(快速粘度分析仪)预测饲料淀粉糊化度韵快速检测方法[J].饲料工业, 2006: 17-27
    55. Ring S G. Some Studies on Starch Gelation[J]. Starch, 1985, 37(2): 80-83
    56.赵威祺.大豆蛋白构造与功能特性[J].粮食与食品工业, 2003, 25(2): 24-28
    57. M M Moroad, B L D. Appolonia. Effect of surfactants and baking procedure on total water-soluble starch in bread crumb[J]. Cereal Chem, 1980, 57: 144-152
    58. Juliano B O. Rice chemistry and technology[M].美国: AACC Inc, 1985. 22
    59.谭洪卓,谷文英,刘敦华,陆建安.甘薯淀粉糊的流变特性[J].食品科学, 2007, 28(1): 58-63
    60.丁文平.大米淀粉凝胶和回生机理的研究[J].粮食与饲料工业, 2003(3): 11-16
    61. F.MacRitchie. The liquid phase of dough and its role in baking[J]. Cereal Chem., 1976, 53: 318
    62. R.M.Stanstedt. A new protein solid for white bread[J]. Bakers’Dig., 1961, 35: 36
    63. W. Bushuk. A study of macaroni products containing soy flour[J]. Bakers’Dig., 1966, 40: 38
    64. S.Chevallier and P.Colonna. Structural and Chemical Modifications of Short Dough During Baking[J]. Sci. Aliments, 1999, 19: 167
    65. I.A.Farbat, S.Orset, P.Moreau and J.M.V.Blanshard. Colloid Vibration Potential in a Concentrated Suspension of Spherical Colloidal Particles[J]. J. Colliod Interface Sci.1998, 207, 200
    66. Kirill I S. Determination of structural peculiarities of dexran, pullulan andγ-irradiated pullulan by Fourier-transform IR spectroscopy[J]. Carbohydr Res, 2002, 337: 1445-1451
    67. G.H.Robertson, K.S.Gregorski and T.K.Cao. Changes Secondary Protein Structures During Mixing Development of High Absorption (90%) Flour and Water Mixtures[J]. Cereal Chemistry, 2006, 83(2): 136-141
    68. Ewoud J J van Velzen, John P M van Duynhoven, Paul Pudney, Peter L Weegels, John H van der Maas. Factors associated with dough stickiness as sensed by attenuated total reflectance infrared spectroscopy[J]. Cereal Chemistry, 2003, 56(7), 378-382
    69. L.J.Salt, P.J. Wilde. Composition and surface propertises of dough liquor[J]. Journal of Cereal Science, 2006, 43: 284-292
    70. Van Soest J J G, Tournois H, De Wit D. Short-range structure in (partially) crystalline potato starch deter-mined with attenuated total reflectance Fourier-transform IR spectro-scopy[J]. Carbohydr Res, 1995, 279: 201-214
    71. Smits A L M, Ruhnau F C, Vliegenthart J F. The Effects of Citric Acid on the Properties of Thermoplastic Starch Plasticized by Glycerol[J]. Starch/Starke, 1998, 50: 478-483
    72. Goodfellow B J, Wilson R H. A fourier transform IR study of the gelation of amylose and amylopectin[J]. Biopolymer, 1990, 30: 1183-1189
    73. Allain, A.-F., Paquin, P., and Subirade, M. Relationships between conformation ofβ-lactoglobulin in solution and gel states as revealed by attenuated total reflection Fourier transform infrared spectroscopy[J]. J. Biol. Macromol. 1999. 26: 337-344
    74. Arrondo, J.L.R., Castresana, J., Valpuesta, J.M. and non Coni, F.M. Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy[J]. Biochemistry, 1994, 33: 11650-11655
    75. Lindsay, M.P., Skerritt, J.H. The glutenin macropolymer of wheat flour doughs: structure-function perspectives[J]. Trends in Food Science and Technology, 1999, 10: 253-274
    76. Douliez, J-P., Michon, T., Elmoranji, K., Marion, D. Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid biding proteins from cereal kernels[J]. Journal of Cereal Science, 2000, 32: 1-20
    77. Clark, D.C., Husband, F.A., Wilde, P.J., Cornec, M., Miller, R., Kragel, J., Wustneck, R. Evidence of extraneous surfactant adsorption altering adsorbed layer properties ofβ-lactoglobulin[J]. Journal Chemical Society Faraday Transactions, 1995, 91: 1991-1996
    78. Kavanagh, G.M., Clark, A.H., Ross-Murphy, S.B. Heat-induced gelation of globular proteins: part 3. molecular studies on low pHβ-lactoglobulin gels[J]. International Journal of Biological Macromolecules, 2000, 28: 41-50
    79. Belton, P.S., Colquhoun, I.J., Grant, A., Wellner, N., Field, J.M., Shewry, P.R. and Tatham, A.S. FTIR and NMR studies on the hydration of a high-Mr subunit of glutenin[J]. J. Biol. Macromol, 1995, 17: 74-80
    80. Gupta, R.B., Batey, I.L. and MacRitchie, F. Relationships between protein composition and functional properties of wheat flours[J]. Cereal Chemistry, 1992, 69: 125-131
    81. P.S.Belton, I.J.Colquhoun, A.Grant, N.Wellner, J.MField, P.R.Shewry and A.S.Tatham. FTIR and NMR Studies on the hydration of High Mr Subunit of Glutein[J]. J. Bio.Macromol., 1995, 17: 74
    82. D. Renard et al. Plant Biopolymer Science: Food and Non-Food Applications[M]. Cambridge: Royal Society of Chemistry, 2002.277-278
    83. Belton, P.S., Colquhoun, I.J., Grant, A., Wellner, N., Field, J.M., Shewry,P.R. and Tatham, A.S. FTIR and NMR studies on the hydration of a high-Mr subunit of glutenin[J]. J. Biol. Macromol. 1995. 17: 74-80
    84. Akao, K., Okubo, Y., Ikeda, T., Inoue, Y., & Sakurai, M. Infrared spectroscopic study on the structural property of a trehalose-water complex. Chemistry Letters, 1998, 36: 759-760
    85. Belton, P. S., Goodfellow, B. J., & Wilson, R. H. A variable temperature Fourier transform infrared study of gelation in i and k carrageenans[J]. Macromolecules, 1989, 22: 1636-1642
    86.张燕萍,檀亦兵.用差示量热扫描方法研究米粉糊的老化[J].无锡轻工大学学报, 2000, 34(1): 19-25
    87.肖安红,何东平,张世宏.低温脱脂豆粉与大豆豆皮膳食纤维改善馒头品质及老化的比较[J].中国粮油学报, 2005, 8:20-24
    88.唐联坤.淀粉糊化、老化特性与食品加工[J].陕西粮油科技, 1996, 10: 21-30
    89.张本山,张友全,杨连生等.淀粉多晶体系结晶度测定方法研究[J].华南理工大学学报, 2001, 29(5): 55-58
    90.张燕萍.变性淀粉制造与应用[M].北京:化工出版社, 2001. 23-28
    91.丁文平,王月慧.米粉体系和米淀粉体系回生特性的比较研究[J].郑州工程学院学报, 2004, 9: 25-30
    92. Jeong-Ok Kim, Wan-Soo Kim, Mal-Shick Shin. Comparative study on retrogradation of rice starch gels by DSC, X-ray andα-amylase methods[J]. Starch, 1997, 49(2): 71-75
    93. Hoover R, Hannouz D, Sosulski F W. Effect of hydroxypropylation on thermal properties, starch digestibility and freeze-thaw stability of field pea(Pisum sativum cv Trapper) starch[J]. Starch, 1988, 40: 383-387

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700